summaryrefslogtreecommitdiffstats
path: root/drivers/misc/habanalabs/Makefile
Commit message (Collapse)AuthorAgeFilesLines
* treewide: Add SPDX license identifier - Makefile/KconfigThomas Gleixner2019-05-211-0/+1
| | | | | | | | | | | | | | Add SPDX license identifiers to all Make/Kconfig files which: - Have no license information of any form These files fall under the project license, GPL v2 only. The resulting SPDX license identifier is: GPL-2.0-only Signed-off-by: Thomas Gleixner <tglx@linutronix.de> Signed-off-by: Greg Kroah-Hartman <gregkh@linuxfoundation.org>
* habanalabs: Move PCI code into common fileTomer Tayar2019-03-051-1/+1
| | | | | | | | Move duplicated PCI-related code from ASIC-specific files into the common pci.c file. Signed-off-by: Tomer Tayar <ttayar@habana.ai> Signed-off-by: Oded Gabbay <oded.gabbay@gmail.com>
* habanalabs: Move device CPU code into common fileTomer Tayar2019-03-041-1/+1
| | | | | | | | | This patch moves the code that is responsible of the communication vs. the F/W to a dedicated file. This will allow us to share the code between different ASICs. Signed-off-by: Tomer Tayar <ttayar@habana.ai> Signed-off-by: Oded Gabbay <oded.gabbay@gmail.com>
* habanalabs: add debugfs supportOded Gabbay2019-02-181-0/+2
| | | | | | | | | | | | | | | | This patch adds debugfs support to the driver. It allows the user-space to display information that is contained in the internal structures of the driver, such as: - active command submissions - active user virtual memory mappings - number of allocated command buffers It also enables the user to perform reads and writes through Goya's PCI bars. Reviewed-by: Mike Rapoport <rppt@linux.ibm.com> Signed-off-by: Oded Gabbay <oded.gabbay@gmail.com> Signed-off-by: Greg Kroah-Hartman <gregkh@linuxfoundation.org>
* habanalabs: add virtual memory and MMU modulesOmer Shpigelman2019-02-181-1/+1
| | | | | | | | | | | | | | | | | | | | | | This patch adds the Virtual Memory and MMU modules. Goya has an internal MMU which provides process isolation on the internal DDR. The internal MMU also performs translations for transactions that go from Goya to the Host. The driver is responsible for allocating and freeing memory on the DDR upon user request. It also provides an interface to map and unmap DDR and Host memory to the device address space. The MMU in Goya supports 3-level and 4-level page tables. With 3-level, the size of each page is 2MB, while with 4-level the size of each page is 4KB. In the DDR, the physical pages are always 2MB. Reviewed-by: Mike Rapoport <rppt@linux.ibm.com> Signed-off-by: Omer Shpigelman <oshpigelman@habana.ai> Signed-off-by: Oded Gabbay <oded.gabbay@gmail.com> Signed-off-by: Greg Kroah-Hartman <gregkh@linuxfoundation.org>
* habanalabs: add command submission moduleOded Gabbay2019-02-181-1/+2
| | | | | | | | | | | | | | | | | | | | | | | | | This patch adds the main flow for the user to submit work to the device. Each work is described by a command submission object (CS). The CS contains 3 arrays of command buffers: One for execution, and two for context-switch (store and restore). For each CB, the user specifies on which queue to put that CB. In case of an internal queue, the entry doesn't contain a pointer to the CB but the address in the on-chip memory that the CB resides at. The driver parses some of the CBs to enforce security restrictions. The user receives a sequence number that represents the CS object. The user can then query the driver regarding the status of the CS, using that sequence number. In case the CS doesn't finish before the timeout expires, the driver will perform a soft-reset of the device. Reviewed-by: Mike Rapoport <rppt@linux.ibm.com> Signed-off-by: Oded Gabbay <oded.gabbay@gmail.com> Signed-off-by: Greg Kroah-Hartman <gregkh@linuxfoundation.org>
* habanalabs: add sysfs and hwmon supportOded Gabbay2019-02-181-1/+1
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | This patch add the sysfs and hwmon entries that are exposed by the driver. Goya has several sensors, from various categories such as temperature, voltage, current, etc. The driver exposes those sensors in the standard hwmon mechanism. In addition, the driver exposes a couple of interfaces in sysfs, both for configuration and for providing status of the device or driver. The configuration attributes is for Power Management: - Automatic or manual - Frequency value when moving to high frequency mode - Maximum power the device is allowed to consume The rest of the attributes are read-only and provide the following information: - Versions of the various firmwares running on the device - Contents of the device's EEPROM - The device type (currently only Goya is supported) - PCI address of the device (to allow user-space to connect between /dev/hlX to PCI address) - Status of the device (operational, malfunction, in_reset) - How many processes are open on the device's file Reviewed-by: Mike Rapoport <rppt@linux.ibm.com> Signed-off-by: Oded Gabbay <oded.gabbay@gmail.com> Signed-off-by: Greg Kroah-Hartman <gregkh@linuxfoundation.org>
* habanalabs: add h/w queues moduleOded Gabbay2019-02-181-1/+1
| | | | | | | | | | | | | | | | | | | | | | | | | | | This patch adds the H/W queues module and the code to initialize Goya's various compute and DMA engines and their queues. Goya has 5 DMA channels, 8 TPC engines and a single MME engine. For each channel/engine, there is a H/W queue logic which is used to pass commands from the user to the H/W. That logic is called QMAN. There are two types of QMANs: external and internal. The DMA QMANs are considered external while the TPC and MME QMANs are considered internal. For each external queue there is a completion queue, which is located on the Host memory. The differences between external and internal QMANs are: 1. The location of the queue's memory. External QMANs are located on the Host memory while internal QMANs are located on the on-chip memory. 2. The external QMAN write an entry to a completion queue and sends an MSI-X interrupt upon completion of a command buffer that was given to it. The internal QMAN doesn't do that. Reviewed-by: Mike Rapoport <rppt@linux.ibm.com> Signed-off-by: Oded Gabbay <oded.gabbay@gmail.com> Signed-off-by: Greg Kroah-Hartman <gregkh@linuxfoundation.org>
* habanalabs: add command buffer moduleOded Gabbay2019-02-181-1/+2
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | This patch adds the command buffer (CB) module, which allows the user to create and destroy CBs and to map them to the user's process address-space. A command buffer is a memory blocks that reside in DMA-able address-space and is physically contiguous so it can be accessed by the device without MMU translation. The command buffer memory is allocated using the coherent DMA API. When creating a new CB, the IOCTL returns a handle of it, and the user-space process needs to use that handle to mmap the buffer to get a VA in the user's address-space. Before destroying (freeing) a CB, the user must unmap the CB's VA using the CB handle. Each CB has a reference counter, which tracks its usage in command submissions and also its mmaps (only a single mmap is allowed). The driver maintains a pool of pre-allocated CBs in order to reduce latency during command submissions. In case the pool is empty, the driver will go to the slow-path of allocating a new CB, i.e. calling dma_alloc_coherent. Reviewed-by: Mike Rapoport <rppt@linux.ibm.com> Signed-off-by: Oded Gabbay <oded.gabbay@gmail.com> Signed-off-by: Greg Kroah-Hartman <gregkh@linuxfoundation.org>
* habanalabs: add context and ASID modulesOded Gabbay2019-02-181-1/+1
| | | | | | | | | | | | | | | | | | | | | This patch adds two modules - ASID and context. Each user process that opens a device's file must have at least one context before it is able to "work" with the device. Each context has its own device address-space and contains information about its runtime state (its active command submissions). To have address-space separation between contexts, each context is assigned a unique ASID, which stands for "address-space id". Goya supports up to 1024 ASIDs. Currently, the driver doesn't support multiple contexts. Therefore, the user doesn't need to actively create a context. A "primary context" is created automatically when the user opens the device's file. Reviewed-by: Mike Rapoport <rppt@linux.ibm.com> Signed-off-by: Oded Gabbay <oded.gabbay@gmail.com> Signed-off-by: Greg Kroah-Hartman <gregkh@linuxfoundation.org>
* habanalabs: add basic Goya supportOded Gabbay2019-02-181-0/+3
| | | | | | | | | | This patch adds a basic support for the Goya device. The code initializes the device's PCI controller and PCI bars. It also initializes various S/W structures and adds some basic helper functions. Reviewed-by: Mike Rapoport <rppt@linux.ibm.com> Signed-off-by: Oded Gabbay <oded.gabbay@gmail.com> Signed-off-by: Greg Kroah-Hartman <gregkh@linuxfoundation.org>
* habanalabs: add skeleton driverOded Gabbay2019-02-181-0/+7
This patch adds the habanalabs skeleton driver. The driver does nothing at this stage except very basic operations. It contains the minimal code to insmod and rmmod the driver and to create a /dev/hlX file per PCI device. Reviewed-by: Mike Rapoport <rppt@linux.ibm.com> Signed-off-by: Oded Gabbay <oded.gabbay@gmail.com> Signed-off-by: Greg Kroah-Hartman <gregkh@linuxfoundation.org>