/* * Routines to indentify caches on Intel CPU. * * Changes: * Venkatesh Pallipadi : Adding cache identification through cpuid(4) * Ashok Raj : Work with CPU hotplug infrastructure. * Andi Kleen / Andreas Herrmann : CPUID4 emulation on AMD. */ #include #include #include #include #include #include #include #include #define LVL_1_INST 1 #define LVL_1_DATA 2 #define LVL_2 3 #define LVL_3 4 #define LVL_TRACE 5 struct _cache_table { unsigned char descriptor; char cache_type; short size; }; /* all the cache descriptor types we care about (no TLB or trace cache entries) */ static struct _cache_table cache_table[] __cpuinitdata = { { 0x06, LVL_1_INST, 8 }, /* 4-way set assoc, 32 byte line size */ { 0x08, LVL_1_INST, 16 }, /* 4-way set assoc, 32 byte line size */ { 0x0a, LVL_1_DATA, 8 }, /* 2 way set assoc, 32 byte line size */ { 0x0c, LVL_1_DATA, 16 }, /* 4-way set assoc, 32 byte line size */ { 0x22, LVL_3, 512 }, /* 4-way set assoc, sectored cache, 64 byte line size */ { 0x23, LVL_3, 1024 }, /* 8-way set assoc, sectored cache, 64 byte line size */ { 0x25, LVL_3, 2048 }, /* 8-way set assoc, sectored cache, 64 byte line size */ { 0x29, LVL_3, 4096 }, /* 8-way set assoc, sectored cache, 64 byte line size */ { 0x2c, LVL_1_DATA, 32 }, /* 8-way set assoc, 64 byte line size */ { 0x30, LVL_1_INST, 32 }, /* 8-way set assoc, 64 byte line size */ { 0x39, LVL_2, 128 }, /* 4-way set assoc, sectored cache, 64 byte line size */ { 0x3a, LVL_2, 192 }, /* 6-way set assoc, sectored cache, 64 byte line size */ { 0x3b, LVL_2, 128 }, /* 2-way set assoc, sectored cache, 64 byte line size */ { 0x3c, LVL_2, 256 }, /* 4-way set assoc, sectored cache, 64 byte line size */ { 0x3d, LVL_2, 384 }, /* 6-way set assoc, sectored cache, 64 byte line size */ { 0x3e, LVL_2, 512 }, /* 4-way set assoc, sectored cache, 64 byte line size */ { 0x3f, LVL_2, 256 }, /* 2-way set assoc, 64 byte line size */ { 0x41, LVL_2, 128 }, /* 4-way set assoc, 32 byte line size */ { 0x42, LVL_2, 256 }, /* 4-way set assoc, 32 byte line size */ { 0x43, LVL_2, 512 }, /* 4-way set assoc, 32 byte line size */ { 0x44, LVL_2, 1024 }, /* 4-way set assoc, 32 byte line size */ { 0x45, LVL_2, 2048 }, /* 4-way set assoc, 32 byte line size */ { 0x46, LVL_3, 4096 }, /* 4-way set assoc, 64 byte line size */ { 0x47, LVL_3, 8192 }, /* 8-way set assoc, 64 byte line size */ { 0x49, LVL_3, 4096 }, /* 16-way set assoc, 64 byte line size */ { 0x4a, LVL_3, 6144 }, /* 12-way set assoc, 64 byte line size */ { 0x4b, LVL_3, 8192 }, /* 16-way set assoc, 64 byte line size */ { 0x4c, LVL_3, 12288 }, /* 12-way set assoc, 64 byte line size */ { 0x4d, LVL_3, 16384 }, /* 16-way set assoc, 64 byte line size */ { 0x60, LVL_1_DATA, 16 }, /* 8-way set assoc, sectored cache, 64 byte line size */ { 0x66, LVL_1_DATA, 8 }, /* 4-way set assoc, sectored cache, 64 byte line size */ { 0x67, LVL_1_DATA, 16 }, /* 4-way set assoc, sectored cache, 64 byte line size */ { 0x68, LVL_1_DATA, 32 }, /* 4-way set assoc, sectored cache, 64 byte line size */ { 0x70, LVL_TRACE, 12 }, /* 8-way set assoc */ { 0x71, LVL_TRACE, 16 }, /* 8-way set assoc */ { 0x72, LVL_TRACE, 32 }, /* 8-way set assoc */ { 0x73, LVL_TRACE, 64 }, /* 8-way set assoc */ { 0x78, LVL_2, 1024 }, /* 4-way set assoc, 64 byte line size */ { 0x79, LVL_2, 128 }, /* 8-way set assoc, sectored cache, 64 byte line size */ { 0x7a, LVL_2, 256 }, /* 8-way set assoc, sectored cache, 64 byte line size */ { 0x7b, LVL_2, 512 }, /* 8-way set assoc, sectored cache, 64 byte line size */ { 0x7c, LVL_2, 1024 }, /* 8-way set assoc, sectored cache, 64 byte line size */ { 0x7d, LVL_2, 2048 }, /* 8-way set assoc, 64 byte line size */ { 0x7f, LVL_2, 512 }, /* 2-way set assoc, 64 byte line size */ { 0x82, LVL_2, 256 }, /* 8-way set assoc, 32 byte line size */ { 0x83, LVL_2, 512 }, /* 8-way set assoc, 32 byte line size */ { 0x84, LVL_2, 1024 }, /* 8-way set assoc, 32 byte line size */ { 0x85, LVL_2, 2048 }, /* 8-way set assoc, 32 byte line size */ { 0x86, LVL_2, 512 }, /* 4-way set assoc, 64 byte line size */ { 0x87, LVL_2, 1024 }, /* 8-way set assoc, 64 byte line size */ { 0x00, 0, 0} }; enum _cache_type { CACHE_TYPE_NULL = 0, CACHE_TYPE_DATA = 1, CACHE_TYPE_INST = 2, CACHE_TYPE_UNIFIED = 3 }; union _cpuid4_leaf_eax { struct { enum _cache_type type:5; unsigned int level:3; unsigned int is_self_initializing:1; unsigned int is_fully_associative:1; unsigned int reserved:4; unsigned int num_threads_sharing:12; unsigned int num_cores_on_die:6; } split; u32 full; }; union _cpuid4_leaf_ebx { struct { unsigned int coherency_line_size:12; unsigned int physical_line_partition:10; unsigned int ways_of_associativity:10; } split; u32 full; }; union _cpuid4_leaf_ecx { struct { unsigned int number_of_sets:32; } split; u32 full; }; struct _cpuid4_info { union _cpuid4_leaf_eax eax; union _cpuid4_leaf_ebx ebx; union _cpuid4_leaf_ecx ecx; unsigned long size; cpumask_t shared_cpu_map; /* future?: only cpus/node is needed */ }; unsigned short num_cache_leaves; /* AMD doesn't have CPUID4. Emulate it here to report the same information to the user. This makes some assumptions about the machine: L2 not shared, no SMT etc. that is currently true on AMD CPUs. In theory the TLBs could be reported as fake type (they are in "dummy"). Maybe later */ union l1_cache { struct { unsigned line_size : 8; unsigned lines_per_tag : 8; unsigned assoc : 8; unsigned size_in_kb : 8; }; unsigned val; }; union l2_cache { struct { unsigned line_size : 8; unsigned lines_per_tag : 4; unsigned assoc : 4; unsigned size_in_kb : 16; }; unsigned val; }; union l3_cache { struct { unsigned line_size : 8; unsigned lines_per_tag : 4; unsigned assoc : 4; unsigned res : 2; unsigned size_encoded : 14; }; unsigned val; }; static unsigned short assocs[] __cpuinitdata = { [1] = 1, [2] = 2, [4] = 4, [6] = 8, [8] = 16, [0xa] = 32, [0xb] = 48, [0xc] = 64, [0xf] = 0xffff // ?? }; static unsigned char levels[] __cpuinitdata = { 1, 1, 2, 3 }; static unsigned char types[] __cpuinitdata = { 1, 2, 3, 3 }; static void __cpuinit amd_cpuid4(int leaf, union _cpuid4_leaf_eax *eax, union _cpuid4_leaf_ebx *ebx, union _cpuid4_leaf_ecx *ecx) { unsigned dummy; unsigned line_size, lines_per_tag, assoc, size_in_kb; union l1_cache l1i, l1d; union l2_cache l2; union l3_cache l3; union l1_cache *l1 = &l1d; eax->full = 0; ebx->full = 0; ecx->full = 0; cpuid(0x80000005, &dummy, &dummy, &l1d.val, &l1i.val); cpuid(0x80000006, &dummy, &dummy, &l2.val, &l3.val); switch (leaf) { case 1: l1 = &l1i; case 0: if (!l1->val) return; assoc = l1->assoc; line_size = l1->line_size; lines_per_tag = l1->lines_per_tag; size_in_kb = l1->size_in_kb; break; case 2: if (!l2.val) return; assoc = l2.assoc; line_size = l2.line_size; lines_per_tag = l2.lines_per_tag; /* cpu_data has errata corrections for K7 applied */ size_in_kb = current_cpu_data.x86_cache_size; break; case 3: if (!l3.val) return; assoc = l3.assoc; line_size = l3.line_size; lines_per_tag = l3.lines_per_tag; size_in_kb = l3.size_encoded * 512; break; default: return; } eax->split.is_self_initializing = 1; eax->split.type = types[leaf]; eax->split.level = levels[leaf]; if (leaf == 3) eax->split.num_threads_sharing = current_cpu_data.x86_max_cores - 1; else eax->split.num_threads_sharing = 0; eax->split.num_cores_on_die = current_cpu_data.x86_max_cores - 1; if (assoc == 0xf) eax->split.is_fully_associative = 1; ebx->split.coherency_line_size = line_size - 1; ebx->split.ways_of_associativity = assocs[assoc] - 1; ebx->split.physical_line_partition = lines_per_tag - 1; ecx->split.number_of_sets = (size_in_kb * 1024) / line_size / (ebx->split.ways_of_associativity + 1) - 1; } static int __cpuinit cpuid4_cache_lookup(int index, struct _cpuid4_info *this_leaf) { union _cpuid4_leaf_eax eax; union _cpuid4_leaf_ebx ebx; union _cpuid4_leaf_ecx ecx; unsigned edx; if (boot_cpu_data.x86_vendor == X86_VENDOR_AMD) amd_cpuid4(index, &eax, &ebx, &ecx); else cpuid_count(4, index, &eax.full, &ebx.full, &ecx.full, &edx); if (eax.split.type == CACHE_TYPE_NULL) return -EIO; /* better error ? */ this_leaf->eax = eax; this_leaf->ebx = ebx; this_leaf->ecx = ecx; this_leaf->size = (ecx.split.number_of_sets + 1) * (ebx.split.coherency_line_size + 1) * (ebx.split.physical_line_partition + 1) * (ebx.split.ways_of_associativity + 1); return 0; } static int __cpuinit find_num_cache_leaves(void) { unsigned int eax, ebx, ecx, edx; union _cpuid4_leaf_eax cache_eax; int i = -1; do { ++i; /* Do cpuid(4) loop to find out num_cache_leaves */ cpuid_count(4, i, &eax, &ebx, &ecx, &edx); cache_eax.full = eax; } while (cache_eax.split.type != CACHE_TYPE_NULL); return i; } unsigned int __cpuinit init_intel_cacheinfo(struct cpuinfo_x86 *c) { unsigned int trace = 0, l1i = 0, l1d = 0, l2 = 0, l3 = 0; /* Cache sizes */ unsigned int new_l1d = 0, new_l1i = 0; /* Cache sizes from cpuid(4) */ unsigned int new_l2 = 0, new_l3 = 0, i; /* Cache sizes from cpuid(4) */ unsigned int l2_id = 0, l3_id = 0, num_threads_sharing, index_msb; #ifdef CONFIG_X86_HT unsigned int cpu = c->cpu_index; #endif if (c->cpuid_level > 3) { static int is_initialized; if (is_initialized == 0) { /* Init num_cache_leaves from boot CPU */ num_cache_leaves = find_num_cache_leaves(); is_initialized++; } /* * Whenever possible use cpuid(4), deterministic cache * parameters cpuid leaf to find the cache details */ for (i = 0; i < num_cache_leaves; i++) { struct _cpuid4_info this_leaf; int retval; retval = cpuid4_cache_lookup(i, &this_leaf); if (retval >= 0) { switch(this_leaf.eax.split.level) { case 1: if (this_leaf.eax.split.type == CACHE_TYPE_DATA) new_l1d = this_leaf.size/1024; else if (this_leaf.eax.split.type == CACHE_TYPE_INST) new_l1i = this_leaf.size/1024; break; case 2: new_l2 = this_leaf.size/1024; num_threads_sharing = 1 + this_leaf.eax.split.num_threads_sharing; index_msb = get_count_order(num_threads_sharing); l2_id = c->apicid >> index_msb; break; case 3: new_l3 = this_leaf.size/1024; num_threads_sharing = 1 + this_leaf.eax.split.num_threads_sharing; index_msb = get_count_order(num_threads_sharing); l3_id = c->apicid >> index_msb; break; default: break; } } } } /* * Don't use cpuid2 if cpuid4 is supported. For P4, we use cpuid2 for * trace cache */ if ((num_cache_leaves == 0 || c->x86 == 15) && c->cpuid_level > 1) { /* supports eax=2 call */ int j, n; unsigned int regs[4]; unsigned char *dp = (unsigned char *)regs; int only_trace = 0; if (num_cache_leaves != 0 && c->x86 == 15) only_trace = 1; /* Number of times to iterate */ n = cpuid_eax(2) & 0xFF; for ( i = 0 ; i < n ; i++ ) { cpuid(2, ®s[0], ®s[1], ®s[2], ®s[3]); /* If bit 31 is set, this is an unknown format */ for ( j = 0 ; j < 3 ; j++ ) { if (regs[j] & (1 << 31)) regs[j] = 0; } /* Byte 0 is level count, not a descriptor */ for ( j = 1 ; j < 16 ; j++ ) { unsigned char des = dp[j]; unsigned char k = 0; /* look up this descriptor in the table */ while (cache_table[k].descriptor != 0) { if (cache_table[k].descriptor == des) { if (only_trace && cache_table[k].cache_type != LVL_TRACE) break; switch (cache_table[k].cache_type) { case LVL_1_INST: l1i += cache_table[k].size; break; case LVL_1_DATA: l1d += cache_table[k].size; break; case LVL_2: l2 += cache_table[k].size; break; case LVL_3: l3 += cache_table[k].size; break; case LVL_TRACE: trace += cache_table[k].size; break; } break; } k++; } } } } if (new_l1d) l1d = new_l1d; if (new_l1i) l1i = new_l1i; if (new_l2) { l2 = new_l2; #ifdef CONFIG_X86_HT per_cpu(cpu_llc_id, cpu) = l2_id; #endif } if (new_l3) { l3 = new_l3; #ifdef CONFIG_X86_HT per_cpu(cpu_llc_id, cpu) = l3_id; #endif } if (trace) printk (KERN_INFO "CPU: Trace cache: %dK uops", trace); else if ( l1i ) printk (KERN_INFO "CPU: L1 I cache: %dK", l1i); if (l1d) printk(", L1 D cache: %dK\n", l1d); else printk("\n"); if (l2) printk(KERN_INFO "CPU: L2 cache: %dK\n", l2); if (l3) printk(KERN_INFO "CPU: L3 cache: %dK\n", l3); c->x86_cache_size = l3 ? l3 : (l2 ? l2 : (l1i+l1d)); return l2; } /* pointer to _cpuid4_info array (for each cache leaf) */ static DEFINE_PER_CPU(struct _cpuid4_info *, cpuid4_info); #define CPUID4_INFO_IDX(x, y) (&((per_cpu(cpuid4_info, x))[y])) #ifdef CONFIG_SMP static void __cpuinit cache_shared_cpu_map_setup(unsigned int cpu, int index) { struct _cpuid4_info *this_leaf, *sibling_leaf; unsigned long num_threads_sharing; int index_msb, i; struct cpuinfo_x86 *c = &cpu_data(cpu); this_leaf = CPUID4_INFO_IDX(cpu, index); num_threads_sharing = 1 + this_leaf->eax.split.num_threads_sharing; if (num_threads_sharing == 1) cpu_set(cpu, this_leaf->shared_cpu_map); else { index_msb = get_count_order(num_threads_sharing); for_each_online_cpu(i) { if (cpu_data(i).apicid >> index_msb == c->apicid >> index_msb) { cpu_set(i, this_leaf->shared_cpu_map); if (i != cpu && per_cpu(cpuid4_info, i)) { sibling_leaf = CPUID4_INFO_IDX(i, index); cpu_set(cpu, sibling_leaf->shared_cpu_map); } } } } } static void __cpuinit cache_remove_shared_cpu_map(unsigned int cpu, int index) { struct _cpuid4_info *this_leaf, *sibling_leaf; int sibling; this_leaf = CPUID4_INFO_IDX(cpu, index); for_each_cpu_mask(sibling, this_leaf->shared_cpu_map) { sibling_leaf = CPUID4_INFO_IDX(sibling, index); cpu_clear(cpu, sibling_leaf->shared_cpu_map); } } #else static void __cpuinit cache_shared_cpu_map_setup(unsigned int cpu, int index) {} static void __cpuinit cache_remove_shared_cpu_map(unsigned int cpu, int index) {} #endif static void __cpuinit free_cache_attributes(unsigned int cpu) { int i; for (i = 0; i < num_cache_leaves; i++) cache_remove_shared_cpu_map(cpu, i); kfree(per_cpu(cpuid4_info, cpu)); per_cpu(cpuid4_info, cpu) = NULL; } static int __cpuinit detect_cache_attributes(unsigned int cpu) { struct _cpuid4_info *this_leaf; unsigned long j; int retval; cpumask_t oldmask; if (num_cache_leaves == 0) return -ENOENT; per_cpu(cpuid4_info, cpu) = kzalloc( sizeof(struct _cpuid4_info) * num_cache_leaves, GFP_KERNEL); if (per_cpu(cpuid4_info, cpu) == NULL) return -ENOMEM; oldmask = current->cpus_allowed; retval = set_cpus_allowed_ptr(current, &cpumask_of_cpu(cpu)); if (retval) goto out; /* Do cpuid and store the results */ for (j = 0; j < num_cache_leaves; j++) { this_leaf = CPUID4_INFO_IDX(cpu, j); retval = cpuid4_cache_lookup(j, this_leaf); if (unlikely(retval < 0)) { int i; for (i = 0; i < j; i++) cache_remove_shared_cpu_map(cpu, i); break; } cache_shared_cpu_map_setup(cpu, j); } set_cpus_allowed_ptr(current, &oldmask); out: if (retval) { kfree(per_cpu(cpuid4_info, cpu)); per_cpu(cpuid4_info, cpu) = NULL; } return retval; } #ifdef CONFIG_SYSFS #include #include extern struct sysdev_class cpu_sysdev_class; /* from drivers/base/cpu.c */ /* pointer to kobject for cpuX/cache */ static DEFINE_PER_CPU(struct kobject *, cache_kobject); struct _index_kobject { struct kobject kobj; unsigned int cpu; unsigned short index; }; /* pointer to array of kobjects for cpuX/cache/indexY */ static DEFINE_PER_CPU(struct _index_kobject *, index_kobject); #define INDEX_KOBJECT_PTR(x, y) (&((per_cpu(index_kobject, x))[y])) #define show_one_plus(file_name, object, val) \ static ssize_t show_##file_name \ (struct _cpuid4_info *this_leaf, char *buf) \ { \ return sprintf (buf, "%lu\n", (unsigned long)this_leaf->object + val); \ } show_one_plus(level, eax.split.level, 0); show_one_plus(coherency_line_size, ebx.split.coherency_line_size, 1); show_one_plus(physical_line_partition, ebx.split.physical_line_partition, 1); show_one_plus(ways_of_associativity, ebx.split.ways_of_associativity, 1); show_one_plus(number_of_sets, ecx.split.number_of_sets, 1); static ssize_t show_size(struct _cpuid4_info *this_leaf, char *buf) { return sprintf (buf, "%luK\n", this_leaf->size / 1024); } static ssize_t show_shared_cpu_map(struct _cpuid4_info *this_leaf, char *buf) { int n = 0; int len = cpumask_scnprintf_len(nr_cpu_ids); char *mask_str = kmalloc(len, GFP_KERNEL); if (mask_str) { cpumask_scnprintf(mask_str, len, this_leaf->shared_cpu_map); n = sprintf(buf, "%s\n", mask_str); kfree(mask_str); } return n; } static ssize_t show_type(struct _cpuid4_info *this_leaf, char *buf) { switch(this_leaf->eax.split.type) { case CACHE_TYPE_DATA: return sprintf(buf, "Data\n"); break; case CACHE_TYPE_INST: return sprintf(buf, "Instruction\n"); break; case CACHE_TYPE_UNIFIED: return sprintf(buf, "Unified\n"); break; default: return sprintf(buf, "Unknown\n"); break; } } struct _cache_attr { struct attribute attr; ssize_t (*show)(struct _cpuid4_info *, char *); ssize_t (*store)(struct _cpuid4_info *, const char *, size_t count); }; #define define_one_ro(_name) \ static struct _cache_attr _name = \ __ATTR(_name, 0444, show_##_name, NULL) define_one_ro(level); define_one_ro(type); define_one_ro(coherency_line_size); define_one_ro(physical_line_partition); define_one_ro(ways_of_associativity); define_one_ro(number_of_sets); define_one_ro(size); define_one_ro(shared_cpu_map); static struct attribute * default_attrs[] = { &type.attr, &level.attr, &coherency_line_size.attr, &physical_line_partition.attr, &ways_of_associativity.attr, &number_of_sets.attr, &size.attr, &shared_cpu_map.attr, NULL }; #define to_object(k) container_of(k, struct _index_kobject, kobj) #define to_attr(a) container_of(a, struct _cache_attr, attr) static ssize_t show(struct kobject * kobj, struct attribute * attr, char * buf) { struct _cache_attr *fattr = to_attr(attr); struct _index_kobject *this_leaf = to_object(kobj); ssize_t ret; ret = fattr->show ? fattr->show(CPUID4_INFO_IDX(this_leaf->cpu, this_leaf->index), buf) : 0; return ret; } static ssize_t store(struct kobject * kobj, struct attribute * attr, const char * buf, size_t count) { return 0; } static struct sysfs_ops sysfs_ops = { .show = show, .store = store, }; static struct kobj_type ktype_cache = { .sysfs_ops = &sysfs_ops, .default_attrs = default_attrs, }; static struct kobj_type ktype_percpu_entry = { .sysfs_ops = &sysfs_ops, }; static void __cpuinit cpuid4_cache_sysfs_exit(unsigned int cpu) { kfree(per_cpu(cache_kobject, cpu)); kfree(per_cpu(index_kobject, cpu)); per_cpu(cache_kobject, cpu) = NULL; per_cpu(index_kobject, cpu) = NULL; free_cache_attributes(cpu); } static int __cpuinit cpuid4_cache_sysfs_init(unsigned int cpu) { int err; if (num_cache_leaves == 0) return -ENOENT; err = detect_cache_attributes(cpu); if (err) return err; /* Allocate all required memory */ per_cpu(cache_kobject, cpu) = kzalloc(sizeof(struct kobject), GFP_KERNEL); if (unlikely(per_cpu(cache_kobject, cpu) == NULL)) goto err_out; per_cpu(index_kobject, cpu) = kzalloc( sizeof(struct _index_kobject ) * num_cache_leaves, GFP_KERNEL); if (unlikely(per_cpu(index_kobject, cpu) == NULL)) goto err_out; return 0; err_out: cpuid4_cache_sysfs_exit(cpu); return -ENOMEM; } static cpumask_t cache_dev_map = CPU_MASK_NONE; /* Add/Remove cache interface for CPU device */ static int __cpuinit cache_add_dev(struct sys_device * sys_dev) { unsigned int cpu = sys_dev->id; unsigned long i, j; struct _index_kobject *this_object; int retval; retval = cpuid4_cache_sysfs_init(cpu); if (unlikely(retval < 0)) return retval; retval = kobject_init_and_add(per_cpu(cache_kobject, cpu), &ktype_percpu_entry, &sys_dev->kobj, "%s", "cache"); if (retval < 0) { cpuid4_cache_sysfs_exit(cpu); return retval; } for (i = 0; i < num_cache_leaves; i++) { this_object = INDEX_KOBJECT_PTR(cpu,i); this_object->cpu = cpu; this_object->index = i; retval = kobject_init_and_add(&(this_object->kobj), &ktype_cache, per_cpu(cache_kobject, cpu), "index%1lu", i); if (unlikely(retval)) { for (j = 0; j < i; j++) { kobject_put(&(INDEX_KOBJECT_PTR(cpu,j)->kobj)); } kobject_put(per_cpu(cache_kobject, cpu)); cpuid4_cache_sysfs_exit(cpu); break; } kobject_uevent(&(this_object->kobj), KOBJ_ADD); } if (!retval) cpu_set(cpu, cache_dev_map); kobject_uevent(per_cpu(cache_kobject, cpu), KOBJ_ADD); return retval; } static void __cpuinit cache_remove_dev(struct sys_device * sys_dev) { unsigned int cpu = sys_dev->id; unsigned long i; if (per_cpu(cpuid4_info, cpu) == NULL) return; if (!cpu_isset(cpu, cache_dev_map)) return; cpu_clear(cpu, cache_dev_map); for (i = 0; i < num_cache_leaves; i++) kobject_put(&(INDEX_KOBJECT_PTR(cpu,i)->kobj)); kobject_put(per_cpu(cache_kobject, cpu)); cpuid4_cache_sysfs_exit(cpu); } static int __cpuinit cacheinfo_cpu_callback(struct notifier_block *nfb, unsigned long action, void *hcpu) { unsigned int cpu = (unsigned long)hcpu; struct sys_device *sys_dev; sys_dev = get_cpu_sysdev(cpu); switch (action) { case CPU_ONLINE: case CPU_ONLINE_FROZEN: cache_add_dev(sys_dev); break; case CPU_DEAD: case CPU_DEAD_FROZEN: cache_remove_dev(sys_dev); break; } return NOTIFY_OK; } static struct notifier_block __cpuinitdata cacheinfo_cpu_notifier = { .notifier_call = cacheinfo_cpu_callback, }; static int __cpuinit cache_sysfs_init(void) { int i; if (num_cache_leaves == 0) return 0; for_each_online_cpu(i) { int err; struct sys_device *sys_dev = get_cpu_sysdev(i); err = cache_add_dev(sys_dev); if (err) return err; } register_hotcpu_notifier(&cacheinfo_cpu_notifier); return 0; } device_initcall(cache_sysfs_init); #endif