summaryrefslogtreecommitdiffstats
path: root/arch/i386/kernel/irq.c
Commit message (Collapse)AuthorAgeFilesLines
* [PATCH] Change maxaligned_in_smp alignemnt macros to internodealigned_in_smp ↵Ravikiran G Thirumalai2006-01-091-1/+1
| | | | | | | | | | | | | | | | | | | | | | | | macros ____cacheline_maxaligned_in_smp is currently used to align critical structures and avoid false sharing. It uses per-arch L1_CACHE_SHIFT_MAX and people find L1_CACHE_SHIFT_MAX useless. However, we have been using ____cacheline_maxaligned_in_smp to align structures on the internode cacheline size. As per Andi's suggestion, following patch kills ____cacheline_maxaligned_in_smp and introduces INTERNODE_CACHE_SHIFT, which defaults to L1_CACHE_SHIFT for all arches. Arches needing L3/Internode cacheline alignment can define INTERNODE_CACHE_SHIFT in the arch asm/cache.h. Patch replaces ____cacheline_maxaligned_in_smp with ____cacheline_internodealigned_in_smp With this patch, L1_CACHE_SHIFT_MAX can be killed Signed-off-by: Ravikiran Thirumalai <kiran@scalex86.org> Signed-off-by: Shai Fultheim <shai@scalex86.org> Signed-off-by: Andi Kleen <ak@suse.de> Signed-off-by: Andrew Morton <akpm@osdl.org> Signed-off-by: Linus Torvalds <torvalds@osdl.org>
* [PATCH] x86: hot plug CPU to support physical add of new processorsNatalie Protasevich2005-10-311-4/+4
| | | | | | | | | | | | | | The patch allows physical bring-up of new processors (not initially present in the configuration) from facilities such as driver/utility implemented on a platform. The actual method of making processors available is up to the platform implementation. Signed-off-by: Natalie Protasevich <Natalie.Protasevich@unisys.com> Cc: Shaohua Li <shaohua.li@intel.com> Cc: Ashok Raj <ashok.raj@intel.com> Cc: Zwane Mwaikambo <zwane@holomorphy.com> Signed-off-by: Andrew Morton <akpm@osdl.org> Signed-off-by: Linus Torvalds <torvalds@osdl.org>
* [PATCH] cpu state clean after hot removeLi Shaohua2005-06-261-0/+5
| | | | | | | | Clean CPU states in order to reuse smp boot code for CPU hotplug. Signed-off-by: Li Shaohua<shaohua.li@intel.com> Signed-off-by: Andrew Morton <akpm@osdl.org> Signed-off-by: Linus Torvalds <torvalds@osdl.org>
* [PATCH] i386 CPU hotplugZwane Mwaikambo2005-06-261-13/+54
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | (The i386 CPU hotplug patch provides infrastructure for some work which Pavel is doing as well as for ACPI S3 (suspend-to-RAM) work which Li Shaohua <shaohua.li@intel.com> is doing) The following provides i386 architecture support for safely unregistering and registering processors during runtime, updated for the current -mm tree. In order to avoid dumping cpu hotplug code into kernel/irq/* i dropped the cpu_online check in do_IRQ() by modifying fixup_irqs(). The difference being that on cpu offline, fixup_irqs() is called before we clear the cpu from cpu_online_map and a long delay in order to ensure that we never have any queued external interrupts on the APICs. There are additional changes to s390 and ppc64 to account for this change. 1) Add CONFIG_HOTPLUG_CPU 2) disable local APIC timer on dead cpus. 3) Disable preempt around irq balancing to prevent CPUs going down. 4) Print irq stats for all possible cpus. 5) Debugging check for interrupts on offline cpus. 6) Hacky fixup_irqs() to redirect irqs when cpus go off/online. 7) play_dead() for offline cpus to spin inside. 8) Handle offline cpus set in flush_tlb_others(). 9) Grab lock earlier in smp_call_function() to prevent CPUs going down. 10) Implement __cpu_disable() and __cpu_die(). 11) Enable local interrupts in cpu_enable() after fixup_irqs() 12) Don't fiddle with NMI on dead cpu, but leave intact on other cpus. 13) Program IRQ affinity whilst cpu is still in cpu_online_map on offline. Signed-off-by: Zwane Mwaikambo <zwane@linuxpower.ca> Signed-off-by: Andrew Morton <akpm@osdl.org> Signed-off-by: Linus Torvalds <torvalds@osdl.org>
* Linux-2.6.12-rc2Linus Torvalds2005-04-171-0/+261
Initial git repository build. I'm not bothering with the full history, even though we have it. We can create a separate "historical" git archive of that later if we want to, and in the meantime it's about 3.2GB when imported into git - space that would just make the early git days unnecessarily complicated, when we don't have a lot of good infrastructure for it. Let it rip!