| Commit message (Collapse) | Author | Age | Files | Lines |
|
|
|
|
|
|
|
|
|
| |
btrfs_set_lock_blocking is now only a simple wrapper around
btrfs_set_lock_blocking_write. The name does not bring any semantic
value that could not be inferred from the new function so there's no
point keeping it.
Reviewed-by: Johannes Thumshirn <jthumshirn@suse.de>
Signed-off-by: David Sterba <dsterba@suse.com>
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| |
To allow delayed subtree swap rescan, btrfs needs to record per-root
information about which tree blocks get swapped. This patch introduces
the required infrastructure.
The designed workflow will be:
1) Record the subtree root block that gets swapped.
During subtree swap:
O = Old tree blocks
N = New tree blocks
reloc tree subvolume tree X
Root Root
/ \ / \
NA OB OA OB
/ | | \ / | | \
NC ND OE OF OC OD OE OF
In this case, NA and OA are going to be swapped, record (NA, OA) into
subvolume tree X.
2) After subtree swap.
reloc tree subvolume tree X
Root Root
/ \ / \
OA OB NA OB
/ | | \ / | | \
OC OD OE OF NC ND OE OF
3a) COW happens for OB
If we are going to COW tree block OB, we check OB's bytenr against
tree X's swapped_blocks structure.
If it doesn't fit any, nothing will happen.
3b) COW happens for NA
Check NA's bytenr against tree X's swapped_blocks, and get a hit.
Then we do subtree scan on both subtrees OA and NA.
Resulting 6 tree blocks to be scanned (OA, OC, OD, NA, NC, ND).
Then no matter what we do to subvolume tree X, qgroup numbers will
still be correct.
Then NA's record gets removed from X's swapped_blocks.
4) Transaction commit
Any record in X's swapped_blocks gets removed, since there is no
modification to swapped subtrees, no need to trigger heavy qgroup
subtree rescan for them.
This will introduce 128 bytes overhead for each btrfs_root even qgroup
is not enabled. This is to reduce memory allocations and potential
failures.
Signed-off-by: Qu Wenruo <wqu@suse.com>
Signed-off-by: David Sterba <dsterba@suse.com>
|
|
|
|
|
|
|
|
|
|
|
|
|
| |
The first thing we do is loop through the list, this
if (!list_empty())
btrfs_create_pending_block_groups();
thing is just wasted space.
Reviewed-by: Nikolay Borisov <nborisov@suse.com>
Signed-off-by: Josef Bacik <josef@toxicpanda.com>
Signed-off-by: David Sterba <dsterba@suse.com>
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| |
The fstests generic/475 stresses transaction aborts and can reveal
space accounting or use-after-free bugs regarding block goups.
In this case the pending block groups that remain linked to the
structures after transaction commit aborts in the middle.
The corrupted slabs lead to failures in following tests, eg. generic/476
[ 8172.752887] BUG: unable to handle kernel NULL pointer dereference at 0000000000000058
[ 8172.755799] #PF error: [normal kernel read fault]
[ 8172.757571] PGD 661ae067 P4D 661ae067 PUD 3db8e067 PMD 0
[ 8172.759000] Oops: 0000 [#1] PREEMPT SMP
[ 8172.760209] CPU: 0 PID: 39 Comm: kswapd0 Tainted: G W 5.0.0-rc2-default #408
[ 8172.762495] Hardware name: QEMU Standard PC (i440FX + PIIX, 1996), BIOS rel-1.11.2-0-gf9626cc-prebuilt.qemu-project.org 04/01/2014
[ 8172.765772] RIP: 0010:shrink_page_list+0x2f9/0xe90
[ 8172.770453] RSP: 0018:ffff967f00663b18 EFLAGS: 00010287
[ 8172.771184] RAX: 0000000000000000 RBX: ffff967f00663c20 RCX: 0000000000000000
[ 8172.772850] RDX: 0000000000000000 RSI: 0000000000000001 RDI: ffff8c0620ab20e0
[ 8172.774629] RBP: ffff967f00663dd8 R08: 0000000000000000 R09: 0000000000000000
[ 8172.776094] R10: ffff8c0620ab22f8 R11: ffff8c063f772688 R12: ffff967f00663b78
[ 8172.777533] R13: ffff8c063f625600 R14: ffff8c063f625608 R15: dead000000000200
[ 8172.778886] FS: 0000000000000000(0000) GS:ffff8c063d400000(0000) knlGS:0000000000000000
[ 8172.780545] CS: 0010 DS: 0000 ES: 0000 CR0: 0000000080050033
[ 8172.781787] CR2: 0000000000000058 CR3: 000000004e962000 CR4: 00000000000006f0
[ 8172.783547] Call Trace:
[ 8172.784112] shrink_inactive_list+0x194/0x410
[ 8172.784747] shrink_node_memcg.constprop.85+0x3a5/0x6a0
[ 8172.785472] shrink_node+0x62/0x1e0
[ 8172.786011] balance_pgdat+0x216/0x460
[ 8172.786577] kswapd+0xe3/0x4a0
[ 8172.787085] ? finish_wait+0x80/0x80
[ 8172.787795] ? balance_pgdat+0x460/0x460
[ 8172.788799] kthread+0x116/0x130
[ 8172.789640] ? kthread_create_on_node+0x60/0x60
[ 8172.790323] ret_from_fork+0x24/0x30
[ 8172.794253] CR2: 0000000000000058
or accounting errors at umount time:
[ 8159.537251] WARNING: CPU: 2 PID: 19031 at fs/btrfs/extent-tree.c:5987 btrfs_free_block_groups+0x3d5/0x410 [btrfs]
[ 8159.543325] CPU: 2 PID: 19031 Comm: umount Tainted: G W 5.0.0-rc2-default #408
[ 8159.545472] Hardware name: QEMU Standard PC (i440FX + PIIX, 1996), BIOS rel-1.11.2-0-gf9626cc-prebuilt.qemu-project.org 04/01/2014
[ 8159.548155] RIP: 0010:btrfs_free_block_groups+0x3d5/0x410 [btrfs]
[ 8159.554030] RSP: 0018:ffff967f079cbde8 EFLAGS: 00010206
[ 8159.555144] RAX: 0000000001000000 RBX: ffff8c06366cf800 RCX: 0000000000000000
[ 8159.556730] RDX: 0000000000000002 RSI: 0000000000000001 RDI: ffff8c06255ad800
[ 8159.558279] RBP: ffff8c0637ac0000 R08: 0000000000000001 R09: 0000000000000000
[ 8159.559797] R10: 0000000000000000 R11: 0000000000000001 R12: ffff8c0637ac0108
[ 8159.561296] R13: ffff8c0637ac0158 R14: 0000000000000000 R15: dead000000000100
[ 8159.562852] FS: 00007f7f693b9fc0(0000) GS:ffff8c063d800000(0000) knlGS:0000000000000000
[ 8159.564839] CS: 0010 DS: 0000 ES: 0000 CR0: 0000000080050033
[ 8159.566160] CR2: 00007f7f68fab7b0 CR3: 000000000aec7000 CR4: 00000000000006e0
[ 8159.567898] Call Trace:
[ 8159.568597] close_ctree+0x17f/0x350 [btrfs]
[ 8159.569628] generic_shutdown_super+0x64/0x100
[ 8159.570808] kill_anon_super+0x14/0x30
[ 8159.571857] btrfs_kill_super+0x12/0xa0 [btrfs]
[ 8159.573063] deactivate_locked_super+0x29/0x60
[ 8159.574234] cleanup_mnt+0x3b/0x70
[ 8159.575176] task_work_run+0x98/0xc0
[ 8159.576177] exit_to_usermode_loop+0x83/0x90
[ 8159.577315] do_syscall_64+0x15b/0x180
[ 8159.578339] entry_SYSCALL_64_after_hwframe+0x49/0xbe
This fix is based on 2 Josef's patches that used sideefects of
btrfs_create_pending_block_groups, this fix introduces the helper that
does what we need.
CC: stable@vger.kernel.org # 4.4+
CC: Josef Bacik <josef@toxicpanda.com>
Reviewed-by: Nikolay Borisov <nborisov@suse.com>
Signed-off-by: David Sterba <dsterba@suse.com>
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| |
Previously callers to btrfs_end_transaction_throttle() would commit the
transaction if there wasn't enough delayed refs space. This happens in
relocation, and if the fs is relatively empty we'll run out of delayed
refs space basically immediately, so we'll just be stuck in this loop of
committing the transaction over and over again.
This code existed because we didn't have a good feedback mechanism for
running delayed refs, but with the delayed refs rsv we do now. Delete
this throttling code and let the btrfs_start_transaction() in relocation
deal with putting pressure on the delayed refs infrastructure. With
this patch we no longer take 5 minutes to balance a metadata only fs.
Qu has submitted a fstest to catch slow balance or excessive transaction
commits. Steps to reproduce:
* create subvolume
* create many (eg. 16000) inlined files, of size 2KiB
* iteratively snapshot and touch several files to trigger metadata
updates
* start balance -m
Reported-by: Qu Wenruo <wqu@suse.com>
Fixes: 64403612b73a ("btrfs: rework btrfs_check_space_for_delayed_refs")
Signed-off-by: Josef Bacik <josef@toxicpanda.com>
[ add tags and steps to reproduce ]
Signed-off-by: David Sterba <dsterba@suse.com>
|
|
|
|
|
|
|
|
|
| |
The typos accumulate over time so once in a while time they get fixed in
a large patch.
Signed-off-by: Andrea Gelmini <andrea.gelmini@gelma.net>
Reviewed-by: David Sterba <dsterba@suse.com>
Signed-off-by: David Sterba <dsterba@suse.com>
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| |
Over the years we have built up a lot of infrastructure to keep delayed
refs in check, mostly by running them at btrfs_end_transaction() time.
We have a lot of different maths we do to figure out how much, if we
should do it inline or async, etc. This existed because we had no
feedback mechanism to force the flushing of delayed refs when they
became a problem. However with the enospc flushing infrastructure in
place for flushing delayed refs when they put too much pressure on the
enospc system we have this problem solved. Rip out all of this code as
it is no longer needed.
Signed-off-by: Josef Bacik <josef@toxicpanda.com>
Signed-off-by: David Sterba <dsterba@suse.com>
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| |
Now with the delayed_refs_rsv we can now know exactly how much pending
delayed refs space we need. This means we can drastically simplify
btrfs_check_space_for_delayed_refs by simply checking how much space we
have reserved for the global rsv (which acts as a spill over buffer) and
the delayed refs rsv. If our total size is beyond that amount then we
know it's time to commit the transaction and stop any more delayed refs
from being generated.
With the introduction of dealyed_refs_rsv infrastructure, namely
btrfs_update_delayed_refs_rsv we now know exactly how much pending
delayed refs space is required.
Reviewed-by: Nikolay Borisov <nborisov@suse.com>
Signed-off-by: Josef Bacik <josef@toxicpanda.com>
Signed-off-by: David Sterba <dsterba@suse.com>
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| |
Traditionally we've had voodoo in btrfs to account for the space that
delayed refs may take up by having a global_block_rsv. This works most
of the time, except when it doesn't. We've had issues reported and seen
in production where sometimes the global reserve is exhausted during
transaction commit before we can run all of our delayed refs, resulting
in an aborted transaction. Because of this voodoo we have equally
dubious flushing semantics around throttling delayed refs which we often
get wrong.
So instead give them their own block_rsv. This way we can always know
exactly how much outstanding space we need for delayed refs. This
allows us to make sure we are constantly filling that reservation up
with space, and allows us to put more precise pressure on the enospc
system. Instead of doing math to see if its a good time to throttle,
the normal enospc code will be invoked if we have a lot of delayed refs
pending, and they will be run via the normal flushing mechanism.
For now the delayed_refs_rsv will hold the reservations for the delayed
refs, the block group updates, and deleting csums. We could have a
separate rsv for the block group updates, but the csum deletion stuff is
still handled via the delayed_refs so that will stay there.
Historical background:
The global reserve has grown to cover everything we don't reserve space
explicitly for, and we've grown a lot of weird ad-hoc heuristics to know
if we're running short on space and when it's time to force a commit. A
failure rate of 20-40 file systems when we run hundreds of thousands of
them isn't super high, but cleaning up this code will make things less
ugly and more predictible.
Thus the delayed refs rsv. We always know how many delayed refs we have
outstanding, and although running them generates more we can use the
global reserve for that spill over, which fits better into it's desired
use than a full blown reservation. This first approach is to simply
take how many times we're reserving space for and multiply that by 2 in
order to save enough space for the delayed refs that could be generated.
This is a niave approach and will probably evolve, but for now it works.
Signed-off-by: Josef Bacik <jbacik@fb.com>
Reviewed-by: David Sterba <dsterba@suse.com> # high-level review
[ added background notes from the cover letter ]
Signed-off-by: David Sterba <dsterba@suse.com>
|
|
|
|
|
|
|
|
|
|
| |
When it was introduced in commit f094ac32aba3 ("Btrfs: fix NULL pointer
after aborting a transaction"), it was not used.
Signed-off-by: Lu Fengqi <lufq.fnst@cn.fujitsu.com>
Reviewed-by: Nikolay Borisov <nborisov@suse.com>
Reviewed-by: Johannes Thumshirn <jthumshirn@suse.de>
Signed-off-by: David Sterba <dsterba@suse.com>
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| |
Tracking pending ordered extents per transaction was introduced in commit
50d9aa99bd35 ("Btrfs: make sure logged extents complete in the current
transaction V3") and later updated in commit 161c3549b45a ("Btrfs: change
how we wait for pending ordered extents").
However now that on fsync we always wait for ordered extents to complete
before logging, done in commit 5636cf7d6dc8 ("btrfs: remove the logged
extents infrastructure"), we no longer need the stuff to track for pending
ordered extents, which was not completely removed in the mentioned commit.
So remove the remaining of the pending ordered extents infrastructure.
Reviewed-by: Liu Bo <bo.liu@linux.alibaba.com>
Signed-off-by: Filipe Manana <fdmanana@suse.com>
Signed-off-by: David Sterba <dsterba@suse.com>
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| |
This could result in a really bad case where we do something like
evict
evict_refill_and_join
btrfs_commit_transaction
btrfs_run_delayed_iputs
evict
evict_refill_and_join
btrfs_commit_transaction
... forever
We have plenty of other places where we run delayed iputs that are much
safer, let those do the work.
CC: stable@vger.kernel.org # 4.4+
Reviewed-by: Filipe Manana <fdmanana@suse.com>
Signed-off-by: Josef Bacik <josef@toxicpanda.com>
Reviewed-by: David Sterba <dsterba@suse.com>
Signed-off-by: David Sterba <dsterba@suse.com>
|
|
|
|
|
|
|
|
|
|
| |
The avg_delayed_ref_runtime can be referenced from the transaction
handle.
Signed-off-by: Lu Fengqi <lufq.fnst@cn.fujitsu.com>
Reviewed-by: Nikolay Borisov <nborisov@suse.com>
Reviewed-by: David Sterba <dsterba@suse.com>
Signed-off-by: David Sterba <dsterba@suse.com>
|
|
|
|
|
|
|
|
|
| |
It can be referenced from the transaction handle.
Signed-off-by: Lu Fengqi <lufq.fnst@cn.fujitsu.com>
Reviewed-by: Nikolay Borisov <nborisov@suse.com>
Reviewed-by: David Sterba <dsterba@suse.com>
Signed-off-by: David Sterba <dsterba@suse.com>
|
|
|
|
|
|
|
|
|
|
|
|
|
| |
We want to release the unused reservation we have since it refills the
delayed refs reserve, which will make everything go smoother when
running the delayed refs if we're short on our reservation.
CC: stable@vger.kernel.org # 4.4+
Reviewed-by: Omar Sandoval <osandov@fb.com>
Reviewed-by: Liu Bo <bo.liu@linux.alibaba.com>
Reviewed-by: Nikolay Borisov <nborisov@suse.com>
Signed-off-by: Josef Bacik <josef@toxicpanda.com>
Signed-off-by: David Sterba <dsterba@suse.com>
|
|
|
|
|
|
|
|
| |
Too trivial, the purpose can be simply documented in a comment.
Reviewed-by: Omar Sandoval <osandov@fb.com>
Reviewed-by: Anand Jain <anand.jain@oracle.com>
Signed-off-by: David Sterba <dsterba@suse.com>
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| |
rb_first_cached() trades an extra pointer "leftmost" for doing the same
job as rb_first() but in O(1).
Functions manipulating href_root need to get the first entry, this
converts href_root to use rb_first_cached().
This patch is first in the sequenct of similar updates to other rbtrees
and this is analysis of the expected behaviour and improvements.
There's a common pattern:
while (node = rb_first) {
entry = rb_entry(node)
next = rb_next(node)
rb_erase(node)
cleanup(entry)
}
rb_first needs to traverse the tree up to logN depth, rb_erase can
completely reshuffle the tree. With the caching we'll skip the traversal
in rb_first. That's a cached memory access vs looped pointer
dereference trade-off that IMHO has a clear winner.
Measurements show there's not much difference in a sample tree with
10000 nodes: 4.5s / rb_first and 4.8s / rb_first_cached. Real effects of
caching and pointer chasing are unpredictable though.
Further optimzations can be done to avoid the expensive rb_erase step.
In some cases it's ok to process the nodes in any order, so the tree can
be traversed in post-order, not rebalancing the children nodes and just
calling free. Care must be taken regarding the next node.
Tested-by: Holger Hoffstätte <holger@applied-asynchrony.com>
Signed-off-by: Liu Bo <bo.liu@linux.alibaba.com>
Reviewed-by: David Sterba <dsterba@suse.com>
[ update changelog from mail discussions ]
Signed-off-by: David Sterba <dsterba@suse.com>
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| |
There are two members in struct btrfs_root which indicate root's
objectid: objectid and root_key.objectid.
They are both set to the same value in __setup_root():
static void __setup_root(struct btrfs_root *root,
struct btrfs_fs_info *fs_info,
u64 objectid)
{
...
root->objectid = objectid;
...
root->root_key.objectid = objecitd;
...
}
and not changed to other value after initialization.
grep in btrfs directory shows both are used in many places:
$ grep -rI "root->root_key.objectid" | wc -l
133
$ grep -rI "root->objectid" | wc -l
55
(4.17, inc. some noise)
It is confusing to have two similar variable names and it seems
that there is no rule about which should be used in a certain case.
Since ->root_key itself is needed for tree reloc tree, let's remove
'objecitd' member and unify code to use ->root_key.objectid in all places.
Signed-off-by: Misono Tomohiro <misono.tomohiro@jp.fujitsu.com>
Reviewed-by: Qu Wenruo <wqu@suse.com>
Reviewed-by: David Sterba <dsterba@suse.com>
Signed-off-by: David Sterba <dsterba@suse.com>
|
|
|
|
|
|
|
|
|
| |
All callers pass the root tree of dir, we can push that down to the
function itself.
Signed-off-by: Lu Fengqi <lufq.fnst@cn.fujitsu.com>
Reviewed-by: David Sterba <dsterba@suse.com>
Signed-off-by: David Sterba <dsterba@suse.com>
|
|
|
|
|
|
|
|
|
|
| |
IS_ERR(p) && PTR_ERR(p) == n is a weird way to spell p == ERR_PTR(n).
Signed-off-by: Al Viro <viro@zeniv.linux.org.uk>
Reviewed-by: David Sterba <dsterba@suse.com>
Reviewed-by: Nikolay Borisov <nborisov@suse.com>
[ update changelog ]
Signed-off-by: David Sterba <dsterba@suse.com>
|
|
|
|
|
|
|
| |
It can be referenced from the passed transaction handle.
Signed-off-by: Lu Fengqi <lufq.fnst@cn.fujitsu.com>
Signed-off-by: David Sterba <dsterba@suse.com>
|
|
|
|
|
|
|
| |
It can be fetched from the transaction handle.
Signed-off-by: Lu Fengqi <lufq.fnst@cn.fujitsu.com>
Signed-off-by: David Sterba <dsterba@suse.com>
|
|
|
|
|
|
|
| |
It can be fetched from the transaction handle.
Signed-off-by: Lu Fengqi <lufq.fnst@cn.fujitsu.com>
Signed-off-by: David Sterba <dsterba@suse.com>
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| |
The transaction times were changed to ktime_get_real_seconds to avoid
the y2038 overflow, but they still have a minor problem when they go
backwards or jump due to settimeofday() or leap seconds.
This changes the transaction handling to instead use ktime_get_seconds(),
which returns a CLOCK_MONOTONIC timestamp that has neither of those
problems.
Signed-off-by: Arnd Bergmann <arnd@arndb.de>
Reviewed-by: Nikolay Borisov <nborisov@suse.com>
Reviewed-by: David Sterba <dsterba@suse.com>
Signed-off-by: David Sterba <dsterba@suse.com>
|
|
|
|
|
|
|
|
|
|
| |
The get_seconds() function is deprecated as it truncates the timestamp
to 32 bits. Change it to or ktime_get_real_seconds().
Signed-off-by: Allen Pais <allen.lkml@gmail.com>
Reviewed-by: David Sterba <dsterba@suse.com>
[ update changelog ]
Signed-off-by: David Sterba <dsterba@suse.com>
|
|\
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| | |
git://git.kernel.org/pub/scm/linux/kernel/git/arnd/playground
Pull inode timestamps conversion to timespec64 from Arnd Bergmann:
"This is a late set of changes from Deepa Dinamani doing an automated
treewide conversion of the inode and iattr structures from 'timespec'
to 'timespec64', to push the conversion from the VFS layer into the
individual file systems.
As Deepa writes:
'The series aims to switch vfs timestamps to use struct timespec64.
Currently vfs uses struct timespec, which is not y2038 safe.
The series involves the following:
1. Add vfs helper functions for supporting struct timepec64
timestamps.
2. Cast prints of vfs timestamps to avoid warnings after the switch.
3. Simplify code using vfs timestamps so that the actual replacement
becomes easy.
4. Convert vfs timestamps to use struct timespec64 using a script.
This is a flag day patch.
Next steps:
1. Convert APIs that can handle timespec64, instead of converting
timestamps at the boundaries.
2. Update internal data structures to avoid timestamp conversions'
Thomas Gleixner adds:
'I think there is no point to drag that out for the next merge
window. The whole thing needs to be done in one go for the core
changes which means that you're going to play that catchup game
forever. Let's get over with it towards the end of the merge window'"
* tag 'vfs-timespec64' of git://git.kernel.org/pub/scm/linux/kernel/git/arnd/playground:
pstore: Remove bogus format string definition
vfs: change inode times to use struct timespec64
pstore: Convert internal records to timespec64
udf: Simplify calls to udf_disk_stamp_to_time
fs: nfs: get rid of memcpys for inode times
ceph: make inode time prints to be long long
lustre: Use long long type to print inode time
fs: add timespec64_truncate()
|
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| | |
struct timespec is not y2038 safe. Transition vfs to use
y2038 safe struct timespec64 instead.
The change was made with the help of the following cocinelle
script. This catches about 80% of the changes.
All the header file and logic changes are included in the
first 5 rules. The rest are trivial substitutions.
I avoid changing any of the function signatures or any other
filesystem specific data structures to keep the patch simple
for review.
The script can be a little shorter by combining different cases.
But, this version was sufficient for my usecase.
virtual patch
@ depends on patch @
identifier now;
@@
- struct timespec
+ struct timespec64
current_time ( ... )
{
- struct timespec now = current_kernel_time();
+ struct timespec64 now = current_kernel_time64();
...
- return timespec_trunc(
+ return timespec64_trunc(
... );
}
@ depends on patch @
identifier xtime;
@@
struct \( iattr \| inode \| kstat \) {
...
- struct timespec xtime;
+ struct timespec64 xtime;
...
}
@ depends on patch @
identifier t;
@@
struct inode_operations {
...
int (*update_time) (...,
- struct timespec t,
+ struct timespec64 t,
...);
...
}
@ depends on patch @
identifier t;
identifier fn_update_time =~ "update_time$";
@@
fn_update_time (...,
- struct timespec *t,
+ struct timespec64 *t,
...) { ... }
@ depends on patch @
identifier t;
@@
lease_get_mtime( ... ,
- struct timespec *t
+ struct timespec64 *t
) { ... }
@te depends on patch forall@
identifier ts;
local idexpression struct inode *inode_node;
identifier i_xtime =~ "^i_[acm]time$";
identifier ia_xtime =~ "^ia_[acm]time$";
identifier fn_update_time =~ "update_time$";
identifier fn;
expression e, E3;
local idexpression struct inode *node1;
local idexpression struct inode *node2;
local idexpression struct iattr *attr1;
local idexpression struct iattr *attr2;
local idexpression struct iattr attr;
identifier i_xtime1 =~ "^i_[acm]time$";
identifier i_xtime2 =~ "^i_[acm]time$";
identifier ia_xtime1 =~ "^ia_[acm]time$";
identifier ia_xtime2 =~ "^ia_[acm]time$";
@@
(
(
- struct timespec ts;
+ struct timespec64 ts;
|
- struct timespec ts = current_time(inode_node);
+ struct timespec64 ts = current_time(inode_node);
)
<+... when != ts
(
- timespec_equal(&inode_node->i_xtime, &ts)
+ timespec64_equal(&inode_node->i_xtime, &ts)
|
- timespec_equal(&ts, &inode_node->i_xtime)
+ timespec64_equal(&ts, &inode_node->i_xtime)
|
- timespec_compare(&inode_node->i_xtime, &ts)
+ timespec64_compare(&inode_node->i_xtime, &ts)
|
- timespec_compare(&ts, &inode_node->i_xtime)
+ timespec64_compare(&ts, &inode_node->i_xtime)
|
ts = current_time(e)
|
fn_update_time(..., &ts,...)
|
inode_node->i_xtime = ts
|
node1->i_xtime = ts
|
ts = inode_node->i_xtime
|
<+... attr1->ia_xtime ...+> = ts
|
ts = attr1->ia_xtime
|
ts.tv_sec
|
ts.tv_nsec
|
btrfs_set_stack_timespec_sec(..., ts.tv_sec)
|
btrfs_set_stack_timespec_nsec(..., ts.tv_nsec)
|
- ts = timespec64_to_timespec(
+ ts =
...
-)
|
- ts = ktime_to_timespec(
+ ts = ktime_to_timespec64(
...)
|
- ts = E3
+ ts = timespec_to_timespec64(E3)
|
- ktime_get_real_ts(&ts)
+ ktime_get_real_ts64(&ts)
|
fn(...,
- ts
+ timespec64_to_timespec(ts)
,...)
)
...+>
(
<... when != ts
- return ts;
+ return timespec64_to_timespec(ts);
...>
)
|
- timespec_equal(&node1->i_xtime1, &node2->i_xtime2)
+ timespec64_equal(&node1->i_xtime2, &node2->i_xtime2)
|
- timespec_equal(&node1->i_xtime1, &attr2->ia_xtime2)
+ timespec64_equal(&node1->i_xtime2, &attr2->ia_xtime2)
|
- timespec_compare(&node1->i_xtime1, &node2->i_xtime2)
+ timespec64_compare(&node1->i_xtime1, &node2->i_xtime2)
|
node1->i_xtime1 =
- timespec_trunc(attr1->ia_xtime1,
+ timespec64_trunc(attr1->ia_xtime1,
...)
|
- attr1->ia_xtime1 = timespec_trunc(attr2->ia_xtime2,
+ attr1->ia_xtime1 = timespec64_trunc(attr2->ia_xtime2,
...)
|
- ktime_get_real_ts(&attr1->ia_xtime1)
+ ktime_get_real_ts64(&attr1->ia_xtime1)
|
- ktime_get_real_ts(&attr.ia_xtime1)
+ ktime_get_real_ts64(&attr.ia_xtime1)
)
@ depends on patch @
struct inode *node;
struct iattr *attr;
identifier fn;
identifier i_xtime =~ "^i_[acm]time$";
identifier ia_xtime =~ "^ia_[acm]time$";
expression e;
@@
(
- fn(node->i_xtime);
+ fn(timespec64_to_timespec(node->i_xtime));
|
fn(...,
- node->i_xtime);
+ timespec64_to_timespec(node->i_xtime));
|
- e = fn(attr->ia_xtime);
+ e = fn(timespec64_to_timespec(attr->ia_xtime));
)
@ depends on patch forall @
struct inode *node;
struct iattr *attr;
identifier i_xtime =~ "^i_[acm]time$";
identifier ia_xtime =~ "^ia_[acm]time$";
identifier fn;
@@
{
+ struct timespec ts;
<+...
(
+ ts = timespec64_to_timespec(node->i_xtime);
fn (...,
- &node->i_xtime,
+ &ts,
...);
|
+ ts = timespec64_to_timespec(attr->ia_xtime);
fn (...,
- &attr->ia_xtime,
+ &ts,
...);
)
...+>
}
@ depends on patch forall @
struct inode *node;
struct iattr *attr;
struct kstat *stat;
identifier ia_xtime =~ "^ia_[acm]time$";
identifier i_xtime =~ "^i_[acm]time$";
identifier xtime =~ "^[acm]time$";
identifier fn, ret;
@@
{
+ struct timespec ts;
<+...
(
+ ts = timespec64_to_timespec(node->i_xtime);
ret = fn (...,
- &node->i_xtime,
+ &ts,
...);
|
+ ts = timespec64_to_timespec(node->i_xtime);
ret = fn (...,
- &node->i_xtime);
+ &ts);
|
+ ts = timespec64_to_timespec(attr->ia_xtime);
ret = fn (...,
- &attr->ia_xtime,
+ &ts,
...);
|
+ ts = timespec64_to_timespec(attr->ia_xtime);
ret = fn (...,
- &attr->ia_xtime);
+ &ts);
|
+ ts = timespec64_to_timespec(stat->xtime);
ret = fn (...,
- &stat->xtime);
+ &ts);
)
...+>
}
@ depends on patch @
struct inode *node;
struct inode *node2;
identifier i_xtime1 =~ "^i_[acm]time$";
identifier i_xtime2 =~ "^i_[acm]time$";
identifier i_xtime3 =~ "^i_[acm]time$";
struct iattr *attrp;
struct iattr *attrp2;
struct iattr attr ;
identifier ia_xtime1 =~ "^ia_[acm]time$";
identifier ia_xtime2 =~ "^ia_[acm]time$";
struct kstat *stat;
struct kstat stat1;
struct timespec64 ts;
identifier xtime =~ "^[acmb]time$";
expression e;
@@
(
( node->i_xtime2 \| attrp->ia_xtime2 \| attr.ia_xtime2 \) = node->i_xtime1 ;
|
node->i_xtime2 = \( node2->i_xtime1 \| timespec64_trunc(...) \);
|
node->i_xtime2 = node->i_xtime1 = node->i_xtime3 = \(ts \| current_time(...) \);
|
node->i_xtime1 = node->i_xtime3 = \(ts \| current_time(...) \);
|
stat->xtime = node2->i_xtime1;
|
stat1.xtime = node2->i_xtime1;
|
( node->i_xtime2 \| attrp->ia_xtime2 \) = attrp->ia_xtime1 ;
|
( attrp->ia_xtime1 \| attr.ia_xtime1 \) = attrp2->ia_xtime2;
|
- e = node->i_xtime1;
+ e = timespec64_to_timespec( node->i_xtime1 );
|
- e = attrp->ia_xtime1;
+ e = timespec64_to_timespec( attrp->ia_xtime1 );
|
node->i_xtime1 = current_time(...);
|
node->i_xtime2 = node->i_xtime1 = node->i_xtime3 =
- e;
+ timespec_to_timespec64(e);
|
node->i_xtime1 = node->i_xtime3 =
- e;
+ timespec_to_timespec64(e);
|
- node->i_xtime1 = e;
+ node->i_xtime1 = timespec_to_timespec64(e);
)
Signed-off-by: Deepa Dinamani <deepa.kernel@gmail.com>
Cc: <anton@tuxera.com>
Cc: <balbi@kernel.org>
Cc: <bfields@fieldses.org>
Cc: <darrick.wong@oracle.com>
Cc: <dhowells@redhat.com>
Cc: <dsterba@suse.com>
Cc: <dwmw2@infradead.org>
Cc: <hch@lst.de>
Cc: <hirofumi@mail.parknet.co.jp>
Cc: <hubcap@omnibond.com>
Cc: <jack@suse.com>
Cc: <jaegeuk@kernel.org>
Cc: <jaharkes@cs.cmu.edu>
Cc: <jslaby@suse.com>
Cc: <keescook@chromium.org>
Cc: <mark@fasheh.com>
Cc: <miklos@szeredi.hu>
Cc: <nico@linaro.org>
Cc: <reiserfs-devel@vger.kernel.org>
Cc: <richard@nod.at>
Cc: <sage@redhat.com>
Cc: <sfrench@samba.org>
Cc: <swhiteho@redhat.com>
Cc: <tj@kernel.org>
Cc: <trond.myklebust@primarydata.com>
Cc: <tytso@mit.edu>
Cc: <viro@zeniv.linux.org.uk>
|
| |
| |
| |
| |
| |
| |
| |
| |
| | |
This function always takes a transaction handle which contains a
reference to the fs_info. Use that and remove the extra argument.
Signed-off-by: Lu Fengqi <lufq.fnst@cn.fujitsu.com>
Reviewed-by: Nikolay Borisov <nborisov@suse.com>
Signed-off-by: David Sterba <dsterba@suse.com>
|
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| | |
Now that we don't keep long-standing reservations for orphan items,
root->orphan_block_rsv isn't used. We can git rid of it, along with:
- root->orphan_lock, which was used to protect root->orphan_block_rsv
- root->orphan_inodes, which was used as a refcount for root->orphan_block_rsv
- BTRFS_INODE_ORPHAN_META_RESERVED, which was used to track reservations
in root->orphan_block_rsv
- btrfs_orphan_commit_root(), which was the last user of any of these
and does nothing else
Reviewed-by: Nikolay Borisov <nborisov@suse.com>
Signed-off-by: Omar Sandoval <osandov@fb.com>
Signed-off-by: David Sterba <dsterba@suse.com>
|
|/
|
|
|
|
|
|
| |
Use the wrappers and reduce the amount of low-level details about the
waitqueue management.
Reviewed-by: Nikolay Borisov <nborisov@suse.com>
Signed-off-by: David Sterba <dsterba@suse.com>
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| |
Unlike previous method that tries to commit transaction inside
qgroup_reserve(), this time we will try to commit transaction using
fs_info->transaction_kthread to avoid nested transaction and no need to
worry about locking context.
Since it's an asynchronous function call and we won't wait for
transaction commit, unlike previous method, we must call it before we
hit the qgroup limit.
So this patch will use the ratio and size of qgroup meta_pertrans
reservation as indicator to check if we should trigger a transaction
commit. (meta_prealloc won't be cleaned in transaction committ, it's
useless anyway)
Signed-off-by: Qu Wenruo <wqu@suse.com>
Signed-off-by: David Sterba <dsterba@suse.com>
|
|
|
|
|
|
|
|
| |
Remove GPL boilerplate text (long, short, one-line) and keep the rest,
ie. personal, company or original source copyright statements. Add the
SPDX header.
Signed-off-by: David Sterba <dsterba@suse.com>
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| |
Btrfs uses 2 different methods to reseve metadata qgroup space.
1) Reserve at btrfs_start_transaction() time
This is quite straightforward, caller will use the trans handler
allocated to modify b-trees.
In this case, reserved metadata should be kept until qgroup numbers
are updated.
2) Reserve by using block_rsv first, and later btrfs_join_transaction()
This is more complicated, caller will reserve space using block_rsv
first, and then later call btrfs_join_transaction() to get a trans
handle.
In this case, before we modify trees, the reserved space can be
modified on demand, and after btrfs_join_transaction(), such reserved
space should also be kept until qgroup numbers are updated.
Since these two types behave differently, split the original "META"
reservation type into 2 sub-types:
META_PERTRANS:
For above case 1)
META_PREALLOC:
For reservations that happened before btrfs_join_transaction() of
case 2)
NOTE: This patch will only convert existing qgroup meta reservation
callers according to its situation, not ensuring all callers are at
correct timing.
Such fix will be added in later patches.
Signed-off-by: Qu Wenruo <wqu@suse.com>
[ update comments ]
Signed-off-by: David Sterba <dsterba@suse.com>
|
|
|
|
|
|
|
| |
It's provided by the transaction handle.
Signed-off-by: Nikolay Borisov <nborisov@suse.com>
Signed-off-by: David Sterba <dsterba@suse.com>
|
|
|
|
|
|
|
| |
It's provided by the transaction handle.
Signed-off-by: Nikolay Borisov <nborisov@suse.com>
Signed-off-by: David Sterba <dsterba@suse.com>
|
|
|
|
|
|
|
| |
It's provided by the transaction handle.
Signed-off-by: Nikolay Borisov <nborisov@suse.com>
Signed-off-by: David Sterba <dsterba@suse.com>
|
|
|
|
|
|
|
|
|
| |
Since userspace transaction have been removed we no longer have use
for this field so delete it.
Signed-off-by: Nikolay Borisov <nborisov@suse.com>
Reviewed-by: David Sterba <dsterba@suse.com>
Signed-off-by: David Sterba <dsterba@suse.com>
|
|
|
|
|
|
|
|
| |
Now that the userspace transaction ioctls have been removed,
TRANS_USERSPACE is no longer used hence we can remove it.
Signed-off-by: Nikolay Borisov <nborisov@suse.com>
Signed-off-by: David Sterba <dsterba@suse.com>
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| |
are created with quota enabled
When multiple pending snapshots referring to the same source subvolume
are executed, enabled quota will cause root item corruption, where root
items are using old bytenr (no backref in extent tree).
This can be triggered by fstests btrfs/152.
The cause is when source subvolume is still dirty, extra commit
(simplied transaction commit) of qgroup_account_snapshot() can skip
dirty roots not recorded in current transaction, making root item of
source subvolume not updated.
Fix it by forcing recording source subvolume in current transaction
before qgroup sub-transaction commit.
Reported-by: Justin Maggard <jmaggard@netgear.com>
Signed-off-by: Qu Wenruo <wqu@suse.com>
Reviewed-by: Filipe Manana <fdmanana@suse.com>
Signed-off-by: David Sterba <dsterba@suse.com>
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| |
Even though btrfs_start_dirty_block_groups is fairly in the beginning of
btrfs_commit_transaction outside of the critical section defined by the
transaction states it can only be run by a single comitter. In other
words it defines its own critical section thanks to the
BTRFS_TRANS_DIRTY_BG run flag and ro_block_group_mutex. However, its
error handling is outside of this critical section which is a bit
counter-intuitive. So move the error handling righ after the function is
executed and let the sole runner of dirty block groups handle the return
value. No functional changes.
Signed-off-by: Nikolay Borisov <nborisov@suse.com>
Reviewed-by: David Sterba <dsterba@suse.com>
Signed-off-by: David Sterba <dsterba@suse.com>
|
|
|
|
|
|
|
|
| |
We already pass btrfs_trans_handle which contains a reference to the
fs_info so use that. No functional changes.
Signed-off-by: Nikolay Borisov <nborisov@suse.com>
Signed-off-by: David Sterba <dsterba@suse.com>
|
|
|
|
|
|
|
|
|
| |
We already pass the btrfs_transaction which references fs_info so no
need to pass the later as an argument. Also use the opportunity to
shorten transaction->trans. No functional changes.
Signed-off-by: Nikolay Borisov <nborisov@suse.com>
Signed-off-by: David Sterba <dsterba@suse.com>
|
|
|
|
|
|
|
|
|
|
|
|
| |
create_pending_snapshots/create_pending_snapshot
We already pass the trans handle which has a reference to fs_info to
create_pending_snapshot so we can refer to it directly. Doing this
obviates the need to pass the fs_info to create_pending_snapshots as
well. No functional changes.
Signed-off-by: Nikolay Borisov <nborisov@suse.com>
Signed-off-by: David Sterba <dsterba@suse.com>
|
|
|
|
|
|
|
|
| |
We already have the fs_info from the passed transaction so use it
directly. No functional changes.
Signed-off-by: Nikolay Borisov <nborisov@suse.com>
Signed-off-by: David Sterba <dsterba@suse.com>
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| |
The only thing the passed root is used for is:
1. get a reference to the fs_info and to
2. call trace_btrfs_transaction_commit.
We can achieve 1) by simply referring to the fs_info from passed trans
object. As far as 2) is concerned cleanup_transaction is called from
only one place and the 'root' argument passed is the one from the trans
handle. No functional changes.
Signed-off-by: Nikolay Borisov <nborisov@suse.com>
Signed-off-by: David Sterba <dsterba@suse.com>
|
|
|
|
|
|
|
|
| |
We already pass a transaction handle which refrences the fs_info so
we can grab it from there. No functional changes.
Signed-off-by: Nikolay Borisov <nborisov@suse.com>
Signed-off-by: David Sterba <dsterba@suse.com>
|
|
|
|
|
|
|
|
| |
We already pass the transaction handle which has a reference to the
fs_info. No functional changes.
Signed-off-by: Nikolay Borisov <nborisov@suse.com>
Signed-off-by: David Sterba <dsterba@suse.com>
|
|
|
|
|
|
|
|
| |
We already pass the transaction which has a reference to the fs_info,
so use that. No functional changes.
Signed-off-by: Nikolay Borisov <nborisov@suse.com>
Signed-off-by: David Sterba <dsterba@suse.com>
|
|
|
|
|
|
|
|
| |
It can be referenced from the passed transaction so no point in passing
it as a function argument. No functional changes.
Signed-off-by: Nikolay Borisov <nborisov@suse.com>
Signed-off-by: David Sterba <dsterba@suse.com>
|
|
|
|
|
|
|
|
| |
It can be referenced from the passed transaciton so no point in
passing it as function argument. No functional changes.
Signed-off-by: Nikolay Borisov <nborisov@suse.com>
Signed-off-by: David Sterba <dsterba@suse.com>
|