/* * Copyright 2015 Advanced Micro Devices, Inc. * * Permission is hereby granted, free of charge, to any person obtaining a * copy of this software and associated documentation files (the "Software"), * to deal in the Software without restriction, including without limitation * the rights to use, copy, modify, merge, publish, distribute, sublicense, * and/or sell copies of the Software, and to permit persons to whom the * Software is furnished to do so, subject to the following conditions: * * The above copyright notice and this permission notice shall be included in * all copies or substantial portions of the Software. * * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY, * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL * THE COPYRIGHT HOLDER(S) OR AUTHOR(S) BE LIABLE FOR ANY CLAIM, DAMAGES OR * OTHER LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, * ARISING FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR * OTHER DEALINGS IN THE SOFTWARE. * * Authors: AMD * */ #include #include #include #include #include #include "dm_services.h" #include "amdgpu.h" #include "amdgpu_dm.h" #include "amdgpu_dm_irq.h" #include "amdgpu_dm_types.h" #include "amdgpu_pm.h" #define dm_alloc(size) kzalloc(size, GFP_KERNEL) #define dm_realloc(ptr, size) krealloc(ptr, size, GFP_KERNEL) #define dm_free(ptr) kfree(ptr) /****************************************************************************** * IRQ Interfaces. *****************************************************************************/ void dal_register_timer_interrupt( struct dc_context *ctx, struct dc_timer_interrupt_params *int_params, interrupt_handler ih, void *args) { struct amdgpu_device *adev = ctx->driver_context; if (!adev || !int_params) { DRM_ERROR("DM_IRQ: invalid input!\n"); return; } if (int_params->int_context != INTERRUPT_LOW_IRQ_CONTEXT) { /* only low irq ctx is supported. */ DRM_ERROR("DM_IRQ: invalid context: %d!\n", int_params->int_context); return; } amdgpu_dm_irq_register_timer(adev, int_params, ih, args); } void dal_isr_acquire_lock(struct dc_context *ctx) { /*TODO*/ } void dal_isr_release_lock(struct dc_context *ctx) { /*TODO*/ } /****************************************************************************** * End-of-IRQ Interfaces. *****************************************************************************/ bool dm_get_platform_info(struct dc_context *ctx, struct platform_info_params *params) { /*TODO*/ return false; } bool dm_write_persistent_data(struct dc_context *ctx, const struct dc_sink *sink, const char *module_name, const char *key_name, void *params, unsigned int size, struct persistent_data_flag *flag) { /*TODO implement*/ return false; } bool dm_read_persistent_data(struct dc_context *ctx, const struct dc_sink *sink, const char *module_name, const char *key_name, void *params, unsigned int size, struct persistent_data_flag *flag) { /*TODO implement*/ return false; } void dm_delay_in_microseconds(struct dc_context *ctx, unsigned int microSeconds) { /*TODO implement*/ return; } /**** power component interfaces ****/ bool dm_pp_pre_dce_clock_change( struct dc_context *ctx, struct dm_pp_gpu_clock_range *requested_state, struct dm_pp_gpu_clock_range *actual_state) { /*TODO*/ return false; } bool dm_pp_apply_safe_state( const struct dc_context *ctx) { struct amdgpu_device *adev = ctx->driver_context; if (adev->pm.dpm_enabled) { /* TODO: Does this require PreModeChange event to PPLIB? */ } return true; } bool dm_pp_apply_display_requirements( const struct dc_context *ctx, const struct dm_pp_display_configuration *pp_display_cfg) { struct amdgpu_device *adev = ctx->driver_context; if (adev->pm.dpm_enabled) { memset(&adev->pm.pm_display_cfg, 0, sizeof(adev->pm.pm_display_cfg)); adev->pm.pm_display_cfg.cpu_cc6_disable = pp_display_cfg->cpu_cc6_disable; adev->pm.pm_display_cfg.cpu_pstate_disable = pp_display_cfg->cpu_pstate_disable; adev->pm.pm_display_cfg.cpu_pstate_separation_time = pp_display_cfg->cpu_pstate_separation_time; adev->pm.pm_display_cfg.nb_pstate_switch_disable = pp_display_cfg->nb_pstate_switch_disable; adev->pm.pm_display_cfg.num_display = pp_display_cfg->display_count; adev->pm.pm_display_cfg.num_path_including_non_display = pp_display_cfg->display_count; adev->pm.pm_display_cfg.min_core_set_clock = pp_display_cfg->min_engine_clock_khz/10; adev->pm.pm_display_cfg.min_core_set_clock_in_sr = pp_display_cfg->min_engine_clock_deep_sleep_khz/10; adev->pm.pm_display_cfg.min_mem_set_clock = pp_display_cfg->min_memory_clock_khz/10; adev->pm.pm_display_cfg.multi_monitor_in_sync = pp_display_cfg->all_displays_in_sync; adev->pm.pm_display_cfg.min_vblank_time = pp_display_cfg->avail_mclk_switch_time_us; adev->pm.pm_display_cfg.display_clk = pp_display_cfg->disp_clk_khz/10; adev->pm.pm_display_cfg.dce_tolerable_mclk_in_active_latency = pp_display_cfg->avail_mclk_switch_time_in_disp_active_us; adev->pm.pm_display_cfg.crtc_index = pp_display_cfg->crtc_index; adev->pm.pm_display_cfg.line_time_in_us = pp_display_cfg->line_time_in_us; adev->pm.pm_display_cfg.vrefresh = pp_display_cfg->disp_configs[0].v_refresh; adev->pm.pm_display_cfg.crossfire_display_index = -1; adev->pm.pm_display_cfg.min_bus_bandwidth = 0; /* TODO: complete implementation of * amd_powerplay_display_configuration_change(). * Follow example of: * PHM_StoreDALConfigurationData - powerplay\hwmgr\hardwaremanager.c * PP_IRI_DisplayConfigurationChange - powerplay\eventmgr\iri.c */ amd_powerplay_display_configuration_change( adev->powerplay.pp_handle, &adev->pm.pm_display_cfg); /* TODO: replace by a separate call to 'apply display cfg'? */ amdgpu_pm_compute_clocks(adev); } return true; } bool dc_service_get_system_clocks_range( const struct dc_context *ctx, struct dm_pp_gpu_clock_range *sys_clks) { struct amdgpu_device *adev = ctx->driver_context; /* Default values, in case PPLib is not compiled-in. */ sys_clks->mclk.max_khz = 800000; sys_clks->mclk.min_khz = 800000; sys_clks->sclk.max_khz = 600000; sys_clks->sclk.min_khz = 300000; if (adev->pm.dpm_enabled) { sys_clks->mclk.max_khz = amdgpu_dpm_get_mclk(adev, false); sys_clks->mclk.min_khz = amdgpu_dpm_get_mclk(adev, true); sys_clks->sclk.max_khz = amdgpu_dpm_get_sclk(adev, false); sys_clks->sclk.min_khz = amdgpu_dpm_get_sclk(adev, true); } return true; } static void get_default_clock_levels( enum dm_pp_clock_type clk_type, struct dm_pp_clock_levels *clks) { uint32_t disp_clks_in_khz[6] = { 300000, 400000, 496560, 626090, 685720, 757900 }; uint32_t sclks_in_khz[6] = { 300000, 360000, 423530, 514290, 626090, 720000 }; uint32_t mclks_in_khz[2] = { 333000, 800000 }; switch (clk_type) { case DM_PP_CLOCK_TYPE_DISPLAY_CLK: clks->num_levels = 6; memmove(clks->clocks_in_khz, disp_clks_in_khz, sizeof(disp_clks_in_khz)); break; case DM_PP_CLOCK_TYPE_ENGINE_CLK: clks->num_levels = 6; memmove(clks->clocks_in_khz, sclks_in_khz, sizeof(sclks_in_khz)); break; case DM_PP_CLOCK_TYPE_MEMORY_CLK: clks->num_levels = 2; memmove(clks->clocks_in_khz, mclks_in_khz, sizeof(mclks_in_khz)); break; default: clks->num_levels = 0; break; } } static enum amd_pp_clock_type dc_to_pp_clock_type( enum dm_pp_clock_type dm_pp_clk_type) { enum amd_pp_clock_type amd_pp_clk_type = 0; switch (dm_pp_clk_type) { case DM_PP_CLOCK_TYPE_DISPLAY_CLK: amd_pp_clk_type = amd_pp_disp_clock; break; case DM_PP_CLOCK_TYPE_ENGINE_CLK: amd_pp_clk_type = amd_pp_sys_clock; break; case DM_PP_CLOCK_TYPE_MEMORY_CLK: amd_pp_clk_type = amd_pp_mem_clock; break; default: DRM_ERROR("DM_PPLIB: invalid clock type: %d!\n", dm_pp_clk_type); break; } return amd_pp_clk_type; } static void pp_to_dc_clock_levels( const struct amd_pp_clocks *pp_clks, struct dm_pp_clock_levels *dc_clks, enum dm_pp_clock_type dc_clk_type) { uint32_t i; if (pp_clks->count > DM_PP_MAX_CLOCK_LEVELS) { DRM_INFO("DM_PPLIB: Warning: %s clock: number of levels %d exceeds maximum of %d!\n", DC_DECODE_PP_CLOCK_TYPE(dc_clk_type), pp_clks->count, DM_PP_MAX_CLOCK_LEVELS); dc_clks->num_levels = DM_PP_MAX_CLOCK_LEVELS; } else dc_clks->num_levels = pp_clks->count; DRM_INFO("DM_PPLIB: values for %s clock\n", DC_DECODE_PP_CLOCK_TYPE(dc_clk_type)); for (i = 0; i < dc_clks->num_levels; i++) { DRM_INFO("DM_PPLIB:\t %d\n", pp_clks->clock[i]); /* translate 10kHz to kHz */ dc_clks->clocks_in_khz[i] = pp_clks->clock[i] * 10; } } bool dm_pp_get_clock_levels_by_type( const struct dc_context *ctx, enum dm_pp_clock_type clk_type, struct dm_pp_clock_levels *dc_clks) { struct amdgpu_device *adev = ctx->driver_context; void *pp_handle = adev->powerplay.pp_handle; struct amd_pp_clocks pp_clks = { 0 }; struct amd_pp_simple_clock_info validation_clks = { 0 }; uint32_t i; if (amd_powerplay_get_clock_by_type(pp_handle, dc_to_pp_clock_type(clk_type), &pp_clks)) { /* Error in pplib. Provide default values. */ get_default_clock_levels(clk_type, dc_clks); return true; } pp_to_dc_clock_levels(&pp_clks, dc_clks, clk_type); if (amd_powerplay_get_display_mode_validation_clocks(pp_handle, &validation_clks)) { /* Error in pplib. Provide default values. */ DRM_INFO("DM_PPLIB: Warning: using default validation clocks!\n"); validation_clks.engine_max_clock = 72000; validation_clks.memory_max_clock = 80000; validation_clks.level = 0; } DRM_INFO("DM_PPLIB: Validation clocks:\n"); DRM_INFO("DM_PPLIB: engine_max_clock: %d\n", validation_clks.engine_max_clock); DRM_INFO("DM_PPLIB: memory_max_clock: %d\n", validation_clks.memory_max_clock); DRM_INFO("DM_PPLIB: level : %d\n", validation_clks.level); /* Translate 10 kHz to kHz. */ validation_clks.engine_max_clock *= 10; validation_clks.memory_max_clock *= 10; /* Determine the highest non-boosted level from the Validation Clocks */ if (clk_type == DM_PP_CLOCK_TYPE_ENGINE_CLK) { for (i = 0; i < dc_clks->num_levels; i++) { if (dc_clks->clocks_in_khz[i] > validation_clks.engine_max_clock) { /* This clock is higher the validation clock. * Than means the previous one is the highest * non-boosted one. */ DRM_INFO("DM_PPLIB: reducing engine clock level from %d to %d\n", dc_clks->num_levels, i + 1); dc_clks->num_levels = i; break; } } } else if (clk_type == DM_PP_CLOCK_TYPE_MEMORY_CLK) { for (i = 0; i < dc_clks->num_levels; i++) { if (dc_clks->clocks_in_khz[i] > validation_clks.memory_max_clock) { DRM_INFO("DM_PPLIB: reducing memory clock level from %d to %d\n", dc_clks->num_levels, i + 1); dc_clks->num_levels = i; break; } } } return true; } bool dm_pp_get_clock_levels_by_type_with_latency( const struct dc_context *ctx, enum dm_pp_clock_type clk_type, struct dm_pp_clock_levels_with_latency *clk_level_info) { /* TODO: to be implemented */ return false; } bool dm_pp_get_clock_levels_by_type_with_voltage( const struct dc_context *ctx, enum dm_pp_clock_type clk_type, struct dm_pp_clock_levels_with_voltage *clk_level_info) { /* TODO: to be implemented */ return false; } bool dm_pp_notify_wm_clock_changes( const struct dc_context *ctx, struct dm_pp_wm_sets_with_clock_ranges *wm_with_clock_ranges) { /* TODO: to be implemented */ return false; } bool dm_pp_apply_power_level_change_request( const struct dc_context *ctx, struct dm_pp_power_level_change_request *level_change_req) { /* TODO: to be implemented */ return false; } bool dm_pp_apply_clock_for_voltage_request( const struct dc_context *ctx, struct dm_pp_clock_for_voltage_req *clock_for_voltage_req) { /* TODO: to be implemented */ return false; } bool dm_pp_get_static_clocks( const struct dc_context *ctx, struct dm_pp_static_clock_info *static_clk_info) { /* TODO: to be implemented */ return false; } /**** end of power component interfaces ****/ /* Calls to notification */ void dal_notify_setmode_complete(struct dc_context *ctx, uint32_t h_total, uint32_t v_total, uint32_t h_active, uint32_t v_active, uint32_t pix_clk_in_khz) { /*TODO*/ } /* End of calls to notification */ long dm_get_pid(void) { return current->pid; } long dm_get_tgid(void) { return current->tgid; }