From 0c2c885200057c44ac5660d123e199192689ca5d Mon Sep 17 00:00:00 2001 From: Stanislaw Gruszka Date: Tue, 15 Nov 2011 12:30:17 +0100 Subject: iwlegacy: s/index/idx/ Signed-off-by: Stanislaw Gruszka --- drivers/net/wireless/iwlegacy/iwl-4965-hw.h | 36 ++++++++++++++--------------- 1 file changed, 18 insertions(+), 18 deletions(-) (limited to 'drivers/net/wireless/iwlegacy/iwl-4965-hw.h') diff --git a/drivers/net/wireless/iwlegacy/iwl-4965-hw.h b/drivers/net/wireless/iwlegacy/iwl-4965-hw.h index 2c1b000e2369..5c8b8baa3b15 100644 --- a/drivers/net/wireless/iwlegacy/iwl-4965-hw.h +++ b/drivers/net/wireless/iwlegacy/iwl-4965-hw.h @@ -203,7 +203,7 @@ static inline int il4965_hw_valid_rtc_data_addr(u32 addr) * 1) Compare desired txpower vs. (EEPROM) regulatory limit for this channel. * Do not exceed regulatory limit; reduce target txpower if necessary. * - * If setting up txpowers for MIMO rates (rate indexes 8-15, 24-31), + * If setting up txpowers for MIMO rates (rate idxes 8-15, 24-31), * 2 transmitters will be used simultaneously; driver must reduce the * regulatory limit by 3 dB (half-power) for each transmitter, so the * combined total output of the 2 transmitters is within regulatory limits. @@ -269,7 +269,7 @@ static inline int il4965_hw_valid_rtc_data_addr(u32 addr) * be used (although only one at a time) even for non-MIMO transmissions. * * Driver should interpolate factory values for temperature, gain table - * index, and actual power. The power amplifier detector values are + * idx, and actual power. The power amplifier detector values are * not used by the driver. * * Sanity check: If the target channel happens to be one of the sample @@ -278,13 +278,13 @@ static inline int il4965_hw_valid_rtc_data_addr(u32 addr) * * * 5) Find difference between desired txpower and (interpolated) - * factory-measured txpower. Using (interpolated) factory gain table index - * (shown elsewhere) as a starting point, adjust this index lower to + * factory-measured txpower. Using (interpolated) factory gain table idx + * (shown elsewhere) as a starting point, adjust this idx lower to * increase txpower, or higher to decrease txpower, until the target * txpower is reached. Each step in the gain table is 1/2 dB. * * For example, if factory measured txpower is 16 dBm, and target txpower - * is 13 dBm, add 6 steps to the factory gain index to reduce txpower + * is 13 dBm, add 6 steps to the factory gain idx to reduce txpower * by 3 dB. * * @@ -294,7 +294,7 @@ static inline int il4965_hw_valid_rtc_data_addr(u32 addr) * "4965 temperature calculation". * * If current temperature is higher than factory temperature, driver must - * increase gain (lower gain table index), and vice verse. + * increase gain (lower gain table idx), and vice verse. * * Temperature affects gain differently for different channels: * @@ -313,16 +313,16 @@ static inline int il4965_hw_valid_rtc_data_addr(u32 addr) * indicator (EEPROM). * * If the current voltage is higher (indicator is lower) than factory - * voltage, gain should be reduced (gain table index increased) by: + * voltage, gain should be reduced (gain table idx increased) by: * * (eeprom - current) / 7 * * If the current voltage is lower (indicator is higher) than factory - * voltage, gain should be increased (gain table index decreased) by: + * voltage, gain should be increased (gain table idx decreased) by: * * 2 * (current - eeprom) / 7 * - * If number of index steps in either direction turns out to be > 2, + * If number of idx steps in either direction turns out to be > 2, * something is wrong ... just use 0. * * NOTE: Voltage compensation is independent of band/channel. @@ -333,7 +333,7 @@ static inline int il4965_hw_valid_rtc_data_addr(u32 addr) * may be calculated once and used until the next uCode bootload. * * - * 8) If setting up txpowers for MIMO rates (rate indexes 8-15, 24-31), + * 8) If setting up txpowers for MIMO rates (rate idxes 8-15, 24-31), * adjust txpower for each transmitter chain, so txpower is balanced * between the two chains. There are 5 pairs of tx_atten[group][chain] * values in "initialize alive", one pair for each of 5 channel ranges: @@ -344,7 +344,7 @@ static inline int il4965_hw_valid_rtc_data_addr(u32 addr) * Group 3: 5 GHz channel 125-200 * Group 4: 2.4 GHz all channels * - * Add the tx_atten[group][chain] value to the index for the target chain. + * Add the tx_atten[group][chain] value to the idx for the target chain. * The values are signed, but are in pairs of 0 and a non-negative number, * so as to reduce gain (if necessary) of the "hotter" channel. This * avoids any need to double-check for regulatory compliance after @@ -352,7 +352,7 @@ static inline int il4965_hw_valid_rtc_data_addr(u32 addr) * * * 9) If setting up for a CCK rate, lower the gain by adding a CCK compensation - * value to the index: + * value to the idx: * * Hardware rev B: 9 steps (4.5 dB) * Hardware rev C: 5 steps (2.5 dB) @@ -366,7 +366,7 @@ static inline int il4965_hw_valid_rtc_data_addr(u32 addr) * * 10) Select the gain table, based on band (2.4 vs 5 GHz). * - * Limit the adjusted index to stay within the table! + * Limit the adjusted idx to stay within the table! * * * 11) Read gain table entries for DSP and radio gain, place into appropriate @@ -389,7 +389,7 @@ static inline int il4965_hw_valid_rtc_data_addr(u32 addr) * * When calculating txpowers for CCK, after making sure that the target power * is within regulatory and saturation limits, driver must additionally - * back off gain by adding these values to the gain table index. + * back off gain by adding these values to the gain table idx. * * Hardware rev for 4965 can be determined by reading CSR_HW_REV_WA_REG, * bits [3:2], 1 = B, 2 = C. @@ -428,9 +428,9 @@ static inline int il4965_hw_valid_rtc_data_addr(u32 addr) * driver work with the same table). * * There are separate tables for 2.4 GHz and 5 GHz bands. The 5 GHz table - * has an extension (into negative indexes), in case the driver needs to + * has an extension (into negative idxes), in case the driver needs to * boost power setting for high device temperatures (higher than would be - * present during factory calibration). A 5 Ghz EEPROM index of "40" + * present during factory calibration). A 5 Ghz EEPROM idx of "40" * corresponds to the 49th entry in the table used by the driver. */ #define MIN_TX_GAIN_IDX (0) /* highest gain, lowest idx, 2.4 */ @@ -778,8 +778,8 @@ enum { * * When driver sets up a new TFD, it must also enter the total byte count * of the frame to be transmitted into the corresponding entry in the byte - * count table for the chosen Tx queue. If the TFD index is 0-63, the driver - * must duplicate the byte count entry in corresponding index 256-319. + * count table for the chosen Tx queue. If the TFD idx is 0-63, the driver + * must duplicate the byte count entry in corresponding idx 256-319. * * padding puts each byte count table on a 1024-byte boundary; * 4965 assumes tables are separated by 1024 bytes. -- cgit v1.2.3-55-g7522