summaryrefslogtreecommitdiffstats
path: root/net/nfc/nci/spi.c
Commit message (Collapse)AuthorAgeFilesLines
* NFC: NCI: allow spi driver to choose transfer clockVincent Cuissard2015-10-271-1/+6
| | | | | | | | | | | In some cases low level drivers might want to update the SPI transfer clock (e.g. during firmware download). This patch adds this support. Without any modification the driver will use the default SPI clock (from pdata or device tree). Signed-off-by: Vincent Cuissard <cuissard@marvell.com> Signed-off-by: Samuel Ortiz <sameo@linux.intel.com>
* NFC: NCI: move generic spi driver to a moduleVincent Cuissard2015-10-271-0/+4
| | | | | | | SPI driver should be a module. Signed-off-by: Vincent Cuissard <cuissard@marvell.com> Signed-off-by: Samuel Ortiz <sameo@linux.intel.com>
* NFC: NCI: Use reinit_completion() at appropriate placesAxel Lin2014-02-231-1/+2
| | | | | | | | Calling init_completion() once is enough. Then use reinit_completion() instead in __nci_request() and nci_spi_send(). Signed-off-by: Axel Lin <axel.lin@ingics.com> Signed-off-by: Samuel Ortiz <sameo@linux.intel.com>
* NFC: NCI: Modify NCI SPI to implement CS/INT handshake per the specEric Lapuyade2013-09-251-22/+31
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | The NFC Forum NCI specification defines both a hardware and software protocol when using a SPI physical transport to connect an NFC NCI Chipset. The hardware requirement is that, after having raised the chip select line, the SPI driver must wait for an INT line from the NFC chipset to raise before it sends the data. The chip select must be raised first though, because this is the signal that the NFC chipset will detect to wake up and then raise its INT line. If the INT line doesn't raise in a timely fashion, the SPI driver should abort operation. When data is transferred from Device host (DH) to NFC Controller (NFCC), the signaling sequence is the following: Data Transfer from DH to NFCC • 1-Master asserts SPI_CSN • 2-Slave asserts SPI_INT • 3-Master sends NCI-over-SPI protocol header and payload data • 4-Slave deasserts SPI_INT • 5-Master deasserts SPI_CSN When data must be transferred from NFCC to DH, things are a little bit different. Data Transfer from NFCC to DH • 1-Slave asserts SPI_INT -> NFC chipset irq handler called -> process reading from SPI • 2-Master asserts SPI_CSN • 3-Master send 2-octet NCI-over-SPI protocol header • 4-Slave sends 2-octet NCI-over-SPI protocol payload length • 5-Slave sends NCI-over-SPI protocol payload • 6-Master deasserts SPI_CSN In this case, SPI driver should function normally as it does today. Note that the INT line can and will be lowered anytime between beginning of step 3 and end of step 5. A low INT is therefore valid after chip select has been raised. This would be easily implemented in a single driver. Unfortunately, we don't write the SPI driver and I had to imagine some workaround trick to get the SPI and NFC drivers to work in a synchronized fashion. The trick is the following: - send an empty spi message: this will raise the chip select line, and send nothing. We expect the /CS line will stay arisen because we asked for it in the spi_transfer cs_change field - wait for a completion, that will be completed by the NFC driver IRQ handler when it knows we are in the process of sending data (NFC spec says that we use SPI in a half duplex mode, so we are either sending or receiving). - when completed, proceed with the normal data send. This has been tested and verified to work very consistently on a Nexus 10 (spi-s3c64xx driver). It may not work the same with other spi drivers. The previously defined nci_spi_ops{} whose intended purpose were to address this problem are not used anymore and therefore totally removed. The nci_spi_send() takes a new optional write_handshake_completion completion pointer. If non NULL, the nci spi layer will run the above trick when sending data to the NFC Chip. If NULL, the data is sent normally all at once and it is then the NFC driver responsibility to know what it's doing. Signed-off-by: Eric Lapuyade <eric.lapuyade@intel.com> Signed-off-by: Samuel Ortiz <sameo@linux.intel.com>
* NFC: NCI: nci_spi_recv_frame() now returns (not forward) the read frameEric Lapuyade2013-09-251-16/+10Star
| | | | | | | | | | | | | | | | | | | | Previously, nci_spi_recv_frame() would directly transmit incoming frames to the NCI Core. However, it turns out that some NFC NCI Chips will add additional proprietary headers that must be handled/removed before NCI Core gets a chance to handle the frame. With this modification, the chip phy or driver are now responsible to transmit incoming frames to NCI Core after proper treatment, and NCI SPI becomes a driver helper instead of sitting between the NFC driver and NCI Core. As a general rule in NFC, *_recv_frame() APIs are used to deliver an incoming frame to an upper layer. To better suit the actual purpose of nci_spi_recv_frame(), and go along with its nci_spi_send() counterpart, the function is renamed to nci_spi_read() The skb is returned as the function result Signed-off-by: Eric Lapuyade <eric.lapuyade@intel.com> Signed-off-by: Samuel Ortiz <sameo@linux.intel.com>
* NFC: NCI: zero struct spi_transfer variables before usageEric Lapuyade2013-09-251-0/+9
| | | | | | | | | | Using ARM compiler, and without zero-ing spi_transfer, spi-s3c64xx driver would issue abnormal errors due to bpw field value being set to unexpected value. This structure MUST be set to all zeros except for those field specifically used. Signed-off-by: Eric Lapuyade <eric.lapuyade@intel.com> Signed-off-by: Samuel Ortiz <sameo@linux.intel.com>
* NFC: NCI: Store the spi device pointer from the spi instanceEric Lapuyade2013-09-251-0/+1
| | | | | | | | | Storing the spi device was forgotten in the original implementation, which would pretty obviously cause some kind of serious crash when actually trying to send something through that device. Signed-off-by: Eric Lapuyade <eric.lapuyade@intel.com> Signed-off-by: Samuel Ortiz <sameo@linux.intel.com>
* NFC: NCI: Simplify NCI SPI to become a simple framing/checking layerEric Lapuyade2013-09-251-125/+55Star
| | | | | | | | | | | | | | | | NCI SPI layer should not manage the nci dev, this is the job of the nci chipset driver. This layer should be limited to frame/deframe nci packets, and optionnaly check integrity (crc) and manage the ack/nak protocol. The NCI SPI must not be mixed up with an NCI dev. spi_[dev|device] are therefore renamed to a simple spi for more clarity. The header and crc sizes are moved to nci.h so that drivers can use them to reserve space in outgoing skbs. nci_spi_send() is exported to be accessible by drivers. Signed-off-by: Eric Lapuyade <eric.lapuyade@intel.com> Signed-off-by: Samuel Ortiz <sameo@linux.intel.com>
* NFC: NCI: Rename spi ndev -> nsdev and nci_dev -> ndev for consistencyEric Lapuyade2013-09-251-64/+64
| | | | | | | | | An hci dev is an hdev. An nci dev is an ndev. Calling an nci spi dev an ndev is misleading since it's not the same thing. The nci dev contained in the nci spi dev is also named inconsistently. Signed-off-by: Eric Lapuyade <eric.lapuyade@intel.com> Signed-off-by: Samuel Ortiz <sameo@linux.intel.com>
* NFC: NCI: Fix wrong allocation size in nci_spi_allocate_device()Eric Lapuyade2013-09-251-1/+1
| | | | | Signed-off-by: Eric Lapuyade <eric.lapuyade@intel.com> Signed-off-by: Samuel Ortiz <sameo@linux.intel.com>
* NFC: Remove the static supported_se fieldSamuel Ortiz2013-06-141-2/+1Star
| | | | | | | | | | | | Supported secure elements are typically found during a discovery process initiated when the NFC controller is up and running. For a given NFC chipset there can be many configurations (embedded SE or not, with or without a SIM card wired to the NFC controller SWP interface, etc...) and thus driver code will never know before hand which SEs are available. So we remove this field, it will be replaced by a real SE discovery mechanism. Signed-off-by: Samuel Ortiz <sameo@linux.intel.com>
* NFC: Add NCI over SPI receiveFrederic Danis2013-06-141-0/+174
| | | | | | | | | | | | | | | | | | | | | | | | | Before any operation, driver interruption is de-asserted to prevent race condition between TX and RX. Transaction starts by emitting "Direct read" and acknowledged mode bytes. Then packet length is read allowing to allocate correct NCI socket buffer. After that payload is retrieved. A delay after the transaction can be added. This delay is determined by the driver during nci_spi_allocate_device() call and can be 0. If acknowledged mode is set: - CRC of header and payload is checked - if frame reception fails (CRC error): NACK is sent - if received frame has ACK or NACK flag: unblock nci_spi_send() Payload is passed to NCI module. At the end, driver interruption is re asserted. Signed-off-by: Frederic Danis <frederic.danis@linux.intel.com> Signed-off-by: Samuel Ortiz <sameo@linux.intel.com>
* NFC: Add NCI over SPI sendFrederic Danis2013-06-141-1/+70
| | | | | | | | | | | | | | | | | | | | | Before any operation, driver interruption is de-asserted to prevent race condition between TX and RX. The NCI over SPI header is added in front of NCI packet. If acknowledged mode is set, CRC-16-CCITT is added to the packet. Then the packet is forwarded to SPI module to be sent. A delay after the transaction is added. This delay is determined by the driver during nci_spi_allocate_device() call and can be 0. After data has been sent, driver interruption is re-asserted. If acknowledged mode is set, nci_spi_send will block until acknowledgment is received. Signed-off-by: Frederic Danis <frederic.danis@linux.intel.com> Signed-off-by: Samuel Ortiz <sameo@linux.intel.com>
* NFC: Add basic NCI over SPIFrederic Danis2013-06-141-0/+136
The NFC Forum defines a transport interface based on Serial Peripheral Interface (SPI) for the NFC Controller Interface (NCI). This module implements the SPI transport of NCI, calling SPI module directly to read/write data to NFC controller (NFCC). NFCC driver should provide functions performing device open and close. It should also provide functions asserting/de-asserting interruption to prevent TX/RX race conditions. NFCC driver can also fix a delay between transactions if needed by the hardware. Signed-off-by: Frederic Danis <frederic.danis@linux.intel.com> Signed-off-by: Samuel Ortiz <sameo@linux.intel.com>