summaryrefslogtreecommitdiffstats
path: root/fs/nilfs2/the_nilfs.h
Commit message (Collapse)AuthorAgeFilesLines
...
* nilfs2: get rid of sget use for checking if current mount is presentRyusuke Konishi2009-06-121-0/+3
| | | | | | | | | | This stops using sget() for checking if an r/w-mount or an r/o-mount exists on the device. This elimination uses a back pointer to the current mount added to nilfs object. Signed-off-by: Ryusuke Konishi <konishi.ryusuke@lab.ntt.co.jp> Cc: Al Viro <viro@zeniv.linux.org.uk> Signed-off-by: Al Viro <viro@zeniv.linux.org.uk>
* nilfs2: get rid of sget use for acquiring nilfs objectRyusuke Konishi2009-06-121-1/+3
| | | | | | | | | | | | | | | | | | This will change the way to obtain nilfs object in nilfs_get_sb() function. Previously, a preliminary sget() call was performed, and the nilfs object was acquired from a super block instance found by the sget() call. This patch, instead, instroduces a new dedicated function find_or_create_nilfs(); as the name implies, the function finds an existent nilfs object from a global list or creates a new one if no object is found on the device. Signed-off-by: Ryusuke Konishi <konishi.ryusuke@lab.ntt.co.jp> Cc: Al Viro <viro@zeniv.linux.org.uk> Signed-off-by: Al Viro <viro@zeniv.linux.org.uk>
* nilfs2: introduce secondary super blockRyusuke Konishi2009-04-071-4/+14
| | | | | | | | | | | | | | | | | | The former versions didn't have extra super blocks. This improves the weak point by introducing another super block at unused region in tail of the partition. This doesn't break disk format compatibility; older versions just ingore the secondary super block, and new versions just recover it if it doesn't exist. The partition created by an old mkfs may not have unused region, but in that case, the secondary super block will not be added. This doesn't make more redundant copies of the super block; it is a future work. Signed-off-by: Ryusuke Konishi <konishi.ryusuke@lab.ntt.co.jp> Signed-off-by: Andrew Morton <akpm@linux-foundation.org> Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
* nilfs2: simplify handling of active state of segmentsRyusuke Konishi2009-04-071-0/+5
| | | | | | | | | | | | | | | | | | | will reduce some lines of segment constructor. Previously, the state was complexly controlled through a list of segments in order to keep consistency in meta data of usage state of segments. Instead, this presents ``calculated'' active flags to userland cleaner program and stop maintaining its real flag on disk. Only by this fake flag, the cleaner cannot exactly know if each segment is reclaimable or not. However, the recent extension of nilfs_sustat ioctl struct (nilfs2-extend-nilfs_sustat-ioctl-struct.patch) can prevent the cleaner from reclaiming in-use segment wrongly. So, now I can apply this for simplification. Signed-off-by: Ryusuke Konishi <konishi.ryusuke@lab.ntt.co.jp> Signed-off-by: Andrew Morton <akpm@linux-foundation.org> Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
* nilfs2: extend nilfs_sustat ioctl structRyusuke Konishi2009-04-071-3/+2Star
| | | | | | | | | | | | | | | | | This adds a new argument to the nilfs_sustat structure. The extended field allows to delete volatile active state of segments, which was needed to protect freshly-created segments from garbage collection but has confused code dealing with segments. This extension alleviates the mess and gives room for further simplifications. The volatile active flag is not persistent, so it's eliminable on this occasion without affecting compatibility other than the ioctl change. Signed-off-by: Ryusuke Konishi <konishi.ryusuke@lab.ntt.co.jp> Signed-off-by: Andrew Morton <akpm@linux-foundation.org> Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
* nilfs2: remove timedwait ioctl commandRyusuke Konishi2009-04-071-6/+0Star
| | | | | | | | | | | | | | This removes NILFS_IOCTL_TIMEDWAIT command from ioctl interface along with the related flags and wait queue. The command is terrible because it just sleeps in the ioctl. I prefer to avoid this by devising means of event polling in userland program. By reconsidering the userland GC daemon, I found this is possible without changing behaviour of the daemon and sacrificing efficiency. Signed-off-by: Ryusuke Konishi <konishi.ryusuke@lab.ntt.co.jp> Signed-off-by: Andrew Morton <akpm@linux-foundation.org> Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
* nilfs2: avoid double error caused by nilfs_transaction_endRyusuke Konishi2009-04-071-2/+2
| | | | | | | | | | | | | | | | | | | | | | | | | Pekka Enberg pointed out that double error handlings found after nilfs_transaction_end() can be avoided by separating abort operation: OK, I don't understand this. The only way nilfs_transaction_end() can fail is if we have NILFS_TI_SYNC set and we fail to construct the segment. But why do we want to construct a segment if we don't commit? I guess what I'm asking is why don't we have a separate nilfs_transaction_abort() function that can't fail for the erroneous case to avoid this double error value tracking thing? This does the separation and renames nilfs_transaction_end() to nilfs_transaction_commit() for clarification. Since, some calls of these functions were used just for exclusion control against the segment constructor, they are replaced with semaphore operations. Acked-by: Pekka Enberg <penberg@cs.helsinki.fi> Signed-off-by: Ryusuke Konishi <konishi.ryusuke@lab.ntt.co.jp> Signed-off-by: Andrew Morton <akpm@linux-foundation.org> Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
* nilfs2: add inode and other major structuresRyusuke Konishi2009-04-071-0/+290
This adds the following common structures of the NILFS2 file system. * nilfs_inode_info structure: gives on-memory inode. * nilfs_sb_info structure: keeps per-mount state and a special inode for the ifile. This structure is attached to the super_block structure. * the_nilfs structure: keeps shared state and locks among a read/write mount and snapshot mounts. This keeps special inodes for the sufile, cpfile, dat, and another dat inode used during GC (gcdat). This also has a hash table of dummy inodes to cache disk blocks during GC (gcinodes). * nilfs_transaction_info structure: keeps per task state while nilfs is writing logs or doing indivisible inode or namespace operations. This structure is used to identify context during log making and store nest level of the lock which ensures atomicity of file system operations. Signed-off-by: Koji Sato <sato.koji@lab.ntt.co.jp> Signed-off-by: Ryusuke Konishi <konishi.ryusuke@lab.ntt.co.jp> Signed-off-by: Andrew Morton <akpm@linux-foundation.org> Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>