summaryrefslogtreecommitdiffstats
path: root/fs/nfs/fscache-index.c
Commit message (Collapse)AuthorAgeFilesLines
* treewide: Replace GPLv2 boilerplate/reference with SPDX - rule 36Thomas Gleixner2019-05-241-5/+1Star
| | | | | | | | | | | | | | | | | | | | | | Based on 1 normalized pattern(s): this program is free software you can redistribute it and or modify it under the terms of the gnu general public licence as published by the free software foundation either version 2 of the licence or at your option any later version extracted by the scancode license scanner the SPDX license identifier GPL-2.0-or-later has been chosen to replace the boilerplate/reference in 114 file(s). Signed-off-by: Thomas Gleixner <tglx@linutronix.de> Reviewed-by: Allison Randal <allison@lohutok.net> Reviewed-by: Kate Stewart <kstewart@linuxfoundation.org> Cc: linux-spdx@vger.kernel.org Link: https://lkml.kernel.org/r/20190520170857.552531963@linutronix.de Signed-off-by: Greg Kroah-Hartman <gregkh@linuxfoundation.org>
* vfs: change inode times to use struct timespec64Deepa Dinamani2018-06-061-2/+2
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | struct timespec is not y2038 safe. Transition vfs to use y2038 safe struct timespec64 instead. The change was made with the help of the following cocinelle script. This catches about 80% of the changes. All the header file and logic changes are included in the first 5 rules. The rest are trivial substitutions. I avoid changing any of the function signatures or any other filesystem specific data structures to keep the patch simple for review. The script can be a little shorter by combining different cases. But, this version was sufficient for my usecase. virtual patch @ depends on patch @ identifier now; @@ - struct timespec + struct timespec64 current_time ( ... ) { - struct timespec now = current_kernel_time(); + struct timespec64 now = current_kernel_time64(); ... - return timespec_trunc( + return timespec64_trunc( ... ); } @ depends on patch @ identifier xtime; @@ struct \( iattr \| inode \| kstat \) { ... - struct timespec xtime; + struct timespec64 xtime; ... } @ depends on patch @ identifier t; @@ struct inode_operations { ... int (*update_time) (..., - struct timespec t, + struct timespec64 t, ...); ... } @ depends on patch @ identifier t; identifier fn_update_time =~ "update_time$"; @@ fn_update_time (..., - struct timespec *t, + struct timespec64 *t, ...) { ... } @ depends on patch @ identifier t; @@ lease_get_mtime( ... , - struct timespec *t + struct timespec64 *t ) { ... } @te depends on patch forall@ identifier ts; local idexpression struct inode *inode_node; identifier i_xtime =~ "^i_[acm]time$"; identifier ia_xtime =~ "^ia_[acm]time$"; identifier fn_update_time =~ "update_time$"; identifier fn; expression e, E3; local idexpression struct inode *node1; local idexpression struct inode *node2; local idexpression struct iattr *attr1; local idexpression struct iattr *attr2; local idexpression struct iattr attr; identifier i_xtime1 =~ "^i_[acm]time$"; identifier i_xtime2 =~ "^i_[acm]time$"; identifier ia_xtime1 =~ "^ia_[acm]time$"; identifier ia_xtime2 =~ "^ia_[acm]time$"; @@ ( ( - struct timespec ts; + struct timespec64 ts; | - struct timespec ts = current_time(inode_node); + struct timespec64 ts = current_time(inode_node); ) <+... when != ts ( - timespec_equal(&inode_node->i_xtime, &ts) + timespec64_equal(&inode_node->i_xtime, &ts) | - timespec_equal(&ts, &inode_node->i_xtime) + timespec64_equal(&ts, &inode_node->i_xtime) | - timespec_compare(&inode_node->i_xtime, &ts) + timespec64_compare(&inode_node->i_xtime, &ts) | - timespec_compare(&ts, &inode_node->i_xtime) + timespec64_compare(&ts, &inode_node->i_xtime) | ts = current_time(e) | fn_update_time(..., &ts,...) | inode_node->i_xtime = ts | node1->i_xtime = ts | ts = inode_node->i_xtime | <+... attr1->ia_xtime ...+> = ts | ts = attr1->ia_xtime | ts.tv_sec | ts.tv_nsec | btrfs_set_stack_timespec_sec(..., ts.tv_sec) | btrfs_set_stack_timespec_nsec(..., ts.tv_nsec) | - ts = timespec64_to_timespec( + ts = ... -) | - ts = ktime_to_timespec( + ts = ktime_to_timespec64( ...) | - ts = E3 + ts = timespec_to_timespec64(E3) | - ktime_get_real_ts(&ts) + ktime_get_real_ts64(&ts) | fn(..., - ts + timespec64_to_timespec(ts) ,...) ) ...+> ( <... when != ts - return ts; + return timespec64_to_timespec(ts); ...> ) | - timespec_equal(&node1->i_xtime1, &node2->i_xtime2) + timespec64_equal(&node1->i_xtime2, &node2->i_xtime2) | - timespec_equal(&node1->i_xtime1, &attr2->ia_xtime2) + timespec64_equal(&node1->i_xtime2, &attr2->ia_xtime2) | - timespec_compare(&node1->i_xtime1, &node2->i_xtime2) + timespec64_compare(&node1->i_xtime1, &node2->i_xtime2) | node1->i_xtime1 = - timespec_trunc(attr1->ia_xtime1, + timespec64_trunc(attr1->ia_xtime1, ...) | - attr1->ia_xtime1 = timespec_trunc(attr2->ia_xtime2, + attr1->ia_xtime1 = timespec64_trunc(attr2->ia_xtime2, ...) | - ktime_get_real_ts(&attr1->ia_xtime1) + ktime_get_real_ts64(&attr1->ia_xtime1) | - ktime_get_real_ts(&attr.ia_xtime1) + ktime_get_real_ts64(&attr.ia_xtime1) ) @ depends on patch @ struct inode *node; struct iattr *attr; identifier fn; identifier i_xtime =~ "^i_[acm]time$"; identifier ia_xtime =~ "^ia_[acm]time$"; expression e; @@ ( - fn(node->i_xtime); + fn(timespec64_to_timespec(node->i_xtime)); | fn(..., - node->i_xtime); + timespec64_to_timespec(node->i_xtime)); | - e = fn(attr->ia_xtime); + e = fn(timespec64_to_timespec(attr->ia_xtime)); ) @ depends on patch forall @ struct inode *node; struct iattr *attr; identifier i_xtime =~ "^i_[acm]time$"; identifier ia_xtime =~ "^ia_[acm]time$"; identifier fn; @@ { + struct timespec ts; <+... ( + ts = timespec64_to_timespec(node->i_xtime); fn (..., - &node->i_xtime, + &ts, ...); | + ts = timespec64_to_timespec(attr->ia_xtime); fn (..., - &attr->ia_xtime, + &ts, ...); ) ...+> } @ depends on patch forall @ struct inode *node; struct iattr *attr; struct kstat *stat; identifier ia_xtime =~ "^ia_[acm]time$"; identifier i_xtime =~ "^i_[acm]time$"; identifier xtime =~ "^[acm]time$"; identifier fn, ret; @@ { + struct timespec ts; <+... ( + ts = timespec64_to_timespec(node->i_xtime); ret = fn (..., - &node->i_xtime, + &ts, ...); | + ts = timespec64_to_timespec(node->i_xtime); ret = fn (..., - &node->i_xtime); + &ts); | + ts = timespec64_to_timespec(attr->ia_xtime); ret = fn (..., - &attr->ia_xtime, + &ts, ...); | + ts = timespec64_to_timespec(attr->ia_xtime); ret = fn (..., - &attr->ia_xtime); + &ts); | + ts = timespec64_to_timespec(stat->xtime); ret = fn (..., - &stat->xtime); + &ts); ) ...+> } @ depends on patch @ struct inode *node; struct inode *node2; identifier i_xtime1 =~ "^i_[acm]time$"; identifier i_xtime2 =~ "^i_[acm]time$"; identifier i_xtime3 =~ "^i_[acm]time$"; struct iattr *attrp; struct iattr *attrp2; struct iattr attr ; identifier ia_xtime1 =~ "^ia_[acm]time$"; identifier ia_xtime2 =~ "^ia_[acm]time$"; struct kstat *stat; struct kstat stat1; struct timespec64 ts; identifier xtime =~ "^[acmb]time$"; expression e; @@ ( ( node->i_xtime2 \| attrp->ia_xtime2 \| attr.ia_xtime2 \) = node->i_xtime1 ; | node->i_xtime2 = \( node2->i_xtime1 \| timespec64_trunc(...) \); | node->i_xtime2 = node->i_xtime1 = node->i_xtime3 = \(ts \| current_time(...) \); | node->i_xtime1 = node->i_xtime3 = \(ts \| current_time(...) \); | stat->xtime = node2->i_xtime1; | stat1.xtime = node2->i_xtime1; | ( node->i_xtime2 \| attrp->ia_xtime2 \) = attrp->ia_xtime1 ; | ( attrp->ia_xtime1 \| attr.ia_xtime1 \) = attrp2->ia_xtime2; | - e = node->i_xtime1; + e = timespec64_to_timespec( node->i_xtime1 ); | - e = attrp->ia_xtime1; + e = timespec64_to_timespec( attrp->ia_xtime1 ); | node->i_xtime1 = current_time(...); | node->i_xtime2 = node->i_xtime1 = node->i_xtime3 = - e; + timespec_to_timespec64(e); | node->i_xtime1 = node->i_xtime3 = - e; + timespec_to_timespec64(e); | - node->i_xtime1 = e; + node->i_xtime1 = timespec_to_timespec64(e); ) Signed-off-by: Deepa Dinamani <deepa.kernel@gmail.com> Cc: <anton@tuxera.com> Cc: <balbi@kernel.org> Cc: <bfields@fieldses.org> Cc: <darrick.wong@oracle.com> Cc: <dhowells@redhat.com> Cc: <dsterba@suse.com> Cc: <dwmw2@infradead.org> Cc: <hch@lst.de> Cc: <hirofumi@mail.parknet.co.jp> Cc: <hubcap@omnibond.com> Cc: <jack@suse.com> Cc: <jaegeuk@kernel.org> Cc: <jaharkes@cs.cmu.edu> Cc: <jslaby@suse.com> Cc: <keescook@chromium.org> Cc: <mark@fasheh.com> Cc: <miklos@szeredi.hu> Cc: <nico@linaro.org> Cc: <reiserfs-devel@vger.kernel.org> Cc: <richard@nod.at> Cc: <sage@redhat.com> Cc: <sfrench@samba.org> Cc: <swhiteho@redhat.com> Cc: <tj@kernel.org> Cc: <trond.myklebust@primarydata.com> Cc: <tytso@mit.edu> Cc: <viro@zeniv.linux.org.uk>
* fscache: Pass object size in rather than calling back for itDavid Howells2018-04-061-17/+2Star
| | | | | | | | | | | | | | Pass the object size in to fscache_acquire_cookie() and fscache_write_page() rather than the netfs providing a callback by which it can be received. This makes it easier to update the size of the object when a new page is written that extends the object. The current object size is also passed by fscache to the check_aux function, obviating the need to store it in the aux data. Signed-off-by: David Howells <dhowells@redhat.com> Acked-by: Anna Schumaker <anna.schumaker@netapp.com> Tested-by: Steve Dickson <steved@redhat.com>
* fscache: Attach the index key and aux data to the cookieDavid Howells2018-04-041-140/+0Star
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | Attach copies of the index key and auxiliary data to the fscache cookie so that: (1) The callbacks to the netfs for this stuff can be eliminated. This can simplify things in the cache as the information is still available, even after the cache has relinquished the cookie. (2) Simplifies the locking requirements of accessing the information as we don't have to worry about the netfs object going away on us. (3) The cache can do lazy updating of the coherency information on disk. As long as the cache is flushed before reboot/poweroff, there's no need to update the coherency info on disk every time it changes. (4) Cookies can be hashed or put in a tree as the index key is easily available. This allows: (a) Checks for duplicate cookies can be made at the top fscache layer rather than down in the bowels of the cache backend. (b) Caching can be added to a netfs object that has a cookie if the cache is brought online after the netfs object is allocated. A certain amount of space is made in the cookie for inline copies of the data, but if it won't fit there, extra memory will be allocated for it. The downside of this is that live cache operation requires more memory. Signed-off-by: David Howells <dhowells@redhat.com> Acked-by: Anna Schumaker <anna.schumaker@netapp.com> Tested-by: Steve Dickson <steved@redhat.com>
* nfs: convert to new i_version APIJeff Layton2018-01-291-2/+3
| | | | | | | | | | For NFS, we just use the "raw" API since the i_version is mostly managed by the server. The exception there is when the client holds a write delegation, but we only need to bump it once there anyway to handle CB_GETATTR. Tested-by: Krzysztof Kozlowski <krzk@kernel.org> Signed-off-by: Jeff Layton <jlayton@redhat.com>
* fscache: remove unused ->now_uncached callbackJan Kara2017-09-071-40/+0Star
| | | | | | | | | | | | | | | | | | | | | Patch series "Ranged pagevec lookup", v2. In this series I make pagevec_lookup() update the index (to be consistent with pagevec_lookup_tag() and also as a preparation for ranged lookups), provide ranged variant of pagevec_lookup() and use it in places where it makes sense. This not only removes some common code but is also a measurable performance win for some use cases (see patch 4/10) where radix tree is sparse and searching & grabing of a page after the end of the range has measurable overhead. This patch (of 10): The callback doesn't ever get called. Remove it. Link: http://lkml.kernel.org/r/20170726114704.7626-2-jack@suse.cz Signed-off-by: Jan Kara <jack@suse.cz> Signed-off-by: Andrew Morton <akpm@linux-foundation.org> Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
* NFS: Fabricate fscache server index key correctlyDavid Howells2014-09-261-2/+1Star
| | | | | | | | | | When fabricating a server index key for fscache, we should clear the index key buffer before starting to fill it in, not in the middle. Reported-by: James Pearson <james-p@moving-picture.com> Signed-off-by: David Howells <dhowells@redhat.com> Acked-by: Steve Dickson <steved@redhat.com> Signed-off-by: Trond Myklebust <trond.myklebust@primarydata.com>
* NFS: Use the inode->i_version to cache NFSv4 change attribute informationTrond Myklebust2011-10-181-2/+2
| | | | Signed-off-by: Trond Myklebust <Trond.Myklebust@netapp.com>
* NFS: Add read context retention for FS-Cache to call back withDavid Howells2009-04-031-0/+26
| | | | | | | | | | | | | Add read context retention so that FS-Cache can call back into NFS when a read operation on the cache fails EIO rather than reading data. This permits NFS to then fetch the data from the server instead using the appropriate security context. Signed-off-by: David Howells <dhowells@redhat.com> Acked-by: Steve Dickson <steved@redhat.com> Acked-by: Trond Myklebust <Trond.Myklebust@netapp.com> Acked-by: Al Viro <viro@zeniv.linux.org.uk> Tested-by: Daire Byrne <Daire.Byrne@framestore.com>
* NFS: Invalidate FsCache page flags when cache removedDavid Howells2009-04-031-0/+40
| | | | | | | | | | | | | Invalidate the FsCache page flags on the pages belonging to an inode when the cache backing that NFS inode is removed. This allows a live cache to be withdrawn. Signed-off-by: David Howells <dhowells@redhat.com> Acked-by: Steve Dickson <steved@redhat.com> Acked-by: Trond Myklebust <Trond.Myklebust@netapp.com> Acked-by: Al Viro <viro@zeniv.linux.org.uk> Tested-by: Daire Byrne <Daire.Byrne@framestore.com>
* NFS: Define and create inode-level cache objectsDavid Howells2009-04-031-0/+123
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | Define and create inode-level cache data storage objects (as managed by nfs_inode structs). Each inode-level object is created in a superblock-level index object and is itself a data storage object into which pages from the inode are stored. The inode object key is the NFS file handle for the inode. The inode object is given coherency data to carry in the auxiliary data permitted by the cache. This is a sequence made up of: (1) i_mtime from the NFS inode. (2) i_ctime from the NFS inode. (3) i_size from the NFS inode. (4) change_attr from the NFSv4 attribute data. As the cache is a persistent cache, the auxiliary data is checked when a new NFS in-memory inode is set up that matches an already existing data storage object in the cache. If the coherency data is the same, the on-disk object is retained and used; if not, it is scrapped and a new one created. Signed-off-by: David Howells <dhowells@redhat.com> Acked-by: Steve Dickson <steved@redhat.com> Acked-by: Trond Myklebust <Trond.Myklebust@netapp.com> Acked-by: Al Viro <viro@zeniv.linux.org.uk> Tested-by: Daire Byrne <Daire.Byrne@framestore.com>
* NFS: Define and create superblock-level objectsDavid Howells2009-04-031-0/+34
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | Define and create superblock-level cache index objects (as managed by nfs_server structs). Each superblock object is created in a server level index object and is itself an index into which inode-level objects are inserted. Ideally there would be one superblock-level object per server, and the former would be folded into the latter; however, since the "nosharecache" option exists this isn't possible. The superblock object key is a sequence consisting of: (1) Certain superblock s_flags. (2) Various connection parameters that serve to distinguish superblocks for sget(). (3) The volume FSID. (4) The security flavour. (5) The uniquifier length. (6) The uniquifier text. This is normally an empty string, unless the fsc=xyz mount option was used to explicitly specify a uniquifier. The key blob is of variable length, depending on the length of (6). The superblock object is given no coherency data to carry in the auxiliary data permitted by the cache. It is assumed that the superblock is always coherent. This patch also adds uniquification handling such that two otherwise identical superblocks, at least one of which is marked "nosharecache", won't end up trying to share the on-disk cache. It will be possible to manually provide a uniquifier through a mount option with a later patch to avoid the error otherwise produced. Signed-off-by: David Howells <dhowells@redhat.com> Acked-by: Steve Dickson <steved@redhat.com> Acked-by: Trond Myklebust <Trond.Myklebust@netapp.com> Acked-by: Al Viro <viro@zeniv.linux.org.uk> Tested-by: Daire Byrne <Daire.Byrne@framestore.com>
* NFS: Define and create server-level objectsDavid Howells2009-04-031-0/+65
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | Define and create server-level cache index objects (as managed by nfs_client structs). Each server object is created in the NFS top-level index object and is itself an index into which superblock-level objects are inserted. Ideally there would be one superblock-level object per server, and the former would be folded into the latter; however, since the "nosharecache" option exists this isn't possible. The server object key is a sequence consisting of: (1) NFS version (2) Server address family (eg: AF_INET or AF_INET6) (3) Server port. (4) Server IP address. The key blob is of variable length, depending on the length of (4). The server object is given no coherency data to carry in the auxiliary data permitted by the cache. Signed-off-by: David Howells <dhowells@redhat.com> Acked-by: Steve Dickson <steved@redhat.com> Acked-by: Trond Myklebust <Trond.Myklebust@netapp.com> Acked-by: Al Viro <viro@zeniv.linux.org.uk> Tested-by: Daire Byrne <Daire.Byrne@framestore.com>
* NFS: Register NFS for caching and retrieve the top-level indexDavid Howells2009-04-031-0/+49
Register NFS for caching and retrieve the top-level cache index object cookie. Signed-off-by: David Howells <dhowells@redhat.com> Acked-by: Steve Dickson <steved@redhat.com> Acked-by: Trond Myklebust <Trond.Myklebust@netapp.com> Acked-by: Al Viro <viro@zeniv.linux.org.uk> Tested-by: Daire Byrne <Daire.Byrne@framestore.com>