diff options
Diffstat (limited to 'include')
-rw-r--r-- | include/drm/ttm/ttm_bo_api.h | 618 | ||||
-rw-r--r-- | include/drm/ttm/ttm_bo_driver.h | 867 | ||||
-rw-r--r-- | include/drm/ttm/ttm_memory.h | 153 | ||||
-rw-r--r-- | include/drm/ttm/ttm_module.h | 58 | ||||
-rw-r--r-- | include/drm/ttm/ttm_placement.h | 92 |
5 files changed, 1788 insertions, 0 deletions
diff --git a/include/drm/ttm/ttm_bo_api.h b/include/drm/ttm/ttm_bo_api.h new file mode 100644 index 000000000000..cd22ab4b495c --- /dev/null +++ b/include/drm/ttm/ttm_bo_api.h @@ -0,0 +1,618 @@ +/************************************************************************** + * + * Copyright (c) 2006-2009 VMware, Inc., Palo Alto, CA., USA + * All Rights Reserved. + * + * Permission is hereby granted, free of charge, to any person obtaining a + * copy of this software and associated documentation files (the + * "Software"), to deal in the Software without restriction, including + * without limitation the rights to use, copy, modify, merge, publish, + * distribute, sub license, and/or sell copies of the Software, and to + * permit persons to whom the Software is furnished to do so, subject to + * the following conditions: + * + * The above copyright notice and this permission notice (including the + * next paragraph) shall be included in all copies or substantial portions + * of the Software. + * + * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR + * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY, + * FITNESS FOR A PARTICULAR PURPOSE AND NON-INFRINGEMENT. IN NO EVENT SHALL + * THE COPYRIGHT HOLDERS, AUTHORS AND/OR ITS SUPPLIERS BE LIABLE FOR ANY CLAIM, + * DAMAGES OR OTHER LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR + * OTHERWISE, ARISING FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE + * USE OR OTHER DEALINGS IN THE SOFTWARE. + * + **************************************************************************/ +/* + * Authors: Thomas Hellstrom <thellstrom-at-vmware-dot-com> + */ + +#ifndef _TTM_BO_API_H_ +#define _TTM_BO_API_H_ + +#include "drm_hashtab.h" +#include <linux/kref.h> +#include <linux/list.h> +#include <linux/wait.h> +#include <linux/mutex.h> +#include <linux/mm.h> +#include <linux/rbtree.h> +#include <linux/bitmap.h> + +struct ttm_bo_device; + +struct drm_mm_node; + +/** + * struct ttm_mem_reg + * + * @mm_node: Memory manager node. + * @size: Requested size of memory region. + * @num_pages: Actual size of memory region in pages. + * @page_alignment: Page alignment. + * @placement: Placement flags. + * + * Structure indicating the placement and space resources used by a + * buffer object. + */ + +struct ttm_mem_reg { + struct drm_mm_node *mm_node; + unsigned long size; + unsigned long num_pages; + uint32_t page_alignment; + uint32_t mem_type; + uint32_t placement; +}; + +/** + * enum ttm_bo_type + * + * @ttm_bo_type_device: These are 'normal' buffers that can + * be mmapped by user space. Each of these bos occupy a slot in the + * device address space, that can be used for normal vm operations. + * + * @ttm_bo_type_user: These are user-space memory areas that are made + * available to the GPU by mapping the buffer pages into the GPU aperture + * space. These buffers cannot be mmaped from the device address space. + * + * @ttm_bo_type_kernel: These buffers are like ttm_bo_type_device buffers, + * but they cannot be accessed from user-space. For kernel-only use. + */ + +enum ttm_bo_type { + ttm_bo_type_device, + ttm_bo_type_user, + ttm_bo_type_kernel +}; + +struct ttm_tt; + +/** + * struct ttm_buffer_object + * + * @bdev: Pointer to the buffer object device structure. + * @buffer_start: The virtual user-space start address of ttm_bo_type_user + * buffers. + * @type: The bo type. + * @destroy: Destruction function. If NULL, kfree is used. + * @num_pages: Actual number of pages. + * @addr_space_offset: Address space offset. + * @acc_size: Accounted size for this object. + * @kref: Reference count of this buffer object. When this refcount reaches + * zero, the object is put on the delayed delete list. + * @list_kref: List reference count of this buffer object. This member is + * used to avoid destruction while the buffer object is still on a list. + * Lru lists may keep one refcount, the delayed delete list, and kref != 0 + * keeps one refcount. When this refcount reaches zero, + * the object is destroyed. + * @event_queue: Queue for processes waiting on buffer object status change. + * @lock: spinlock protecting mostly synchronization members. + * @proposed_placement: Proposed placement for the buffer. Changed only by the + * creator prior to validation as opposed to bo->mem.proposed_flags which is + * changed by the implementation prior to a buffer move if it wants to outsmart + * the buffer creator / user. This latter happens, for example, at eviction. + * @mem: structure describing current placement. + * @persistant_swap_storage: Usually the swap storage is deleted for buffers + * pinned in physical memory. If this behaviour is not desired, this member + * holds a pointer to a persistant shmem object. + * @ttm: TTM structure holding system pages. + * @evicted: Whether the object was evicted without user-space knowing. + * @cpu_writes: For synchronization. Number of cpu writers. + * @lru: List head for the lru list. + * @ddestroy: List head for the delayed destroy list. + * @swap: List head for swap LRU list. + * @val_seq: Sequence of the validation holding the @reserved lock. + * Used to avoid starvation when many processes compete to validate the + * buffer. This member is protected by the bo_device::lru_lock. + * @seq_valid: The value of @val_seq is valid. This value is protected by + * the bo_device::lru_lock. + * @reserved: Deadlock-free lock used for synchronization state transitions. + * @sync_obj_arg: Opaque argument to synchronization object function. + * @sync_obj: Pointer to a synchronization object. + * @priv_flags: Flags describing buffer object internal state. + * @vm_rb: Rb node for the vm rb tree. + * @vm_node: Address space manager node. + * @offset: The current GPU offset, which can have different meanings + * depending on the memory type. For SYSTEM type memory, it should be 0. + * @cur_placement: Hint of current placement. + * + * Base class for TTM buffer object, that deals with data placement and CPU + * mappings. GPU mappings are really up to the driver, but for simpler GPUs + * the driver can usually use the placement offset @offset directly as the + * GPU virtual address. For drivers implementing multiple + * GPU memory manager contexts, the driver should manage the address space + * in these contexts separately and use these objects to get the correct + * placement and caching for these GPU maps. This makes it possible to use + * these objects for even quite elaborate memory management schemes. + * The destroy member, the API visibility of this object makes it possible + * to derive driver specific types. + */ + +struct ttm_buffer_object { + /** + * Members constant at init. + */ + + struct ttm_bo_device *bdev; + unsigned long buffer_start; + enum ttm_bo_type type; + void (*destroy) (struct ttm_buffer_object *); + unsigned long num_pages; + uint64_t addr_space_offset; + size_t acc_size; + + /** + * Members not needing protection. + */ + + struct kref kref; + struct kref list_kref; + wait_queue_head_t event_queue; + spinlock_t lock; + + /** + * Members protected by the bo::reserved lock. + */ + + uint32_t proposed_placement; + struct ttm_mem_reg mem; + struct file *persistant_swap_storage; + struct ttm_tt *ttm; + bool evicted; + + /** + * Members protected by the bo::reserved lock only when written to. + */ + + atomic_t cpu_writers; + + /** + * Members protected by the bdev::lru_lock. + */ + + struct list_head lru; + struct list_head ddestroy; + struct list_head swap; + uint32_t val_seq; + bool seq_valid; + + /** + * Members protected by the bdev::lru_lock + * only when written to. + */ + + atomic_t reserved; + + + /** + * Members protected by the bo::lock + */ + + void *sync_obj_arg; + void *sync_obj; + unsigned long priv_flags; + + /** + * Members protected by the bdev::vm_lock + */ + + struct rb_node vm_rb; + struct drm_mm_node *vm_node; + + + /** + * Special members that are protected by the reserve lock + * and the bo::lock when written to. Can be read with + * either of these locks held. + */ + + unsigned long offset; + uint32_t cur_placement; +}; + +/** + * struct ttm_bo_kmap_obj + * + * @virtual: The current kernel virtual address. + * @page: The page when kmap'ing a single page. + * @bo_kmap_type: Type of bo_kmap. + * + * Object describing a kernel mapping. Since a TTM bo may be located + * in various memory types with various caching policies, the + * mapping can either be an ioremap, a vmap, a kmap or part of a + * premapped region. + */ + +struct ttm_bo_kmap_obj { + void *virtual; + struct page *page; + enum { + ttm_bo_map_iomap, + ttm_bo_map_vmap, + ttm_bo_map_kmap, + ttm_bo_map_premapped, + } bo_kmap_type; +}; + +/** + * ttm_bo_reference - reference a struct ttm_buffer_object + * + * @bo: The buffer object. + * + * Returns a refcounted pointer to a buffer object. + */ + +static inline struct ttm_buffer_object * +ttm_bo_reference(struct ttm_buffer_object *bo) +{ + kref_get(&bo->kref); + return bo; +} + +/** + * ttm_bo_wait - wait for buffer idle. + * + * @bo: The buffer object. + * @interruptible: Use interruptible wait. + * @no_wait: Return immediately if buffer is busy. + * + * This function must be called with the bo::mutex held, and makes + * sure any previous rendering to the buffer is completed. + * Note: It might be necessary to block validations before the + * wait by reserving the buffer. + * Returns -EBUSY if no_wait is true and the buffer is busy. + * Returns -ERESTART if interrupted by a signal. + */ +extern int ttm_bo_wait(struct ttm_buffer_object *bo, bool lazy, + bool interruptible, bool no_wait); +/** + * ttm_buffer_object_validate + * + * @bo: The buffer object. + * @proposed_placement: Proposed_placement for the buffer object. + * @interruptible: Sleep interruptible if sleeping. + * @no_wait: Return immediately if the buffer is busy. + * + * Changes placement and caching policy of the buffer object + * according to bo::proposed_flags. + * Returns + * -EINVAL on invalid proposed_flags. + * -ENOMEM on out-of-memory condition. + * -EBUSY if no_wait is true and buffer busy. + * -ERESTART if interrupted by a signal. + */ +extern int ttm_buffer_object_validate(struct ttm_buffer_object *bo, + uint32_t proposed_placement, + bool interruptible, bool no_wait); +/** + * ttm_bo_unref + * + * @bo: The buffer object. + * + * Unreference and clear a pointer to a buffer object. + */ +extern void ttm_bo_unref(struct ttm_buffer_object **bo); + +/** + * ttm_bo_synccpu_write_grab + * + * @bo: The buffer object: + * @no_wait: Return immediately if buffer is busy. + * + * Synchronizes a buffer object for CPU RW access. This means + * blocking command submission that affects the buffer and + * waiting for buffer idle. This lock is recursive. + * Returns + * -EBUSY if the buffer is busy and no_wait is true. + * -ERESTART if interrupted by a signal. + */ + +extern int +ttm_bo_synccpu_write_grab(struct ttm_buffer_object *bo, bool no_wait); +/** + * ttm_bo_synccpu_write_release: + * + * @bo : The buffer object. + * + * Releases a synccpu lock. + */ +extern void ttm_bo_synccpu_write_release(struct ttm_buffer_object *bo); + +/** + * ttm_buffer_object_init + * + * @bdev: Pointer to a ttm_bo_device struct. + * @bo: Pointer to a ttm_buffer_object to be initialized. + * @size: Requested size of buffer object. + * @type: Requested type of buffer object. + * @flags: Initial placement flags. + * @page_alignment: Data alignment in pages. + * @buffer_start: Virtual address of user space data backing a + * user buffer object. + * @interruptible: If needing to sleep to wait for GPU resources, + * sleep interruptible. + * @persistant_swap_storage: Usually the swap storage is deleted for buffers + * pinned in physical memory. If this behaviour is not desired, this member + * holds a pointer to a persistant shmem object. Typically, this would + * point to the shmem object backing a GEM object if TTM is used to back a + * GEM user interface. + * @acc_size: Accounted size for this object. + * @destroy: Destroy function. Use NULL for kfree(). + * + * This function initializes a pre-allocated struct ttm_buffer_object. + * As this object may be part of a larger structure, this function, + * together with the @destroy function, + * enables driver-specific objects derived from a ttm_buffer_object. + * On successful return, the object kref and list_kref are set to 1. + * Returns + * -ENOMEM: Out of memory. + * -EINVAL: Invalid placement flags. + * -ERESTART: Interrupted by signal while sleeping waiting for resources. + */ + +extern int ttm_buffer_object_init(struct ttm_bo_device *bdev, + struct ttm_buffer_object *bo, + unsigned long size, + enum ttm_bo_type type, + uint32_t flags, + uint32_t page_alignment, + unsigned long buffer_start, + bool interrubtible, + struct file *persistant_swap_storage, + size_t acc_size, + void (*destroy) (struct ttm_buffer_object *)); +/** + * ttm_bo_synccpu_object_init + * + * @bdev: Pointer to a ttm_bo_device struct. + * @bo: Pointer to a ttm_buffer_object to be initialized. + * @size: Requested size of buffer object. + * @type: Requested type of buffer object. + * @flags: Initial placement flags. + * @page_alignment: Data alignment in pages. + * @buffer_start: Virtual address of user space data backing a + * user buffer object. + * @interruptible: If needing to sleep while waiting for GPU resources, + * sleep interruptible. + * @persistant_swap_storage: Usually the swap storage is deleted for buffers + * pinned in physical memory. If this behaviour is not desired, this member + * holds a pointer to a persistant shmem object. Typically, this would + * point to the shmem object backing a GEM object if TTM is used to back a + * GEM user interface. + * @p_bo: On successful completion *p_bo points to the created object. + * + * This function allocates a ttm_buffer_object, and then calls + * ttm_buffer_object_init on that object. + * The destroy function is set to kfree(). + * Returns + * -ENOMEM: Out of memory. + * -EINVAL: Invalid placement flags. + * -ERESTART: Interrupted by signal while waiting for resources. + */ + +extern int ttm_buffer_object_create(struct ttm_bo_device *bdev, + unsigned long size, + enum ttm_bo_type type, + uint32_t flags, + uint32_t page_alignment, + unsigned long buffer_start, + bool interruptible, + struct file *persistant_swap_storage, + struct ttm_buffer_object **p_bo); + +/** + * ttm_bo_check_placement + * + * @bo: the buffer object. + * @set_flags: placement flags to set. + * @clr_flags: placement flags to clear. + * + * Performs minimal validity checking on an intended change of + * placement flags. + * Returns + * -EINVAL: Intended change is invalid or not allowed. + */ + +extern int ttm_bo_check_placement(struct ttm_buffer_object *bo, + uint32_t set_flags, uint32_t clr_flags); + +/** + * ttm_bo_init_mm + * + * @bdev: Pointer to a ttm_bo_device struct. + * @mem_type: The memory type. + * @p_offset: offset for managed area in pages. + * @p_size: size managed area in pages. + * + * Initialize a manager for a given memory type. + * Note: if part of driver firstopen, it must be protected from a + * potentially racing lastclose. + * Returns: + * -EINVAL: invalid size or memory type. + * -ENOMEM: Not enough memory. + * May also return driver-specified errors. + */ + +extern int ttm_bo_init_mm(struct ttm_bo_device *bdev, unsigned type, + unsigned long p_offset, unsigned long p_size); +/** + * ttm_bo_clean_mm + * + * @bdev: Pointer to a ttm_bo_device struct. + * @mem_type: The memory type. + * + * Take down a manager for a given memory type after first walking + * the LRU list to evict any buffers left alive. + * + * Normally, this function is part of lastclose() or unload(), and at that + * point there shouldn't be any buffers left created by user-space, since + * there should've been removed by the file descriptor release() method. + * However, before this function is run, make sure to signal all sync objects, + * and verify that the delayed delete queue is empty. The driver must also + * make sure that there are no NO_EVICT buffers present in this memory type + * when the call is made. + * + * If this function is part of a VT switch, the caller must make sure that + * there are no appications currently validating buffers before this + * function is called. The caller can do that by first taking the + * struct ttm_bo_device::ttm_lock in write mode. + * + * Returns: + * -EINVAL: invalid or uninitialized memory type. + * -EBUSY: There are still buffers left in this memory type. + */ + +extern int ttm_bo_clean_mm(struct ttm_bo_device *bdev, unsigned mem_type); + +/** + * ttm_bo_evict_mm + * + * @bdev: Pointer to a ttm_bo_device struct. + * @mem_type: The memory type. + * + * Evicts all buffers on the lru list of the memory type. + * This is normally part of a VT switch or an + * out-of-memory-space-due-to-fragmentation handler. + * The caller must make sure that there are no other processes + * currently validating buffers, and can do that by taking the + * struct ttm_bo_device::ttm_lock in write mode. + * + * Returns: + * -EINVAL: Invalid or uninitialized memory type. + * -ERESTART: The call was interrupted by a signal while waiting to + * evict a buffer. + */ + +extern int ttm_bo_evict_mm(struct ttm_bo_device *bdev, unsigned mem_type); + +/** + * ttm_kmap_obj_virtual + * + * @map: A struct ttm_bo_kmap_obj returned from ttm_bo_kmap. + * @is_iomem: Pointer to an integer that on return indicates 1 if the + * virtual map is io memory, 0 if normal memory. + * + * Returns the virtual address of a buffer object area mapped by ttm_bo_kmap. + * If *is_iomem is 1 on return, the virtual address points to an io memory area, + * that should strictly be accessed by the iowriteXX() and similar functions. + */ + +static inline void *ttm_kmap_obj_virtual(struct ttm_bo_kmap_obj *map, + bool *is_iomem) +{ + *is_iomem = (map->bo_kmap_type == ttm_bo_map_iomap || + map->bo_kmap_type == ttm_bo_map_premapped); + return map->virtual; +} + +/** + * ttm_bo_kmap + * + * @bo: The buffer object. + * @start_page: The first page to map. + * @num_pages: Number of pages to map. + * @map: pointer to a struct ttm_bo_kmap_obj representing the map. + * + * Sets up a kernel virtual mapping, using ioremap, vmap or kmap to the + * data in the buffer object. The ttm_kmap_obj_virtual function can then be + * used to obtain a virtual address to the data. + * + * Returns + * -ENOMEM: Out of memory. + * -EINVAL: Invalid range. + */ + +extern int ttm_bo_kmap(struct ttm_buffer_object *bo, unsigned long start_page, + unsigned long num_pages, struct ttm_bo_kmap_obj *map); + +/** + * ttm_bo_kunmap + * + * @map: Object describing the map to unmap. + * + * Unmaps a kernel map set up by ttm_bo_kmap. + */ + +extern void ttm_bo_kunmap(struct ttm_bo_kmap_obj *map); + +#if 0 +#endif + +/** + * ttm_fbdev_mmap - mmap fbdev memory backed by a ttm buffer object. + * + * @vma: vma as input from the fbdev mmap method. + * @bo: The bo backing the address space. The address space will + * have the same size as the bo, and start at offset 0. + * + * This function is intended to be called by the fbdev mmap method + * if the fbdev address space is to be backed by a bo. + */ + +extern int ttm_fbdev_mmap(struct vm_area_struct *vma, + struct ttm_buffer_object *bo); + +/** + * ttm_bo_mmap - mmap out of the ttm device address space. + * + * @filp: filp as input from the mmap method. + * @vma: vma as input from the mmap method. + * @bdev: Pointer to the ttm_bo_device with the address space manager. + * + * This function is intended to be called by the device mmap method. + * if the device address space is to be backed by the bo manager. + */ + +extern int ttm_bo_mmap(struct file *filp, struct vm_area_struct *vma, + struct ttm_bo_device *bdev); + +/** + * ttm_bo_io + * + * @bdev: Pointer to the struct ttm_bo_device. + * @filp: Pointer to the struct file attempting to read / write. + * @wbuf: User-space pointer to address of buffer to write. NULL on read. + * @rbuf: User-space pointer to address of buffer to read into. + * Null on write. + * @count: Number of bytes to read / write. + * @f_pos: Pointer to current file position. + * @write: 1 for read, 0 for write. + * + * This function implements read / write into ttm buffer objects, and is + * intended to + * be called from the fops::read and fops::write method. + * Returns: + * See man (2) write, man(2) read. In particular, + * the function may return -EINTR if + * interrupted by a signal. + */ + +extern ssize_t ttm_bo_io(struct ttm_bo_device *bdev, struct file *filp, + const char __user *wbuf, char __user *rbuf, + size_t count, loff_t *f_pos, bool write); + +extern void ttm_bo_swapout_all(struct ttm_bo_device *bdev); + +#endif diff --git a/include/drm/ttm/ttm_bo_driver.h b/include/drm/ttm/ttm_bo_driver.h new file mode 100644 index 000000000000..62ed733c52a2 --- /dev/null +++ b/include/drm/ttm/ttm_bo_driver.h @@ -0,0 +1,867 @@ +/************************************************************************** + * + * Copyright (c) 2006-2009 Vmware, Inc., Palo Alto, CA., USA + * All Rights Reserved. + * + * Permission is hereby granted, free of charge, to any person obtaining a + * copy of this software and associated documentation files (the + * "Software"), to deal in the Software without restriction, including + * without limitation the rights to use, copy, modify, merge, publish, + * distribute, sub license, and/or sell copies of the Software, and to + * permit persons to whom the Software is furnished to do so, subject to + * the following conditions: + * + * The above copyright notice and this permission notice (including the + * next paragraph) shall be included in all copies or substantial portions + * of the Software. + * + * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR + * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY, + * FITNESS FOR A PARTICULAR PURPOSE AND NON-INFRINGEMENT. IN NO EVENT SHALL + * THE COPYRIGHT HOLDERS, AUTHORS AND/OR ITS SUPPLIERS BE LIABLE FOR ANY CLAIM, + * DAMAGES OR OTHER LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR + * OTHERWISE, ARISING FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE + * USE OR OTHER DEALINGS IN THE SOFTWARE. + * + **************************************************************************/ +/* + * Authors: Thomas Hellstrom <thellstrom-at-vmware-dot-com> + */ +#ifndef _TTM_BO_DRIVER_H_ +#define _TTM_BO_DRIVER_H_ + +#include "ttm/ttm_bo_api.h" +#include "ttm/ttm_memory.h" +#include "drm_mm.h" +#include "linux/workqueue.h" +#include "linux/fs.h" +#include "linux/spinlock.h" + +struct ttm_backend; + +struct ttm_backend_func { + /** + * struct ttm_backend_func member populate + * + * @backend: Pointer to a struct ttm_backend. + * @num_pages: Number of pages to populate. + * @pages: Array of pointers to ttm pages. + * @dummy_read_page: Page to be used instead of NULL pages in the + * array @pages. + * + * Populate the backend with ttm pages. Depending on the backend, + * it may or may not copy the @pages array. + */ + int (*populate) (struct ttm_backend *backend, + unsigned long num_pages, struct page **pages, + struct page *dummy_read_page); + /** + * struct ttm_backend_func member clear + * + * @backend: Pointer to a struct ttm_backend. + * + * This is an "unpopulate" function. Release all resources + * allocated with populate. + */ + void (*clear) (struct ttm_backend *backend); + + /** + * struct ttm_backend_func member bind + * + * @backend: Pointer to a struct ttm_backend. + * @bo_mem: Pointer to a struct ttm_mem_reg describing the + * memory type and location for binding. + * + * Bind the backend pages into the aperture in the location + * indicated by @bo_mem. This function should be able to handle + * differences between aperture- and system page sizes. + */ + int (*bind) (struct ttm_backend *backend, struct ttm_mem_reg *bo_mem); + + /** + * struct ttm_backend_func member unbind + * + * @backend: Pointer to a struct ttm_backend. + * + * Unbind previously bound backend pages. This function should be + * able to handle differences between aperture- and system page sizes. + */ + int (*unbind) (struct ttm_backend *backend); + + /** + * struct ttm_backend_func member destroy + * + * @backend: Pointer to a struct ttm_backend. + * + * Destroy the backend. + */ + void (*destroy) (struct ttm_backend *backend); +}; + +/** + * struct ttm_backend + * + * @bdev: Pointer to a struct ttm_bo_device. + * @flags: For driver use. + * @func: Pointer to a struct ttm_backend_func that describes + * the backend methods. + * + */ + +struct ttm_backend { + struct ttm_bo_device *bdev; + uint32_t flags; + struct ttm_backend_func *func; +}; + +#define TTM_PAGE_FLAG_VMALLOC (1 << 0) +#define TTM_PAGE_FLAG_USER (1 << 1) +#define TTM_PAGE_FLAG_USER_DIRTY (1 << 2) +#define TTM_PAGE_FLAG_WRITE (1 << 3) +#define TTM_PAGE_FLAG_SWAPPED (1 << 4) +#define TTM_PAGE_FLAG_PERSISTANT_SWAP (1 << 5) +#define TTM_PAGE_FLAG_ZERO_ALLOC (1 << 6) + +enum ttm_caching_state { + tt_uncached, + tt_wc, + tt_cached +}; + +/** + * struct ttm_tt + * + * @dummy_read_page: Page to map where the ttm_tt page array contains a NULL + * pointer. + * @pages: Array of pages backing the data. + * @first_himem_page: Himem pages are put last in the page array, which + * enables us to run caching attribute changes on only the first part + * of the page array containing lomem pages. This is the index of the + * first himem page. + * @last_lomem_page: Index of the last lomem page in the page array. + * @num_pages: Number of pages in the page array. + * @bdev: Pointer to the current struct ttm_bo_device. + * @be: Pointer to the ttm backend. + * @tsk: The task for user ttm. + * @start: virtual address for user ttm. + * @swap_storage: Pointer to shmem struct file for swap storage. + * @caching_state: The current caching state of the pages. + * @state: The current binding state of the pages. + * + * This is a structure holding the pages, caching- and aperture binding + * status for a buffer object that isn't backed by fixed (VRAM / AGP) + * memory. + */ + +struct ttm_tt { + struct page *dummy_read_page; + struct page **pages; + long first_himem_page; + long last_lomem_page; + uint32_t page_flags; + unsigned long num_pages; + struct ttm_bo_device *bdev; + struct ttm_backend *be; + struct task_struct *tsk; + unsigned long start; + struct file *swap_storage; + enum ttm_caching_state caching_state; + enum { + tt_bound, + tt_unbound, + tt_unpopulated, + } state; +}; + +#define TTM_MEMTYPE_FLAG_FIXED (1 << 0) /* Fixed (on-card) PCI memory */ +#define TTM_MEMTYPE_FLAG_MAPPABLE (1 << 1) /* Memory mappable */ +#define TTM_MEMTYPE_FLAG_NEEDS_IOREMAP (1 << 2) /* Fixed memory needs ioremap + before kernel access. */ +#define TTM_MEMTYPE_FLAG_CMA (1 << 3) /* Can't map aperture */ + +/** + * struct ttm_mem_type_manager + * + * @has_type: The memory type has been initialized. + * @use_type: The memory type is enabled. + * @flags: TTM_MEMTYPE_XX flags identifying the traits of the memory + * managed by this memory type. + * @gpu_offset: If used, the GPU offset of the first managed page of + * fixed memory or the first managed location in an aperture. + * @io_offset: The io_offset of the first managed page of IO memory or + * the first managed location in an aperture. For TTM_MEMTYPE_FLAG_CMA + * memory, this should be set to NULL. + * @io_size: The size of a managed IO region (fixed memory or aperture). + * @io_addr: Virtual kernel address if the io region is pre-mapped. For + * TTM_MEMTYPE_FLAG_NEEDS_IOREMAP there is no pre-mapped io map and + * @io_addr should be set to NULL. + * @size: Size of the managed region. + * @available_caching: A mask of available caching types, TTM_PL_FLAG_XX, + * as defined in ttm_placement_common.h + * @default_caching: The default caching policy used for a buffer object + * placed in this memory type if the user doesn't provide one. + * @manager: The range manager used for this memory type. FIXME: If the aperture + * has a page size different from the underlying system, the granularity + * of this manager should take care of this. But the range allocating code + * in ttm_bo.c needs to be modified for this. + * @lru: The lru list for this memory type. + * + * This structure is used to identify and manage memory types for a device. + * It's set up by the ttm_bo_driver::init_mem_type method. + */ + +struct ttm_mem_type_manager { + + /* + * No protection. Constant from start. + */ + + bool has_type; + bool use_type; + uint32_t flags; + unsigned long gpu_offset; + unsigned long io_offset; + unsigned long io_size; + void *io_addr; + uint64_t size; + uint32_t available_caching; + uint32_t default_caching; + + /* + * Protected by the bdev->lru_lock. + * TODO: Consider one lru_lock per ttm_mem_type_manager. + * Plays ill with list removal, though. + */ + + struct drm_mm manager; + struct list_head lru; +}; + +/** + * struct ttm_bo_driver + * + * @mem_type_prio: Priority array of memory types to place a buffer object in + * if it fits without evicting buffers from any of these memory types. + * @mem_busy_prio: Priority array of memory types to place a buffer object in + * if it needs to evict buffers to make room. + * @num_mem_type_prio: Number of elements in the @mem_type_prio array. + * @num_mem_busy_prio: Number of elements in the @num_mem_busy_prio array. + * @create_ttm_backend_entry: Callback to create a struct ttm_backend. + * @invalidate_caches: Callback to invalidate read caches when a buffer object + * has been evicted. + * @init_mem_type: Callback to initialize a struct ttm_mem_type_manager + * structure. + * @evict_flags: Callback to obtain placement flags when a buffer is evicted. + * @move: Callback for a driver to hook in accelerated functions to + * move a buffer. + * If set to NULL, a potentially slow memcpy() move is used. + * @sync_obj_signaled: See ttm_fence_api.h + * @sync_obj_wait: See ttm_fence_api.h + * @sync_obj_flush: See ttm_fence_api.h + * @sync_obj_unref: See ttm_fence_api.h + * @sync_obj_ref: See ttm_fence_api.h + */ + +struct ttm_bo_driver { + const uint32_t *mem_type_prio; + const uint32_t *mem_busy_prio; + uint32_t num_mem_type_prio; + uint32_t num_mem_busy_prio; + + /** + * struct ttm_bo_driver member create_ttm_backend_entry + * + * @bdev: The buffer object device. + * + * Create a driver specific struct ttm_backend. + */ + + struct ttm_backend *(*create_ttm_backend_entry) + (struct ttm_bo_device *bdev); + + /** + * struct ttm_bo_driver member invalidate_caches + * + * @bdev: the buffer object device. + * @flags: new placement of the rebound buffer object. + * + * A previosly evicted buffer has been rebound in a + * potentially new location. Tell the driver that it might + * consider invalidating read (texture) caches on the next command + * submission as a consequence. + */ + + int (*invalidate_caches) (struct ttm_bo_device *bdev, uint32_t flags); + int (*init_mem_type) (struct ttm_bo_device *bdev, uint32_t type, + struct ttm_mem_type_manager *man); + /** + * struct ttm_bo_driver member evict_flags: + * + * @bo: the buffer object to be evicted + * + * Return the bo flags for a buffer which is not mapped to the hardware. + * These will be placed in proposed_flags so that when the move is + * finished, they'll end up in bo->mem.flags + */ + + uint32_t(*evict_flags) (struct ttm_buffer_object *bo); + /** + * struct ttm_bo_driver member move: + * + * @bo: the buffer to move + * @evict: whether this motion is evicting the buffer from + * the graphics address space + * @interruptible: Use interruptible sleeps if possible when sleeping. + * @no_wait: whether this should give up and return -EBUSY + * if this move would require sleeping + * @new_mem: the new memory region receiving the buffer + * + * Move a buffer between two memory regions. + */ + int (*move) (struct ttm_buffer_object *bo, + bool evict, bool interruptible, + bool no_wait, struct ttm_mem_reg *new_mem); + + /** + * struct ttm_bo_driver_member verify_access + * + * @bo: Pointer to a buffer object. + * @filp: Pointer to a struct file trying to access the object. + * + * Called from the map / write / read methods to verify that the + * caller is permitted to access the buffer object. + * This member may be set to NULL, which will refuse this kind of + * access for all buffer objects. + * This function should return 0 if access is granted, -EPERM otherwise. + */ + int (*verify_access) (struct ttm_buffer_object *bo, + struct file *filp); + + /** + * In case a driver writer dislikes the TTM fence objects, + * the driver writer can replace those with sync objects of + * his / her own. If it turns out that no driver writer is + * using these. I suggest we remove these hooks and plug in + * fences directly. The bo driver needs the following functionality: + * See the corresponding functions in the fence object API + * documentation. + */ + + bool (*sync_obj_signaled) (void *sync_obj, void *sync_arg); + int (*sync_obj_wait) (void *sync_obj, void *sync_arg, + bool lazy, bool interruptible); + int (*sync_obj_flush) (void *sync_obj, void *sync_arg); + void (*sync_obj_unref) (void **sync_obj); + void *(*sync_obj_ref) (void *sync_obj); +}; + +#define TTM_NUM_MEM_TYPES 8 + +#define TTM_BO_PRIV_FLAG_MOVING 0 /* Buffer object is moving and needs + idling before CPU mapping */ +#define TTM_BO_PRIV_FLAG_MAX 1 +/** + * struct ttm_bo_device - Buffer object driver device-specific data. + * + * @mem_glob: Pointer to a struct ttm_mem_global object for accounting. + * @driver: Pointer to a struct ttm_bo_driver struct setup by the driver. + * @count: Current number of buffer object. + * @pages: Current number of pinned pages. + * @dummy_read_page: Pointer to a dummy page used for mapping requests + * of unpopulated pages. + * @shrink: A shrink callback object used for buffre object swap. + * @ttm_bo_extra_size: Extra size (sizeof(struct ttm_buffer_object) excluded) + * used by a buffer object. This is excluding page arrays and backing pages. + * @ttm_bo_size: This is @ttm_bo_extra_size + sizeof(struct ttm_buffer_object). + * @man: An array of mem_type_managers. + * @addr_space_mm: Range manager for the device address space. + * lru_lock: Spinlock that protects the buffer+device lru lists and + * ddestroy lists. + * @nice_mode: Try nicely to wait for buffer idle when cleaning a manager. + * If a GPU lockup has been detected, this is forced to 0. + * @dev_mapping: A pointer to the struct address_space representing the + * device address space. + * @wq: Work queue structure for the delayed delete workqueue. + * + */ + +struct ttm_bo_device { + + /* + * Constant after bo device init / atomic. + */ + + struct ttm_mem_global *mem_glob; + struct ttm_bo_driver *driver; + struct page *dummy_read_page; + struct ttm_mem_shrink shrink; + + size_t ttm_bo_extra_size; + size_t ttm_bo_size; + + rwlock_t vm_lock; + /* + * Protected by the vm lock. + */ + struct ttm_mem_type_manager man[TTM_NUM_MEM_TYPES]; + struct rb_root addr_space_rb; + struct drm_mm addr_space_mm; + + /* + * Might want to change this to one lock per manager. + */ + spinlock_t lru_lock; + /* + * Protected by the lru lock. + */ + struct list_head ddestroy; + struct list_head swap_lru; + + /* + * Protected by load / firstopen / lastclose /unload sync. + */ + + bool nice_mode; + struct address_space *dev_mapping; + + /* + * Internal protection. + */ + + struct delayed_work wq; +}; + +/** + * ttm_flag_masked + * + * @old: Pointer to the result and original value. + * @new: New value of bits. + * @mask: Mask of bits to change. + * + * Convenience function to change a number of bits identified by a mask. + */ + +static inline uint32_t +ttm_flag_masked(uint32_t *old, uint32_t new, uint32_t mask) +{ + *old ^= (*old ^ new) & mask; + return *old; +} + +/** + * ttm_tt_create + * + * @bdev: pointer to a struct ttm_bo_device: + * @size: Size of the data needed backing. + * @page_flags: Page flags as identified by TTM_PAGE_FLAG_XX flags. + * @dummy_read_page: See struct ttm_bo_device. + * + * Create a struct ttm_tt to back data with system memory pages. + * No pages are actually allocated. + * Returns: + * NULL: Out of memory. + */ +extern struct ttm_tt *ttm_tt_create(struct ttm_bo_device *bdev, + unsigned long size, + uint32_t page_flags, + struct page *dummy_read_page); + +/** + * ttm_tt_set_user: + * + * @ttm: The struct ttm_tt to populate. + * @tsk: A struct task_struct for which @start is a valid user-space address. + * @start: A valid user-space address. + * @num_pages: Size in pages of the user memory area. + * + * Populate a struct ttm_tt with a user-space memory area after first pinning + * the pages backing it. + * Returns: + * !0: Error. + */ + +extern int ttm_tt_set_user(struct ttm_tt *ttm, + struct task_struct *tsk, + unsigned long start, unsigned long num_pages); + +/** + * ttm_ttm_bind: + * + * @ttm: The struct ttm_tt containing backing pages. + * @bo_mem: The struct ttm_mem_reg identifying the binding location. + * + * Bind the pages of @ttm to an aperture location identified by @bo_mem + */ +extern int ttm_tt_bind(struct ttm_tt *ttm, struct ttm_mem_reg *bo_mem); + +/** + * ttm_ttm_destroy: + * + * @ttm: The struct ttm_tt. + * + * Unbind, unpopulate and destroy a struct ttm_tt. + */ +extern void ttm_tt_destroy(struct ttm_tt *ttm); + +/** + * ttm_ttm_unbind: + * + * @ttm: The struct ttm_tt. + * + * Unbind a struct ttm_tt. + */ +extern void ttm_tt_unbind(struct ttm_tt *ttm); + +/** + * ttm_ttm_destroy: + * + * @ttm: The struct ttm_tt. + * @index: Index of the desired page. + * + * Return a pointer to the struct page backing @ttm at page + * index @index. If the page is unpopulated, one will be allocated to + * populate that index. + * + * Returns: + * NULL on OOM. + */ +extern struct page *ttm_tt_get_page(struct ttm_tt *ttm, int index); + +/** + * ttm_tt_cache_flush: + * + * @pages: An array of pointers to struct page:s to flush. + * @num_pages: Number of pages to flush. + * + * Flush the data of the indicated pages from the cpu caches. + * This is used when changing caching attributes of the pages from + * cache-coherent. + */ +extern void ttm_tt_cache_flush(struct page *pages[], unsigned long num_pages); + +/** + * ttm_tt_set_placement_caching: + * + * @ttm A struct ttm_tt the backing pages of which will change caching policy. + * @placement: Flag indicating the desired caching policy. + * + * This function will change caching policy of any default kernel mappings of + * the pages backing @ttm. If changing from cached to uncached or + * write-combined, + * all CPU caches will first be flushed to make sure the data of the pages + * hit RAM. This function may be very costly as it involves global TLB + * and cache flushes and potential page splitting / combining. + */ +extern int ttm_tt_set_placement_caching(struct ttm_tt *ttm, uint32_t placement); +extern int ttm_tt_swapout(struct ttm_tt *ttm, + struct file *persistant_swap_storage); + +/* + * ttm_bo.c + */ + +/** + * ttm_mem_reg_is_pci + * + * @bdev: Pointer to a struct ttm_bo_device. + * @mem: A valid struct ttm_mem_reg. + * + * Returns true if the memory described by @mem is PCI memory, + * false otherwise. + */ +extern bool ttm_mem_reg_is_pci(struct ttm_bo_device *bdev, + struct ttm_mem_reg *mem); + +/** + * ttm_bo_mem_space + * + * @bo: Pointer to a struct ttm_buffer_object. the data of which + * we want to allocate space for. + * @proposed_placement: Proposed new placement for the buffer object. + * @mem: A struct ttm_mem_reg. + * @interruptible: Sleep interruptible when sliping. + * @no_wait: Don't sleep waiting for space to become available. + * + * Allocate memory space for the buffer object pointed to by @bo, using + * the placement flags in @mem, potentially evicting other idle buffer objects. + * This function may sleep while waiting for space to become available. + * Returns: + * -EBUSY: No space available (only if no_wait == 1). + * -ENOMEM: Could not allocate memory for the buffer object, either due to + * fragmentation or concurrent allocators. + * -ERESTART: An interruptible sleep was interrupted by a signal. + */ +extern int ttm_bo_mem_space(struct ttm_buffer_object *bo, + uint32_t proposed_placement, + struct ttm_mem_reg *mem, + bool interruptible, bool no_wait); +/** + * ttm_bo_wait_for_cpu + * + * @bo: Pointer to a struct ttm_buffer_object. + * @no_wait: Don't sleep while waiting. + * + * Wait until a buffer object is no longer sync'ed for CPU access. + * Returns: + * -EBUSY: Buffer object was sync'ed for CPU access. (only if no_wait == 1). + * -ERESTART: An interruptible sleep was interrupted by a signal. + */ + +extern int ttm_bo_wait_cpu(struct ttm_buffer_object *bo, bool no_wait); + +/** + * ttm_bo_pci_offset - Get the PCI offset for the buffer object memory. + * + * @bo Pointer to a struct ttm_buffer_object. + * @bus_base On return the base of the PCI region + * @bus_offset On return the byte offset into the PCI region + * @bus_size On return the byte size of the buffer object or zero if + * the buffer object memory is not accessible through a PCI region. + * + * Returns: + * -EINVAL if the buffer object is currently not mappable. + * 0 otherwise. + */ + +extern int ttm_bo_pci_offset(struct ttm_bo_device *bdev, + struct ttm_mem_reg *mem, + unsigned long *bus_base, + unsigned long *bus_offset, + unsigned long *bus_size); + +extern int ttm_bo_device_release(struct ttm_bo_device *bdev); + +/** + * ttm_bo_device_init + * + * @bdev: A pointer to a struct ttm_bo_device to initialize. + * @mem_global: A pointer to an initialized struct ttm_mem_global. + * @driver: A pointer to a struct ttm_bo_driver set up by the caller. + * @file_page_offset: Offset into the device address space that is available + * for buffer data. This ensures compatibility with other users of the + * address space. + * + * Initializes a struct ttm_bo_device: + * Returns: + * !0: Failure. + */ +extern int ttm_bo_device_init(struct ttm_bo_device *bdev, + struct ttm_mem_global *mem_glob, + struct ttm_bo_driver *driver, + uint64_t file_page_offset); + +/** + * ttm_bo_reserve: + * + * @bo: A pointer to a struct ttm_buffer_object. + * @interruptible: Sleep interruptible if waiting. + * @no_wait: Don't sleep while trying to reserve, rather return -EBUSY. + * @use_sequence: If @bo is already reserved, Only sleep waiting for + * it to become unreserved if @sequence < (@bo)->sequence. + * + * Locks a buffer object for validation. (Or prevents other processes from + * locking it for validation) and removes it from lru lists, while taking + * a number of measures to prevent deadlocks. + * + * Deadlocks may occur when two processes try to reserve multiple buffers in + * different order, either by will or as a result of a buffer being evicted + * to make room for a buffer already reserved. (Buffers are reserved before + * they are evicted). The following algorithm prevents such deadlocks from + * occuring: + * 1) Buffers are reserved with the lru spinlock held. Upon successful + * reservation they are removed from the lru list. This stops a reserved buffer + * from being evicted. However the lru spinlock is released between the time + * a buffer is selected for eviction and the time it is reserved. + * Therefore a check is made when a buffer is reserved for eviction, that it + * is still the first buffer in the lru list, before it is removed from the + * list. @check_lru == 1 forces this check. If it fails, the function returns + * -EINVAL, and the caller should then choose a new buffer to evict and repeat + * the procedure. + * 2) Processes attempting to reserve multiple buffers other than for eviction, + * (typically execbuf), should first obtain a unique 32-bit + * validation sequence number, + * and call this function with @use_sequence == 1 and @sequence == the unique + * sequence number. If upon call of this function, the buffer object is already + * reserved, the validation sequence is checked against the validation + * sequence of the process currently reserving the buffer, + * and if the current validation sequence is greater than that of the process + * holding the reservation, the function returns -EAGAIN. Otherwise it sleeps + * waiting for the buffer to become unreserved, after which it retries + * reserving. + * The caller should, when receiving an -EAGAIN error + * release all its buffer reservations, wait for @bo to become unreserved, and + * then rerun the validation with the same validation sequence. This procedure + * will always guarantee that the process with the lowest validation sequence + * will eventually succeed, preventing both deadlocks and starvation. + * + * Returns: + * -EAGAIN: The reservation may cause a deadlock. + * Release all buffer reservations, wait for @bo to become unreserved and + * try again. (only if use_sequence == 1). + * -ERESTART: A wait for the buffer to become unreserved was interrupted by + * a signal. Release all buffer reservations and return to user-space. + */ +extern int ttm_bo_reserve(struct ttm_buffer_object *bo, + bool interruptible, + bool no_wait, bool use_sequence, uint32_t sequence); + +/** + * ttm_bo_unreserve + * + * @bo: A pointer to a struct ttm_buffer_object. + * + * Unreserve a previous reservation of @bo. + */ +extern void ttm_bo_unreserve(struct ttm_buffer_object *bo); + +/** + * ttm_bo_wait_unreserved + * + * @bo: A pointer to a struct ttm_buffer_object. + * + * Wait for a struct ttm_buffer_object to become unreserved. + * This is typically used in the execbuf code to relax cpu-usage when + * a potential deadlock condition backoff. + */ +extern int ttm_bo_wait_unreserved(struct ttm_buffer_object *bo, + bool interruptible); + +/** + * ttm_bo_block_reservation + * + * @bo: A pointer to a struct ttm_buffer_object. + * @interruptible: Use interruptible sleep when waiting. + * @no_wait: Don't sleep, but rather return -EBUSY. + * + * Block reservation for validation by simply reserving the buffer. + * This is intended for single buffer use only without eviction, + * and thus needs no deadlock protection. + * + * Returns: + * -EBUSY: If no_wait == 1 and the buffer is already reserved. + * -ERESTART: If interruptible == 1 and the process received a signal + * while sleeping. + */ +extern int ttm_bo_block_reservation(struct ttm_buffer_object *bo, + bool interruptible, bool no_wait); + +/** + * ttm_bo_unblock_reservation + * + * @bo: A pointer to a struct ttm_buffer_object. + * + * Unblocks reservation leaving lru lists untouched. + */ +extern void ttm_bo_unblock_reservation(struct ttm_buffer_object *bo); + +/* + * ttm_bo_util.c + */ + +/** + * ttm_bo_move_ttm + * + * @bo: A pointer to a struct ttm_buffer_object. + * @evict: 1: This is an eviction. Don't try to pipeline. + * @no_wait: Never sleep, but rather return with -EBUSY. + * @new_mem: struct ttm_mem_reg indicating where to move. + * + * Optimized move function for a buffer object with both old and + * new placement backed by a TTM. The function will, if successful, + * free any old aperture space, and set (@new_mem)->mm_node to NULL, + * and update the (@bo)->mem placement flags. If unsuccessful, the old + * data remains untouched, and it's up to the caller to free the + * memory space indicated by @new_mem. + * Returns: + * !0: Failure. + */ + +extern int ttm_bo_move_ttm(struct ttm_buffer_object *bo, + bool evict, bool no_wait, + struct ttm_mem_reg *new_mem); + +/** + * ttm_bo_move_memcpy + * + * @bo: A pointer to a struct ttm_buffer_object. + * @evict: 1: This is an eviction. Don't try to pipeline. + * @no_wait: Never sleep, but rather return with -EBUSY. + * @new_mem: struct ttm_mem_reg indicating where to move. + * + * Fallback move function for a mappable buffer object in mappable memory. + * The function will, if successful, + * free any old aperture space, and set (@new_mem)->mm_node to NULL, + * and update the (@bo)->mem placement flags. If unsuccessful, the old + * data remains untouched, and it's up to the caller to free the + * memory space indicated by @new_mem. + * Returns: + * !0: Failure. + */ + +extern int ttm_bo_move_memcpy(struct ttm_buffer_object *bo, + bool evict, + bool no_wait, struct ttm_mem_reg *new_mem); + +/** + * ttm_bo_free_old_node + * + * @bo: A pointer to a struct ttm_buffer_object. + * + * Utility function to free an old placement after a successful move. + */ +extern void ttm_bo_free_old_node(struct ttm_buffer_object *bo); + +/** + * ttm_bo_move_accel_cleanup. + * + * @bo: A pointer to a struct ttm_buffer_object. + * @sync_obj: A sync object that signals when moving is complete. + * @sync_obj_arg: An argument to pass to the sync object idle / wait + * functions. + * @evict: This is an evict move. Don't return until the buffer is idle. + * @no_wait: Never sleep, but rather return with -EBUSY. + * @new_mem: struct ttm_mem_reg indicating where to move. + * + * Accelerated move function to be called when an accelerated move + * has been scheduled. The function will create a new temporary buffer object + * representing the old placement, and put the sync object on both buffer + * objects. After that the newly created buffer object is unref'd to be + * destroyed when the move is complete. This will help pipeline + * buffer moves. + */ + +extern int ttm_bo_move_accel_cleanup(struct ttm_buffer_object *bo, + void *sync_obj, + void *sync_obj_arg, + bool evict, bool no_wait, + struct ttm_mem_reg *new_mem); +/** + * ttm_io_prot + * + * @c_state: Caching state. + * @tmp: Page protection flag for a normal, cached mapping. + * + * Utility function that returns the pgprot_t that should be used for + * setting up a PTE with the caching model indicated by @c_state. + */ +extern pgprot_t ttm_io_prot(enum ttm_caching_state c_state, pgprot_t tmp); + +#if (defined(CONFIG_AGP) || (defined(CONFIG_AGP_MODULE) && defined(MODULE))) +#define TTM_HAS_AGP +#include <linux/agp_backend.h> + +/** + * ttm_agp_backend_init + * + * @bdev: Pointer to a struct ttm_bo_device. + * @bridge: The agp bridge this device is sitting on. + * + * Create a TTM backend that uses the indicated AGP bridge as an aperture + * for TT memory. This function uses the linux agpgart interface to + * bind and unbind memory backing a ttm_tt. + */ +extern struct ttm_backend *ttm_agp_backend_init(struct ttm_bo_device *bdev, + struct agp_bridge_data *bridge); +#endif + +#endif diff --git a/include/drm/ttm/ttm_memory.h b/include/drm/ttm/ttm_memory.h new file mode 100644 index 000000000000..d8b8f042c4f1 --- /dev/null +++ b/include/drm/ttm/ttm_memory.h @@ -0,0 +1,153 @@ +/************************************************************************** + * + * Copyright (c) 2006-2009 VMware, Inc., Palo Alto, CA., USA + * All Rights Reserved. + * + * Permission is hereby granted, free of charge, to any person obtaining a + * copy of this software and associated documentation files (the + * "Software"), to deal in the Software without restriction, including + * without limitation the rights to use, copy, modify, merge, publish, + * distribute, sub license, and/or sell copies of the Software, and to + * permit persons to whom the Software is furnished to do so, subject to + * the following conditions: + * + * The above copyright notice and this permission notice (including the + * next paragraph) shall be included in all copies or substantial portions + * of the Software. + * + * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR + * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY, + * FITNESS FOR A PARTICULAR PURPOSE AND NON-INFRINGEMENT. IN NO EVENT SHALL + * THE COPYRIGHT HOLDERS, AUTHORS AND/OR ITS SUPPLIERS BE LIABLE FOR ANY CLAIM, + * DAMAGES OR OTHER LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR + * OTHERWISE, ARISING FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE + * USE OR OTHER DEALINGS IN THE SOFTWARE. + * + **************************************************************************/ + +#ifndef TTM_MEMORY_H +#define TTM_MEMORY_H + +#include <linux/workqueue.h> +#include <linux/spinlock.h> +#include <linux/wait.h> +#include <linux/errno.h> + +/** + * struct ttm_mem_shrink - callback to shrink TTM memory usage. + * + * @do_shrink: The callback function. + * + * Arguments to the do_shrink functions are intended to be passed using + * inheritance. That is, the argument class derives from struct ttm_mem_srink, + * and can be accessed using container_of(). + */ + +struct ttm_mem_shrink { + int (*do_shrink) (struct ttm_mem_shrink *); +}; + +/** + * struct ttm_mem_global - Global memory accounting structure. + * + * @shrink: A single callback to shrink TTM memory usage. Extend this + * to a linked list to be able to handle multiple callbacks when needed. + * @swap_queue: A workqueue to handle shrinking in low memory situations. We + * need a separate workqueue since it will spend a lot of time waiting + * for the GPU, and this will otherwise block other workqueue tasks(?) + * At this point we use only a single-threaded workqueue. + * @work: The workqueue callback for the shrink queue. + * @queue: Wait queue for processes suspended waiting for memory. + * @lock: Lock to protect the @shrink - and the memory accounting members, + * that is, essentially the whole structure with some exceptions. + * @emer_memory: Lowmem memory limit available for root. + * @max_memory: Lowmem memory limit available for non-root. + * @swap_limit: Lowmem memory limit where the shrink workqueue kicks in. + * @used_memory: Currently used lowmem memory. + * @used_total_memory: Currently used total (lowmem + highmem) memory. + * @total_memory_swap_limit: Total memory limit where the shrink workqueue + * kicks in. + * @max_total_memory: Total memory available to non-root processes. + * @emer_total_memory: Total memory available to root processes. + * + * Note that this structure is not per device. It should be global for all + * graphics devices. + */ + +struct ttm_mem_global { + struct ttm_mem_shrink *shrink; + struct workqueue_struct *swap_queue; + struct work_struct work; + wait_queue_head_t queue; + spinlock_t lock; + uint64_t emer_memory; + uint64_t max_memory; + uint64_t swap_limit; + uint64_t used_memory; + uint64_t used_total_memory; + uint64_t total_memory_swap_limit; + uint64_t max_total_memory; + uint64_t emer_total_memory; +}; + +/** + * ttm_mem_init_shrink - initialize a struct ttm_mem_shrink object + * + * @shrink: The object to initialize. + * @func: The callback function. + */ + +static inline void ttm_mem_init_shrink(struct ttm_mem_shrink *shrink, + int (*func) (struct ttm_mem_shrink *)) +{ + shrink->do_shrink = func; +} + +/** + * ttm_mem_register_shrink - register a struct ttm_mem_shrink object. + * + * @glob: The struct ttm_mem_global object to register with. + * @shrink: An initialized struct ttm_mem_shrink object to register. + * + * Returns: + * -EBUSY: There's already a callback registered. (May change). + */ + +static inline int ttm_mem_register_shrink(struct ttm_mem_global *glob, + struct ttm_mem_shrink *shrink) +{ + spin_lock(&glob->lock); + if (glob->shrink != NULL) { + spin_unlock(&glob->lock); + return -EBUSY; + } + glob->shrink = shrink; + spin_unlock(&glob->lock); + return 0; +} + +/** + * ttm_mem_unregister_shrink - unregister a struct ttm_mem_shrink object. + * + * @glob: The struct ttm_mem_global object to unregister from. + * @shrink: A previously registert struct ttm_mem_shrink object. + * + */ + +static inline void ttm_mem_unregister_shrink(struct ttm_mem_global *glob, + struct ttm_mem_shrink *shrink) +{ + spin_lock(&glob->lock); + BUG_ON(glob->shrink != shrink); + glob->shrink = NULL; + spin_unlock(&glob->lock); +} + +extern int ttm_mem_global_init(struct ttm_mem_global *glob); +extern void ttm_mem_global_release(struct ttm_mem_global *glob); +extern int ttm_mem_global_alloc(struct ttm_mem_global *glob, uint64_t memory, + bool no_wait, bool interruptible, bool himem); +extern void ttm_mem_global_free(struct ttm_mem_global *glob, + uint64_t amount, bool himem); +extern size_t ttm_round_pot(size_t size); +#endif diff --git a/include/drm/ttm/ttm_module.h b/include/drm/ttm/ttm_module.h new file mode 100644 index 000000000000..889a4c7958ae --- /dev/null +++ b/include/drm/ttm/ttm_module.h @@ -0,0 +1,58 @@ +/************************************************************************** + * + * Copyright 2008-2009 VMware, Inc., Palo Alto, CA., USA + * All Rights Reserved. + * + * Permission is hereby granted, free of charge, to any person obtaining a + * copy of this software and associated documentation files (the + * "Software"), to deal in the Software without restriction, including + * without limitation the rights to use, copy, modify, merge, publish, + * distribute, sub license, and/or sell copies of the Software, and to + * permit persons to whom the Software is furnished to do so, subject to + * the following conditions: + * + * The above copyright notice and this permission notice (including the + * next paragraph) shall be included in all copies or substantial portions + * of the Software. + * + * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR + * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY, + * FITNESS FOR A PARTICULAR PURPOSE AND NON-INFRINGEMENT. IN NO EVENT SHALL + * THE COPYRIGHT HOLDERS, AUTHORS AND/OR ITS SUPPLIERS BE LIABLE FOR ANY CLAIM, + * DAMAGES OR OTHER LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR + * OTHERWISE, ARISING FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE + * USE OR OTHER DEALINGS IN THE SOFTWARE. + * + **************************************************************************/ +/* + * Authors: Thomas Hellstrom <thellstrom-at-vmware-dot-com> + */ + +#ifndef _TTM_MODULE_H_ +#define _TTM_MODULE_H_ + +#include <linux/kernel.h> + +#define TTM_PFX "[TTM]" + +enum ttm_global_types { + TTM_GLOBAL_TTM_MEM = 0, + TTM_GLOBAL_TTM_BO, + TTM_GLOBAL_TTM_OBJECT, + TTM_GLOBAL_NUM +}; + +struct ttm_global_reference { + enum ttm_global_types global_type; + size_t size; + void *object; + int (*init) (struct ttm_global_reference *); + void (*release) (struct ttm_global_reference *); +}; + +extern void ttm_global_init(void); +extern void ttm_global_release(void); +extern int ttm_global_item_ref(struct ttm_global_reference *ref); +extern void ttm_global_item_unref(struct ttm_global_reference *ref); + +#endif /* _TTM_MODULE_H_ */ diff --git a/include/drm/ttm/ttm_placement.h b/include/drm/ttm/ttm_placement.h new file mode 100644 index 000000000000..c84ff153a564 --- /dev/null +++ b/include/drm/ttm/ttm_placement.h @@ -0,0 +1,92 @@ +/************************************************************************** + * + * Copyright (c) 2006-2009 VMware, Inc., Palo Alto, CA., USA + * All Rights Reserved. + * + * Permission is hereby granted, free of charge, to any person obtaining a + * copy of this software and associated documentation files (the + * "Software"), to deal in the Software without restriction, including + * without limitation the rights to use, copy, modify, merge, publish, + * distribute, sub license, and/or sell copies of the Software, and to + * permit persons to whom the Software is furnished to do so, subject to + * the following conditions: + * + * The above copyright notice and this permission notice (including the + * next paragraph) shall be included in all copies or substantial portions + * of the Software. + * + * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR + * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY, + * FITNESS FOR A PARTICULAR PURPOSE AND NON-INFRINGEMENT. IN NO EVENT SHALL + * THE COPYRIGHT HOLDERS, AUTHORS AND/OR ITS SUPPLIERS BE LIABLE FOR ANY CLAIM, + * DAMAGES OR OTHER LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR + * OTHERWISE, ARISING FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE + * USE OR OTHER DEALINGS IN THE SOFTWARE. + * + **************************************************************************/ +/* + * Authors: Thomas Hellstrom <thellstrom-at-vmware-dot-com> + */ + +#ifndef _TTM_PLACEMENT_H_ +#define _TTM_PLACEMENT_H_ +/* + * Memory regions for data placement. + */ + +#define TTM_PL_SYSTEM 0 +#define TTM_PL_TT 1 +#define TTM_PL_VRAM 2 +#define TTM_PL_PRIV0 3 +#define TTM_PL_PRIV1 4 +#define TTM_PL_PRIV2 5 +#define TTM_PL_PRIV3 6 +#define TTM_PL_PRIV4 7 +#define TTM_PL_PRIV5 8 +#define TTM_PL_SWAPPED 15 + +#define TTM_PL_FLAG_SYSTEM (1 << TTM_PL_SYSTEM) +#define TTM_PL_FLAG_TT (1 << TTM_PL_TT) +#define TTM_PL_FLAG_VRAM (1 << TTM_PL_VRAM) +#define TTM_PL_FLAG_PRIV0 (1 << TTM_PL_PRIV0) +#define TTM_PL_FLAG_PRIV1 (1 << TTM_PL_PRIV1) +#define TTM_PL_FLAG_PRIV2 (1 << TTM_PL_PRIV2) +#define TTM_PL_FLAG_PRIV3 (1 << TTM_PL_PRIV3) +#define TTM_PL_FLAG_PRIV4 (1 << TTM_PL_PRIV4) +#define TTM_PL_FLAG_PRIV5 (1 << TTM_PL_PRIV5) +#define TTM_PL_FLAG_SWAPPED (1 << TTM_PL_SWAPPED) +#define TTM_PL_MASK_MEM 0x0000FFFF + +/* + * Other flags that affects data placement. + * TTM_PL_FLAG_CACHED indicates cache-coherent mappings + * if available. + * TTM_PL_FLAG_SHARED means that another application may + * reference the buffer. + * TTM_PL_FLAG_NO_EVICT means that the buffer may never + * be evicted to make room for other buffers. + */ + +#define TTM_PL_FLAG_CACHED (1 << 16) +#define TTM_PL_FLAG_UNCACHED (1 << 17) +#define TTM_PL_FLAG_WC (1 << 18) +#define TTM_PL_FLAG_SHARED (1 << 20) +#define TTM_PL_FLAG_NO_EVICT (1 << 21) + +#define TTM_PL_MASK_CACHING (TTM_PL_FLAG_CACHED | \ + TTM_PL_FLAG_UNCACHED | \ + TTM_PL_FLAG_WC) + +#define TTM_PL_MASK_MEMTYPE (TTM_PL_MASK_MEM | TTM_PL_MASK_CACHING) + +/* + * Access flags to be used for CPU- and GPU- mappings. + * The idea is that the TTM synchronization mechanism will + * allow concurrent READ access and exclusive write access. + * Currently GPU- and CPU accesses are exclusive. + */ + +#define TTM_ACCESS_READ (1 << 0) +#define TTM_ACCESS_WRITE (1 << 1) + +#endif |