/* * Copyright © 2014 Red Hat * * Permission to use, copy, modify, distribute, and sell this software and its * documentation for any purpose is hereby granted without fee, provided that * the above copyright notice appear in all copies and that both that copyright * notice and this permission notice appear in supporting documentation, and * that the name of the copyright holders not be used in advertising or * publicity pertaining to distribution of the software without specific, * written prior permission. The copyright holders make no representations * about the suitability of this software for any purpose. It is provided "as * is" without express or implied warranty. * * THE COPYRIGHT HOLDERS DISCLAIM ALL WARRANTIES WITH REGARD TO THIS SOFTWARE, * INCLUDING ALL IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS, IN NO * EVENT SHALL THE COPYRIGHT HOLDERS BE LIABLE FOR ANY SPECIAL, INDIRECT OR * CONSEQUENTIAL DAMAGES OR ANY DAMAGES WHATSOEVER RESULTING FROM LOSS OF USE, * DATA OR PROFITS, WHETHER IN AN ACTION OF CONTRACT, NEGLIGENCE OR OTHER * TORTIOUS ACTION, ARISING OUT OF OR IN CONNECTION WITH THE USE OR PERFORMANCE * OF THIS SOFTWARE. */ #include #include #include #include #include #include #include #include #include #include /** * DOC: dp mst helper * * These functions contain parts of the DisplayPort 1.2a MultiStream Transport * protocol. The helpers contain a topology manager and bandwidth manager. * The helpers encapsulate the sending and received of sideband msgs. */ static bool dump_dp_payload_table(struct drm_dp_mst_topology_mgr *mgr, char *buf); static int test_calc_pbn_mode(void); static void drm_dp_put_port(struct drm_dp_mst_port *port); static int drm_dp_dpcd_write_payload(struct drm_dp_mst_topology_mgr *mgr, int id, struct drm_dp_payload *payload); static int drm_dp_send_dpcd_write(struct drm_dp_mst_topology_mgr *mgr, struct drm_dp_mst_port *port, int offset, int size, u8 *bytes); static int drm_dp_send_link_address(struct drm_dp_mst_topology_mgr *mgr, struct drm_dp_mst_branch *mstb); static int drm_dp_send_enum_path_resources(struct drm_dp_mst_topology_mgr *mgr, struct drm_dp_mst_branch *mstb, struct drm_dp_mst_port *port); static bool drm_dp_validate_guid(struct drm_dp_mst_topology_mgr *mgr, u8 *guid); static int drm_dp_mst_register_i2c_bus(struct drm_dp_aux *aux); static void drm_dp_mst_unregister_i2c_bus(struct drm_dp_aux *aux); static void drm_dp_mst_kick_tx(struct drm_dp_mst_topology_mgr *mgr); /* sideband msg handling */ static u8 drm_dp_msg_header_crc4(const uint8_t *data, size_t num_nibbles) { u8 bitmask = 0x80; u8 bitshift = 7; u8 array_index = 0; int number_of_bits = num_nibbles * 4; u8 remainder = 0; while (number_of_bits != 0) { number_of_bits--; remainder <<= 1; remainder |= (data[array_index] & bitmask) >> bitshift; bitmask >>= 1; bitshift--; if (bitmask == 0) { bitmask = 0x80; bitshift = 7; array_index++; } if ((remainder & 0x10) == 0x10) remainder ^= 0x13; } number_of_bits = 4; while (number_of_bits != 0) { number_of_bits--; remainder <<= 1; if ((remainder & 0x10) != 0) remainder ^= 0x13; } return remainder; } static u8 drm_dp_msg_data_crc4(const uint8_t *data, u8 number_of_bytes) { u8 bitmask = 0x80; u8 bitshift = 7; u8 array_index = 0; int number_of_bits = number_of_bytes * 8; u16 remainder = 0; while (number_of_bits != 0) { number_of_bits--; remainder <<= 1; remainder |= (data[array_index] & bitmask) >> bitshift; bitmask >>= 1; bitshift--; if (bitmask == 0) { bitmask = 0x80; bitshift = 7; array_index++; } if ((remainder & 0x100) == 0x100) remainder ^= 0xd5; } number_of_bits = 8; while (number_of_bits != 0) { number_of_bits--; remainder <<= 1; if ((remainder & 0x100) != 0) remainder ^= 0xd5; } return remainder & 0xff; } static inline u8 drm_dp_calc_sb_hdr_size(struct drm_dp_sideband_msg_hdr *hdr) { u8 size = 3; size += (hdr->lct / 2); return size; } static void drm_dp_encode_sideband_msg_hdr(struct drm_dp_sideband_msg_hdr *hdr, u8 *buf, int *len) { int idx = 0; int i; u8 crc4; buf[idx++] = ((hdr->lct & 0xf) << 4) | (hdr->lcr & 0xf); for (i = 0; i < (hdr->lct / 2); i++) buf[idx++] = hdr->rad[i]; buf[idx++] = (hdr->broadcast << 7) | (hdr->path_msg << 6) | (hdr->msg_len & 0x3f); buf[idx++] = (hdr->somt << 7) | (hdr->eomt << 6) | (hdr->seqno << 4); crc4 = drm_dp_msg_header_crc4(buf, (idx * 2) - 1); buf[idx - 1] |= (crc4 & 0xf); *len = idx; } static bool drm_dp_decode_sideband_msg_hdr(struct drm_dp_sideband_msg_hdr *hdr, u8 *buf, int buflen, u8 *hdrlen) { u8 crc4; u8 len; int i; u8 idx; if (buf[0] == 0) return false; len = 3; len += ((buf[0] & 0xf0) >> 4) / 2; if (len > buflen) return false; crc4 = drm_dp_msg_header_crc4(buf, (len * 2) - 1); if ((crc4 & 0xf) != (buf[len - 1] & 0xf)) { DRM_DEBUG_KMS("crc4 mismatch 0x%x 0x%x\n", crc4, buf[len - 1]); return false; } hdr->lct = (buf[0] & 0xf0) >> 4; hdr->lcr = (buf[0] & 0xf); idx = 1; for (i = 0; i < (hdr->lct / 2); i++) hdr->rad[i] = buf[idx++]; hdr->broadcast = (buf[idx] >> 7) & 0x1; hdr->path_msg = (buf[idx] >> 6) & 0x1; hdr->msg_len = buf[idx] & 0x3f; idx++; hdr->somt = (buf[idx] >> 7) & 0x1; hdr->eomt = (buf[idx] >> 6) & 0x1; hdr->seqno = (buf[idx] >> 4) & 0x1; idx++; *hdrlen = idx; return true; } static void drm_dp_encode_sideband_req(struct drm_dp_sideband_msg_req_body *req, struct drm_dp_sideband_msg_tx *raw) { int idx = 0; int i; u8 *buf = raw->msg; buf[idx++] = req->req_type & 0x7f; switch (req->req_type) { case DP_ENUM_PATH_RESOURCES: buf[idx] = (req->u.port_num.port_number & 0xf) << 4; idx++; break; case DP_ALLOCATE_PAYLOAD: buf[idx] = (req->u.allocate_payload.port_number & 0xf) << 4 | (req->u.allocate_payload.number_sdp_streams & 0xf); idx++; buf[idx] = (req->u.allocate_payload.vcpi & 0x7f); idx++; buf[idx] = (req->u.allocate_payload.pbn >> 8); idx++; buf[idx] = (req->u.allocate_payload.pbn & 0xff); idx++; for (i = 0; i < req->u.allocate_payload.number_sdp_streams / 2; i++) { buf[idx] = ((req->u.allocate_payload.sdp_stream_sink[i * 2] & 0xf) << 4) | (req->u.allocate_payload.sdp_stream_sink[i * 2 + 1] & 0xf); idx++; } if (req->u.allocate_payload.number_sdp_streams & 1) { i = req->u.allocate_payload.number_sdp_streams - 1; buf[idx] = (req->u.allocate_payload.sdp_stream_sink[i] & 0xf) << 4; idx++; } break; case DP_QUERY_PAYLOAD: buf[idx] = (req->u.query_payload.port_number & 0xf) << 4; idx++; buf[idx] = (req->u.query_payload.vcpi & 0x7f); idx++; break; case DP_REMOTE_DPCD_READ: buf[idx] = (req->u.dpcd_read.port_number & 0xf) << 4; buf[idx] |= ((req->u.dpcd_read.dpcd_address & 0xf0000) >> 16) & 0xf; idx++; buf[idx] = (req->u.dpcd_read.dpcd_address & 0xff00) >> 8; idx++; buf[idx] = (req->u.dpcd_read.dpcd_address & 0xff); idx++; buf[idx] = (req->u.dpcd_read.num_bytes); idx++; break; case DP_REMOTE_DPCD_WRITE: buf[idx] = (req->u.dpcd_write.port_number & 0xf) << 4; buf[idx] |= ((req->u.dpcd_write.dpcd_address & 0xf0000) >> 16) & 0xf; idx++; buf[idx] = (req->u.dpcd_write.dpcd_address & 0xff00) >> 8; idx++; buf[idx] = (req->u.dpcd_write.dpcd_address & 0xff); idx++; buf[idx] = (req->u.dpcd_write.num_bytes); idx++; memcpy(&buf[idx], req->u.dpcd_write.bytes, req->u.dpcd_write.num_bytes); idx += req->u.dpcd_write.num_bytes; break; case DP_REMOTE_I2C_READ: buf[idx] = (req->u.i2c_read.port_number & 0xf) << 4; buf[idx] |= (req->u.i2c_read.num_transactions & 0x3); idx++; for (i = 0; i < (req->u.i2c_read.num_transactions & 0x3); i++) { buf[idx] = req->u.i2c_read.transactions[i].i2c_dev_id & 0x7f; idx++; buf[idx] = req->u.i2c_read.transactions[i].num_bytes; idx++; memcpy(&buf[idx], req->u.i2c_read.transactions[i].bytes, req->u.i2c_read.transactions[i].num_bytes); idx += req->u.i2c_read.transactions[i].num_bytes; buf[idx] = (req->u.i2c_read.transactions[i].no_stop_bit & 0x1) << 5; buf[idx] |= (req->u.i2c_read.transactions[i].i2c_transaction_delay & 0xf); idx++; } buf[idx] = (req->u.i2c_read.read_i2c_device_id) & 0x7f; idx++; buf[idx] = (req->u.i2c_read.num_bytes_read); idx++; break; case DP_REMOTE_I2C_WRITE: buf[idx] = (req->u.i2c_write.port_number & 0xf) << 4; idx++; buf[idx] = (req->u.i2c_write.write_i2c_device_id) & 0x7f; idx++; buf[idx] = (req->u.i2c_write.num_bytes); idx++; memcpy(&buf[idx], req->u.i2c_write.bytes, req->u.i2c_write.num_bytes); idx += req->u.i2c_write.num_bytes; break; } raw->cur_len = idx; } static void drm_dp_crc_sideband_chunk_req(u8 *msg, u8 len) { u8 crc4; crc4 = drm_dp_msg_data_crc4(msg, len); msg[len] = crc4; } static void drm_dp_encode_sideband_reply(struct drm_dp_sideband_msg_reply_body *rep, struct drm_dp_sideband_msg_tx *raw) { int idx = 0; u8 *buf = raw->msg; buf[idx++] = (rep->reply_type & 0x1) << 7 | (rep->req_type & 0x7f); raw->cur_len = idx; } /* this adds a chunk of msg to the builder to get the final msg */ static bool drm_dp_sideband_msg_build(struct drm_dp_sideband_msg_rx *msg, u8 *replybuf, u8 replybuflen, bool hdr) { int ret; u8 crc4; if (hdr) { u8 hdrlen; struct drm_dp_sideband_msg_hdr recv_hdr; ret = drm_dp_decode_sideband_msg_hdr(&recv_hdr, replybuf, replybuflen, &hdrlen); if (ret == false) { print_hex_dump(KERN_DEBUG, "failed hdr", DUMP_PREFIX_NONE, 16, 1, replybuf, replybuflen, false); return false; } /* get length contained in this portion */ msg->curchunk_len = recv_hdr.msg_len; msg->curchunk_hdrlen = hdrlen; /* we have already gotten an somt - don't bother parsing */ if (recv_hdr.somt && msg->have_somt) return false; if (recv_hdr.somt) { memcpy(&msg->initial_hdr, &recv_hdr, sizeof(struct drm_dp_sideband_msg_hdr)); msg->have_somt = true; } if (recv_hdr.eomt) msg->have_eomt = true; /* copy the bytes for the remainder of this header chunk */ msg->curchunk_idx = min(msg->curchunk_len, (u8)(replybuflen - hdrlen)); memcpy(&msg->chunk[0], replybuf + hdrlen, msg->curchunk_idx); } else { memcpy(&msg->chunk[msg->curchunk_idx], replybuf, replybuflen); msg->curchunk_idx += replybuflen; } if (msg->curchunk_idx >= msg->curchunk_len) { /* do CRC */ crc4 = drm_dp_msg_data_crc4(msg->chunk, msg->curchunk_len - 1); /* copy chunk into bigger msg */ memcpy(&msg->msg[msg->curlen], msg->chunk, msg->curchunk_len - 1); msg->curlen += msg->curchunk_len - 1; } return true; } static bool drm_dp_sideband_parse_link_address(struct drm_dp_sideband_msg_rx *raw, struct drm_dp_sideband_msg_reply_body *repmsg) { int idx = 1; int i; memcpy(repmsg->u.link_addr.guid, &raw->msg[idx], 16); idx += 16; repmsg->u.link_addr.nports = raw->msg[idx] & 0xf; idx++; if (idx > raw->curlen) goto fail_len; for (i = 0; i < repmsg->u.link_addr.nports; i++) { if (raw->msg[idx] & 0x80) repmsg->u.link_addr.ports[i].input_port = 1; repmsg->u.link_addr.ports[i].peer_device_type = (raw->msg[idx] >> 4) & 0x7; repmsg->u.link_addr.ports[i].port_number = (raw->msg[idx] & 0xf); idx++; if (idx > raw->curlen) goto fail_len; repmsg->u.link_addr.ports[i].mcs = (raw->msg[idx] >> 7) & 0x1; repmsg->u.link_addr.ports[i].ddps = (raw->msg[idx] >> 6) & 0x1; if (repmsg->u.link_addr.ports[i].input_port == 0) repmsg->u.link_addr.ports[i].legacy_device_plug_status = (raw->msg[idx] >> 5) & 0x1; idx++; if (idx > raw->curlen) goto fail_len; if (repmsg->u.link_addr.ports[i].input_port == 0) { repmsg->u.link_addr.ports[i].dpcd_revision = (raw->msg[idx]); idx++; if (idx > raw->curlen) goto fail_len; memcpy(repmsg->u.link_addr.ports[i].peer_guid, &raw->msg[idx], 16); idx += 16; if (idx > raw->curlen) goto fail_len; repmsg->u.link_addr.ports[i].num_sdp_streams = (raw->msg[idx] >> 4) & 0xf; repmsg->u.link_addr.ports[i].num_sdp_stream_sinks = (raw->msg[idx] & 0xf); idx++; } if (idx > raw->curlen) goto fail_len; } return true; fail_len: DRM_DEBUG_KMS("link address reply parse length fail %d %d\n", idx, raw->curlen); return false; } static bool drm_dp_sideband_parse_remote_dpcd_read(struct drm_dp_sideband_msg_rx *raw, struct drm_dp_sideband_msg_reply_body *repmsg) { int idx = 1; repmsg->u.remote_dpcd_read_ack.port_number = raw->msg[idx] & 0xf; idx++; if (idx > raw->curlen) goto fail_len; repmsg->u.remote_dpcd_read_ack.num_bytes = raw->msg[idx]; if (idx > raw->curlen) goto fail_len; memcpy(repmsg->u.remote_dpcd_read_ack.bytes, &raw->msg[idx], repmsg->u.remote_dpcd_read_ack.num_bytes); return true; fail_len: DRM_DEBUG_KMS("link address reply parse length fail %d %d\n", idx, raw->curlen); return false; } static bool drm_dp_sideband_parse_remote_dpcd_write(struct drm_dp_sideband_msg_rx *raw, struct drm_dp_sideband_msg_reply_body *repmsg) { int idx = 1; repmsg->u.remote_dpcd_write_ack.port_number = raw->msg[idx] & 0xf; idx++; if (idx > raw->curlen) goto fail_len; return true; fail_len: DRM_DEBUG_KMS("parse length fail %d %d\n", idx, raw->curlen); return false; } static bool drm_dp_sideband_parse_remote_i2c_read_ack(struct drm_dp_sideband_msg_rx *raw, struct drm_dp_sideband_msg_reply_body *repmsg) { int idx = 1; repmsg->u.remote_i2c_read_ack.port_number = (raw->msg[idx] & 0xf); idx++; if (idx > raw->curlen) goto fail_len; repmsg->u.remote_i2c_read_ack.num_bytes = raw->msg[idx]; idx++; /* TODO check */ memcpy(repmsg->u.remote_i2c_read_ack.bytes, &raw->msg[idx], repmsg->u.remote_i2c_read_ack.num_bytes); return true; fail_len: DRM_DEBUG_KMS("remote i2c reply parse length fail %d %d\n", idx, raw->curlen); return false; } static bool drm_dp_sideband_parse_enum_path_resources_ack(struct drm_dp_sideband_msg_rx *raw, struct drm_dp_sideband_msg_reply_body *repmsg) { int idx = 1; repmsg->u.path_resources.port_number = (raw->msg[idx] >> 4) & 0xf; idx++; if (idx > raw->curlen) goto fail_len; repmsg->u.path_resources.full_payload_bw_number = (raw->msg[idx] << 8) | (raw->msg[idx+1]); idx += 2; if (idx > raw->curlen) goto fail_len; repmsg->u.path_resources.avail_payload_bw_number = (raw->msg[idx] << 8) | (raw->msg[idx+1]); idx += 2; if (idx > raw->curlen) goto fail_len; return true; fail_len: DRM_DEBUG_KMS("enum resource parse length fail %d %d\n", idx, raw->curlen); return false; } static bool drm_dp_sideband_parse_allocate_payload_ack(struct drm_dp_sideband_msg_rx *raw, struct drm_dp_sideband_msg_reply_body *repmsg) { int idx = 1; repmsg->u.allocate_payload.port_number = (raw->msg[idx] >> 4) & 0xf; idx++; if (idx > raw->curlen) goto fail_len; repmsg->u.allocate_payload.vcpi = raw->msg[idx]; idx++; if (idx > raw->curlen) goto fail_len; repmsg->u.allocate_payload.allocated_pbn = (raw->msg[idx] << 8) | (raw->msg[idx+1]); idx += 2; if (idx > raw->curlen) goto fail_len; return true; fail_len: DRM_DEBUG_KMS("allocate payload parse length fail %d %d\n", idx, raw->curlen); return false; } static bool drm_dp_sideband_parse_query_payload_ack(struct drm_dp_sideband_msg_rx *raw, struct drm_dp_sideband_msg_reply_body *repmsg) { int idx = 1; repmsg->u.query_payload.port_number = (raw->msg[idx] >> 4) & 0xf; idx++; if (idx > raw->curlen) goto fail_len; repmsg->u.query_payload.allocated_pbn = (raw->msg[idx] << 8) | (raw->msg[idx + 1]); idx += 2; if (idx > raw->curlen) goto fail_len; return true; fail_len: DRM_DEBUG_KMS("query payload parse length fail %d %d\n", idx, raw->curlen); return false; } static bool drm_dp_sideband_parse_reply(struct drm_dp_sideband_msg_rx *raw, struct drm_dp_sideband_msg_reply_body *msg) { memset(msg, 0, sizeof(*msg)); msg->reply_type = (raw->msg[0] & 0x80) >> 7; msg->req_type = (raw->msg[0] & 0x7f); if (msg->reply_type) { memcpy(msg->u.nak.guid, &raw->msg[1], 16); msg->u.nak.reason = raw->msg[17]; msg->u.nak.nak_data = raw->msg[18]; return false; } switch (msg->req_type) { case DP_LINK_ADDRESS: return drm_dp_sideband_parse_link_address(raw, msg); case DP_QUERY_PAYLOAD: return drm_dp_sideband_parse_query_payload_ack(raw, msg); case DP_REMOTE_DPCD_READ: return drm_dp_sideband_parse_remote_dpcd_read(raw, msg); case DP_REMOTE_DPCD_WRITE: return drm_dp_sideband_parse_remote_dpcd_write(raw, msg); case DP_REMOTE_I2C_READ: return drm_dp_sideband_parse_remote_i2c_read_ack(raw, msg); case DP_ENUM_PATH_RESOURCES: return drm_dp_sideband_parse_enum_path_resources_ack(raw, msg); case DP_ALLOCATE_PAYLOAD: return drm_dp_sideband_parse_allocate_payload_ack(raw, msg); default: DRM_ERROR("Got unknown reply 0x%02x\n", msg->req_type); return false; } } static bool drm_dp_sideband_parse_connection_status_notify(struct drm_dp_sideband_msg_rx *raw, struct drm_dp_sideband_msg_req_body *msg) { int idx = 1; msg->u.conn_stat.port_number = (raw->msg[idx] & 0xf0) >> 4; idx++; if (idx > raw->curlen) goto fail_len; memcpy(msg->u.conn_stat.guid, &raw->msg[idx], 16); idx += 16; if (idx > raw->curlen) goto fail_len; msg->u.conn_stat.legacy_device_plug_status = (raw->msg[idx] >> 6) & 0x1; msg->u.conn_stat.displayport_device_plug_status = (raw->msg[idx] >> 5) & 0x1; msg->u.conn_stat.message_capability_status = (raw->msg[idx] >> 4) & 0x1; msg->u.conn_stat.input_port = (raw->msg[idx] >> 3) & 0x1; msg->u.conn_stat.peer_device_type = (raw->msg[idx] & 0x7); idx++; return true; fail_len: DRM_DEBUG_KMS("connection status reply parse length fail %d %d\n", idx, raw->curlen); return false; } static bool drm_dp_sideband_parse_resource_status_notify(struct drm_dp_sideband_msg_rx *raw, struct drm_dp_sideband_msg_req_body *msg) { int idx = 1; msg->u.resource_stat.port_number = (raw->msg[idx] & 0xf0) >> 4; idx++; if (idx > raw->curlen) goto fail_len; memcpy(msg->u.resource_stat.guid, &raw->msg[idx], 16); idx += 16; if (idx > raw->curlen) goto fail_len; msg->u.resource_stat.available_pbn = (raw->msg[idx] << 8) | (raw->msg[idx + 1]); idx++; return true; fail_len: DRM_DEBUG_KMS("resource status reply parse length fail %d %d\n", idx, raw->curlen); return false; } static bool drm_dp_sideband_parse_req(struct drm_dp_sideband_msg_rx *raw, struct drm_dp_sideband_msg_req_body *msg) { memset(msg, 0, sizeof(*msg)); msg->req_type = (raw->msg[0] & 0x7f); switch (msg->req_type) { case DP_CONNECTION_STATUS_NOTIFY: return drm_dp_sideband_parse_connection_status_notify(raw, msg); case DP_RESOURCE_STATUS_NOTIFY: return drm_dp_sideband_parse_resource_status_notify(raw, msg); default: DRM_ERROR("Got unknown request 0x%02x\n", msg->req_type); return false; } } static int build_dpcd_write(struct drm_dp_sideband_msg_tx *msg, u8 port_num, u32 offset, u8 num_bytes, u8 *bytes) { struct drm_dp_sideband_msg_req_body req; req.req_type = DP_REMOTE_DPCD_WRITE; req.u.dpcd_write.port_number = port_num; req.u.dpcd_write.dpcd_address = offset; req.u.dpcd_write.num_bytes = num_bytes; req.u.dpcd_write.bytes = bytes; drm_dp_encode_sideband_req(&req, msg); return 0; } static int build_link_address(struct drm_dp_sideband_msg_tx *msg) { struct drm_dp_sideband_msg_req_body req; req.req_type = DP_LINK_ADDRESS; drm_dp_encode_sideband_req(&req, msg); return 0; } static int build_enum_path_resources(struct drm_dp_sideband_msg_tx *msg, int port_num) { struct drm_dp_sideband_msg_req_body req; req.req_type = DP_ENUM_PATH_RESOURCES; req.u.port_num.port_number = port_num; drm_dp_encode_sideband_req(&req, msg); msg->path_msg = true; return 0; } static int build_allocate_payload(struct drm_dp_sideband_msg_tx *msg, int port_num, u8 vcpi, uint16_t pbn) { struct drm_dp_sideband_msg_req_body req; memset(&req, 0, sizeof(req)); req.req_type = DP_ALLOCATE_PAYLOAD; req.u.allocate_payload.port_number = port_num; req.u.allocate_payload.vcpi = vcpi; req.u.allocate_payload.pbn = pbn; drm_dp_encode_sideband_req(&req, msg); msg->path_msg = true; return 0; } static int drm_dp_mst_assign_payload_id(struct drm_dp_mst_topology_mgr *mgr, struct drm_dp_vcpi *vcpi) { int ret, vcpi_ret; mutex_lock(&mgr->payload_lock); ret = find_first_zero_bit(&mgr->payload_mask, mgr->max_payloads + 1); if (ret > mgr->max_payloads) { ret = -EINVAL; DRM_DEBUG_KMS("out of payload ids %d\n", ret); goto out_unlock; } vcpi_ret = find_first_zero_bit(&mgr->vcpi_mask, mgr->max_payloads + 1); if (vcpi_ret > mgr->max_payloads) { ret = -EINVAL; DRM_DEBUG_KMS("out of vcpi ids %d\n", ret); goto out_unlock; } set_bit(ret, &mgr->payload_mask); set_bit(vcpi_ret, &mgr->vcpi_mask); vcpi->vcpi = vcpi_ret + 1; mgr->proposed_vcpis[ret - 1] = vcpi; out_unlock: mutex_unlock(&mgr->payload_lock); return ret; } static void drm_dp_mst_put_payload_id(struct drm_dp_mst_topology_mgr *mgr, int vcpi) { int i; if (vcpi == 0) return; mutex_lock(&mgr->payload_lock); DRM_DEBUG_KMS("putting payload %d\n", vcpi); clear_bit(vcpi - 1, &mgr->vcpi_mask); for (i = 0; i < mgr->max_payloads; i++) { if (mgr->proposed_vcpis[i]) if (mgr->proposed_vcpis[i]->vcpi == vcpi) { mgr->proposed_vcpis[i] = NULL; clear_bit(i + 1, &mgr->payload_mask); } } mutex_unlock(&mgr->payload_lock); } static bool check_txmsg_state(struct drm_dp_mst_topology_mgr *mgr, struct drm_dp_sideband_msg_tx *txmsg) { bool ret; mutex_lock(&mgr->qlock); ret = (txmsg->state == DRM_DP_SIDEBAND_TX_RX || txmsg->state == DRM_DP_SIDEBAND_TX_TIMEOUT); mutex_unlock(&mgr->qlock); return ret; } static int drm_dp_mst_wait_tx_reply(struct drm_dp_mst_branch *mstb, struct drm_dp_sideband_msg_tx *txmsg) { struct drm_dp_mst_topology_mgr *mgr = mstb->mgr; int ret; ret = wait_event_timeout(mgr->tx_waitq, check_txmsg_state(mgr, txmsg), (4 * HZ)); mutex_lock(&mstb->mgr->qlock); if (ret > 0) { if (txmsg->state == DRM_DP_SIDEBAND_TX_TIMEOUT) { ret = -EIO; goto out; } } else { DRM_DEBUG_KMS("timedout msg send %p %d %d\n", txmsg, txmsg->state, txmsg->seqno); /* dump some state */ ret = -EIO; /* remove from q */ if (txmsg->state == DRM_DP_SIDEBAND_TX_QUEUED || txmsg->state == DRM_DP_SIDEBAND_TX_START_SEND) { list_del(&txmsg->next); } if (txmsg->state == DRM_DP_SIDEBAND_TX_START_SEND || txmsg->state == DRM_DP_SIDEBAND_TX_SENT) { mstb->tx_slots[txmsg->seqno] = NULL; } } out: mutex_unlock(&mgr->qlock); return ret; } static struct drm_dp_mst_branch *drm_dp_add_mst_branch_device(u8 lct, u8 *rad) { struct drm_dp_mst_branch *mstb; mstb = kzalloc(sizeof(*mstb), GFP_KERNEL); if (!mstb) return NULL; mstb->lct = lct; if (lct > 1) memcpy(mstb->rad, rad, lct / 2); INIT_LIST_HEAD(&mstb->ports); kref_init(&mstb->kref); return mstb; } static void drm_dp_destroy_mst_branch_device(struct kref *kref) { struct drm_dp_mst_branch *mstb = container_of(kref, struct drm_dp_mst_branch, kref); struct drm_dp_mst_port *port, *tmp; bool wake_tx = false; cancel_work_sync(&mstb->mgr->work); /* * destroy all ports - don't need lock * as there are no more references to the mst branch * device at this point. */ list_for_each_entry_safe(port, tmp, &mstb->ports, next) { list_del(&port->next); drm_dp_put_port(port); } /* drop any tx slots msg */ mutex_lock(&mstb->mgr->qlock); if (mstb->tx_slots[0]) { mstb->tx_slots[0]->state = DRM_DP_SIDEBAND_TX_TIMEOUT; mstb->tx_slots[0] = NULL; wake_tx = true; } if (mstb->tx_slots[1]) { mstb->tx_slots[1]->state = DRM_DP_SIDEBAND_TX_TIMEOUT; mstb->tx_slots[1] = NULL; wake_tx = true; } mutex_unlock(&mstb->mgr->qlock); if (wake_tx) wake_up(&mstb->mgr->tx_waitq); kfree(mstb); } static void drm_dp_put_mst_branch_device(struct drm_dp_mst_branch *mstb) { kref_put(&mstb->kref, drm_dp_destroy_mst_branch_device); } static void drm_dp_port_teardown_pdt(struct drm_dp_mst_port *port, int old_pdt) { switch (old_pdt) { case DP_PEER_DEVICE_DP_LEGACY_CONV: case DP_PEER_DEVICE_SST_SINK: /* remove i2c over sideband */ drm_dp_mst_unregister_i2c_bus(&port->aux); break; case DP_PEER_DEVICE_MST_BRANCHING: drm_dp_put_mst_branch_device(port->mstb); port->mstb = NULL; break; } } static void drm_dp_destroy_port(struct kref *kref) { struct drm_dp_mst_port *port = container_of(kref, struct drm_dp_mst_port, kref); struct drm_dp_mst_topology_mgr *mgr = port->mgr; if (!port->input) { port->vcpi.num_slots = 0; if (port->connector) (*port->mgr->cbs->destroy_connector)(mgr, port->connector); drm_dp_port_teardown_pdt(port, port->pdt); if (!port->input && port->vcpi.vcpi > 0) drm_dp_mst_put_payload_id(mgr, port->vcpi.vcpi); } kfree(port); (*mgr->cbs->hotplug)(mgr); } static void drm_dp_put_port(struct drm_dp_mst_port *port) { kref_put(&port->kref, drm_dp_destroy_port); } static struct drm_dp_mst_branch *drm_dp_mst_get_validated_mstb_ref_locked(struct drm_dp_mst_branch *mstb, struct drm_dp_mst_branch *to_find) { struct drm_dp_mst_port *port; struct drm_dp_mst_branch *rmstb; if (to_find == mstb) { kref_get(&mstb->kref); return mstb; } list_for_each_entry(port, &mstb->ports, next) { if (port->mstb) { rmstb = drm_dp_mst_get_validated_mstb_ref_locked(port->mstb, to_find); if (rmstb) return rmstb; } } return NULL; } static struct drm_dp_mst_branch *drm_dp_get_validated_mstb_ref(struct drm_dp_mst_topology_mgr *mgr, struct drm_dp_mst_branch *mstb) { struct drm_dp_mst_branch *rmstb = NULL; mutex_lock(&mgr->lock); if (mgr->mst_primary) rmstb = drm_dp_mst_get_validated_mstb_ref_locked(mgr->mst_primary, mstb); mutex_unlock(&mgr->lock); return rmstb; } static struct drm_dp_mst_port *drm_dp_mst_get_port_ref_locked(struct drm_dp_mst_branch *mstb, struct drm_dp_mst_port *to_find) { struct drm_dp_mst_port *port, *mport; list_for_each_entry(port, &mstb->ports, next) { if (port == to_find) { kref_get(&port->kref); return port; } if (port->mstb) { mport = drm_dp_mst_get_port_ref_locked(port->mstb, to_find); if (mport) return mport; } } return NULL; } static struct drm_dp_mst_port *drm_dp_get_validated_port_ref(struct drm_dp_mst_topology_mgr *mgr, struct drm_dp_mst_port *port) { struct drm_dp_mst_port *rport = NULL; mutex_lock(&mgr->lock); if (mgr->mst_primary) rport = drm_dp_mst_get_port_ref_locked(mgr->mst_primary, port); mutex_unlock(&mgr->lock); return rport; } static struct drm_dp_mst_port *drm_dp_get_port(struct drm_dp_mst_branch *mstb, u8 port_num) { struct drm_dp_mst_port *port; list_for_each_entry(port, &mstb->ports, next) { if (port->port_num == port_num) { kref_get(&port->kref); return port; } } return NULL; } /* * calculate a new RAD for this MST branch device * if parent has an LCT of 2 then it has 1 nibble of RAD, * if parent has an LCT of 3 then it has 2 nibbles of RAD, */ static u8 drm_dp_calculate_rad(struct drm_dp_mst_port *port, u8 *rad) { int lct = port->parent->lct; int shift = 4; int idx = lct / 2; if (lct > 1) { memcpy(rad, port->parent->rad, idx); shift = (lct % 2) ? 4 : 0; } else rad[0] = 0; rad[idx] |= port->port_num << shift; return lct + 1; } /* * return sends link address for new mstb */ static bool drm_dp_port_setup_pdt(struct drm_dp_mst_port *port) { int ret; u8 rad[6], lct; bool send_link = false; switch (port->pdt) { case DP_PEER_DEVICE_DP_LEGACY_CONV: case DP_PEER_DEVICE_SST_SINK: /* add i2c over sideband */ ret = drm_dp_mst_register_i2c_bus(&port->aux); break; case DP_PEER_DEVICE_MST_BRANCHING: lct = drm_dp_calculate_rad(port, rad); port->mstb = drm_dp_add_mst_branch_device(lct, rad); port->mstb->mgr = port->mgr; port->mstb->port_parent = port; send_link = true; break; } return send_link; } static void drm_dp_check_port_guid(struct drm_dp_mst_branch *mstb, struct drm_dp_mst_port *port) { int ret; if (port->dpcd_rev >= 0x12) { port->guid_valid = drm_dp_validate_guid(mstb->mgr, port->guid); if (!port->guid_valid) { ret = drm_dp_send_dpcd_write(mstb->mgr, port, DP_GUID, 16, port->guid); port->guid_valid = true; } } } static void build_mst_prop_path(struct drm_dp_mst_port *port, struct drm_dp_mst_branch *mstb, char *proppath, size_t proppath_size) { int i; char temp[8]; snprintf(proppath, proppath_size, "mst:%d", mstb->mgr->conn_base_id); for (i = 0; i < (mstb->lct - 1); i++) { int shift = (i % 2) ? 0 : 4; int port_num = mstb->rad[i / 2] >> shift; snprintf(temp, sizeof(temp), "-%d", port_num); strlcat(proppath, temp, proppath_size); } snprintf(temp, sizeof(temp), "-%d", port->port_num); strlcat(proppath, temp, proppath_size); } static void drm_dp_add_port(struct drm_dp_mst_branch *mstb, struct device *dev, struct drm_dp_link_addr_reply_port *port_msg) { struct drm_dp_mst_port *port; bool ret; bool created = false; int old_pdt = 0; int old_ddps = 0; port = drm_dp_get_port(mstb, port_msg->port_number); if (!port) { port = kzalloc(sizeof(*port), GFP_KERNEL); if (!port) return; kref_init(&port->kref); port->parent = mstb; port->port_num = port_msg->port_number; port->mgr = mstb->mgr; port->aux.name = "DPMST"; port->aux.dev = dev; created = true; } else { old_pdt = port->pdt; old_ddps = port->ddps; } port->pdt = port_msg->peer_device_type; port->input = port_msg->input_port; port->mcs = port_msg->mcs; port->ddps = port_msg->ddps; port->ldps = port_msg->legacy_device_plug_status; port->dpcd_rev = port_msg->dpcd_revision; port->num_sdp_streams = port_msg->num_sdp_streams; port->num_sdp_stream_sinks = port_msg->num_sdp_stream_sinks; memcpy(port->guid, port_msg->peer_guid, 16); /* manage mstb port lists with mgr lock - take a reference for this list */ if (created) { mutex_lock(&mstb->mgr->lock); kref_get(&port->kref); list_add(&port->next, &mstb->ports); mutex_unlock(&mstb->mgr->lock); } if (old_ddps != port->ddps) { if (port->ddps) { drm_dp_check_port_guid(mstb, port); if (!port->input) drm_dp_send_enum_path_resources(mstb->mgr, mstb, port); } else { port->guid_valid = false; port->available_pbn = 0; } } if (old_pdt != port->pdt && !port->input) { drm_dp_port_teardown_pdt(port, old_pdt); ret = drm_dp_port_setup_pdt(port); if (ret == true) { drm_dp_send_link_address(mstb->mgr, port->mstb); port->mstb->link_address_sent = true; } } if (created && !port->input) { char proppath[255]; build_mst_prop_path(port, mstb, proppath, sizeof(proppath)); port->connector = (*mstb->mgr->cbs->add_connector)(mstb->mgr, port, proppath); } /* put reference to this port */ drm_dp_put_port(port); } static void drm_dp_update_port(struct drm_dp_mst_branch *mstb, struct drm_dp_connection_status_notify *conn_stat) { struct drm_dp_mst_port *port; int old_pdt; int old_ddps; bool dowork = false; port = drm_dp_get_port(mstb, conn_stat->port_number); if (!port) return; old_ddps = port->ddps; old_pdt = port->pdt; port->pdt = conn_stat->peer_device_type; port->mcs = conn_stat->message_capability_status; port->ldps = conn_stat->legacy_device_plug_status; port->ddps = conn_stat->displayport_device_plug_status; if (old_ddps != port->ddps) { if (port->ddps) { drm_dp_check_port_guid(mstb, port); dowork = true; } else { port->guid_valid = false; port->available_pbn = 0; } } if (old_pdt != port->pdt && !port->input) { drm_dp_port_teardown_pdt(port, old_pdt); if (drm_dp_port_setup_pdt(port)) dowork = true; } drm_dp_put_port(port); if (dowork) queue_work(system_long_wq, &mstb->mgr->work); } static struct drm_dp_mst_branch *drm_dp_get_mst_branch_device(struct drm_dp_mst_topology_mgr *mgr, u8 lct, u8 *rad) { struct drm_dp_mst_branch *mstb; struct drm_dp_mst_port *port; int i; /* find the port by iterating down */ mstb = mgr->mst_primary; for (i = 0; i < lct - 1; i++) { int shift = (i % 2) ? 0 : 4; int port_num = rad[i / 2] >> shift; list_for_each_entry(port, &mstb->ports, next) { if (port->port_num == port_num) { if (!port->mstb) { DRM_ERROR("failed to lookup MSTB with lct %d, rad %02x\n", lct, rad[0]); return NULL; } mstb = port->mstb; break; } } } kref_get(&mstb->kref); return mstb; } static void drm_dp_check_and_send_link_address(struct drm_dp_mst_topology_mgr *mgr, struct drm_dp_mst_branch *mstb) { struct drm_dp_mst_port *port; if (!mstb->link_address_sent) { drm_dp_send_link_address(mgr, mstb); mstb->link_address_sent = true; } list_for_each_entry(port, &mstb->ports, next) { if (port->input) continue; if (!port->ddps) continue; if (!port->available_pbn) drm_dp_send_enum_path_resources(mgr, mstb, port); if (port->mstb) drm_dp_check_and_send_link_address(mgr, port->mstb); } } static void drm_dp_mst_link_probe_work(struct work_struct *work) { struct drm_dp_mst_topology_mgr *mgr = container_of(work, struct drm_dp_mst_topology_mgr, work); drm_dp_check_and_send_link_address(mgr, mgr->mst_primary); } static bool drm_dp_validate_guid(struct drm_dp_mst_topology_mgr *mgr, u8 *guid) { static u8 zero_guid[16]; if (!memcmp(guid, zero_guid, 16)) { u64 salt = get_jiffies_64(); memcpy(&guid[0], &salt, sizeof(u64)); memcpy(&guid[8], &salt, sizeof(u64)); return false; } return true; } #if 0 static int build_dpcd_read(struct drm_dp_sideband_msg_tx *msg, u8 port_num, u32 offset, u8 num_bytes) { struct drm_dp_sideband_msg_req_body req; req.req_type = DP_REMOTE_DPCD_READ; req.u.dpcd_read.port_number = port_num; req.u.dpcd_read.dpcd_address = offset; req.u.dpcd_read.num_bytes = num_bytes; drm_dp_encode_sideband_req(&req, msg); return 0; } #endif static int drm_dp_send_sideband_msg(struct drm_dp_mst_topology_mgr *mgr, bool up, u8 *msg, int len) { int ret; int regbase = up ? DP_SIDEBAND_MSG_UP_REP_BASE : DP_SIDEBAND_MSG_DOWN_REQ_BASE; int tosend, total, offset; int retries = 0; retry: total = len; offset = 0; do { tosend = min3(mgr->max_dpcd_transaction_bytes, 16, total); ret = drm_dp_dpcd_write(mgr->aux, regbase + offset, &msg[offset], tosend); if (ret != tosend) { if (ret == -EIO && retries < 5) { retries++; goto retry; } DRM_DEBUG_KMS("failed to dpcd write %d %d\n", tosend, ret); WARN(1, "fail\n"); return -EIO; } offset += tosend; total -= tosend; } while (total > 0); return 0; } static int set_hdr_from_dst_qlock(struct drm_dp_sideband_msg_hdr *hdr, struct drm_dp_sideband_msg_tx *txmsg) { struct drm_dp_mst_branch *mstb = txmsg->dst; /* both msg slots are full */ if (txmsg->seqno == -1) { if (mstb->tx_slots[0] && mstb->tx_slots[1]) { DRM_DEBUG_KMS("%s: failed to find slot\n", __func__); return -EAGAIN; } if (mstb->tx_slots[0] == NULL && mstb->tx_slots[1] == NULL) { txmsg->seqno = mstb->last_seqno; mstb->last_seqno ^= 1; } else if (mstb->tx_slots[0] == NULL) txmsg->seqno = 0; else txmsg->seqno = 1; mstb->tx_slots[txmsg->seqno] = txmsg; } hdr->broadcast = 0; hdr->path_msg = txmsg->path_msg; hdr->lct = mstb->lct; hdr->lcr = mstb->lct - 1; if (mstb->lct > 1) memcpy(hdr->rad, mstb->rad, mstb->lct / 2); hdr->seqno = txmsg->seqno; return 0; } /* * process a single block of the next message in the sideband queue */ static int process_single_tx_qlock(struct drm_dp_mst_topology_mgr *mgr, struct drm_dp_sideband_msg_tx *txmsg, bool up) { u8 chunk[48]; struct drm_dp_sideband_msg_hdr hdr; int len, space, idx, tosend; int ret; memset(&hdr, 0, sizeof(struct drm_dp_sideband_msg_hdr)); if (txmsg->state == DRM_DP_SIDEBAND_TX_QUEUED) { txmsg->seqno = -1; txmsg->state = DRM_DP_SIDEBAND_TX_START_SEND; } /* make hdr from dst mst - for replies use seqno otherwise assign one */ ret = set_hdr_from_dst_qlock(&hdr, txmsg); if (ret < 0) return ret; /* amount left to send in this message */ len = txmsg->cur_len - txmsg->cur_offset; /* 48 - sideband msg size - 1 byte for data CRC, x header bytes */ space = 48 - 1 - drm_dp_calc_sb_hdr_size(&hdr); tosend = min(len, space); if (len == txmsg->cur_len) hdr.somt = 1; if (space >= len) hdr.eomt = 1; hdr.msg_len = tosend + 1; drm_dp_encode_sideband_msg_hdr(&hdr, chunk, &idx); memcpy(&chunk[idx], &txmsg->msg[txmsg->cur_offset], tosend); /* add crc at end */ drm_dp_crc_sideband_chunk_req(&chunk[idx], tosend); idx += tosend + 1; ret = drm_dp_send_sideband_msg(mgr, up, chunk, idx); if (ret) { DRM_DEBUG_KMS("sideband msg failed to send\n"); return ret; } txmsg->cur_offset += tosend; if (txmsg->cur_offset == txmsg->cur_len) { txmsg->state = DRM_DP_SIDEBAND_TX_SENT; return 1; } return 0; } /* must be called holding qlock */ static void process_single_down_tx_qlock(struct drm_dp_mst_topology_mgr *mgr) { struct drm_dp_sideband_msg_tx *txmsg; int ret; /* construct a chunk from the first msg in the tx_msg queue */ if (list_empty(&mgr->tx_msg_downq)) { mgr->tx_down_in_progress = false; return; } mgr->tx_down_in_progress = true; txmsg = list_first_entry(&mgr->tx_msg_downq, struct drm_dp_sideband_msg_tx, next); ret = process_single_tx_qlock(mgr, txmsg, false); if (ret == 1) { /* txmsg is sent it should be in the slots now */ list_del(&txmsg->next); } else if (ret) { DRM_DEBUG_KMS("failed to send msg in q %d\n", ret); list_del(&txmsg->next); if (txmsg->seqno != -1) txmsg->dst->tx_slots[txmsg->seqno] = NULL; txmsg->state = DRM_DP_SIDEBAND_TX_TIMEOUT; wake_up(&mgr->tx_waitq); } if (list_empty(&mgr->tx_msg_downq)) { mgr->tx_down_in_progress = false; return; } } /* called holding qlock */ static void process_single_up_tx_qlock(struct drm_dp_mst_topology_mgr *mgr) { struct drm_dp_sideband_msg_tx *txmsg; int ret; /* construct a chunk from the first msg in the tx_msg queue */ if (list_empty(&mgr->tx_msg_upq)) { mgr->tx_up_in_progress = false; return; } txmsg = list_first_entry(&mgr->tx_msg_upq, struct drm_dp_sideband_msg_tx, next); ret = process_single_tx_qlock(mgr, txmsg, true); if (ret == 1) { /* up txmsgs aren't put in slots - so free after we send it */ list_del(&txmsg->next); kfree(txmsg); } else if (ret) DRM_DEBUG_KMS("failed to send msg in q %d\n", ret); mgr->tx_up_in_progress = true; } static void drm_dp_queue_down_tx(struct drm_dp_mst_topology_mgr *mgr, struct drm_dp_sideband_msg_tx *txmsg) { mutex_lock(&mgr->qlock); list_add_tail(&txmsg->next, &mgr->tx_msg_downq); if (!mgr->tx_down_in_progress) process_single_down_tx_qlock(mgr); mutex_unlock(&mgr->qlock); } static int drm_dp_send_link_address(struct drm_dp_mst_topology_mgr *mgr, struct drm_dp_mst_branch *mstb) { int len; struct drm_dp_sideband_msg_tx *txmsg; int ret; txmsg = kzalloc(sizeof(*txmsg), GFP_KERNEL); if (!txmsg) return -ENOMEM; txmsg->dst = mstb; len = build_link_address(txmsg); drm_dp_queue_down_tx(mgr, txmsg); ret = drm_dp_mst_wait_tx_reply(mstb, txmsg); if (ret > 0) { int i; if (txmsg->reply.reply_type == 1) DRM_DEBUG_KMS("link address nak received\n"); else { DRM_DEBUG_KMS("link address reply: %d\n", txmsg->reply.u.link_addr.nports); for (i = 0; i < txmsg->reply.u.link_addr.nports; i++) { DRM_DEBUG_KMS("port %d: input %d, pdt: %d, pn: %d, dpcd_rev: %02x, mcs: %d, ddps: %d, ldps %d, sdp %d/%d\n", i, txmsg->reply.u.link_addr.ports[i].input_port, txmsg->reply.u.link_addr.ports[i].peer_device_type, txmsg->reply.u.link_addr.ports[i].port_number, txmsg->reply.u.link_addr.ports[i].dpcd_revision, txmsg->reply.u.link_addr.ports[i].mcs, txmsg->reply.u.link_addr.ports[i].ddps, txmsg->reply.u.link_addr.ports[i].legacy_device_plug_status, txmsg->reply.u.link_addr.ports[i].num_sdp_streams, txmsg->reply.u.link_addr.ports[i].num_sdp_stream_sinks); } for (i = 0; i < txmsg->reply.u.link_addr.nports; i++) { drm_dp_add_port(mstb, mgr->dev, &txmsg->reply.u.link_addr.ports[i]); } (*mgr->cbs->hotplug)(mgr); } } else DRM_DEBUG_KMS("link address failed %d\n", ret); kfree(txmsg); return 0; } static int drm_dp_send_enum_path_resources(struct drm_dp_mst_topology_mgr *mgr, struct drm_dp_mst_branch *mstb, struct drm_dp_mst_port *port) { int len; struct drm_dp_sideband_msg_tx *txmsg; int ret; txmsg = kzalloc(sizeof(*txmsg), GFP_KERNEL); if (!txmsg) return -ENOMEM; txmsg->dst = mstb; len = build_enum_path_resources(txmsg, port->port_num); drm_dp_queue_down_tx(mgr, txmsg); ret = drm_dp_mst_wait_tx_reply(mstb, txmsg); if (ret > 0) { if (txmsg->reply.reply_type == 1) DRM_DEBUG_KMS("enum path resources nak received\n"); else { if (port->port_num != txmsg->reply.u.path_resources.port_number) DRM_ERROR("got incorrect port in response\n"); DRM_DEBUG_KMS("enum path resources %d: %d %d\n", txmsg->reply.u.path_resources.port_number, txmsg->reply.u.path_resources.full_payload_bw_number, txmsg->reply.u.path_resources.avail_payload_bw_number); port->available_pbn = txmsg->reply.u.path_resources.avail_payload_bw_number; } } kfree(txmsg); return 0; } static int drm_dp_payload_send_msg(struct drm_dp_mst_topology_mgr *mgr, struct drm_dp_mst_port *port, int id, int pbn) { struct drm_dp_sideband_msg_tx *txmsg; struct drm_dp_mst_branch *mstb; int len, ret; mstb = drm_dp_get_validated_mstb_ref(mgr, port->parent); if (!mstb) return -EINVAL; txmsg = kzalloc(sizeof(*txmsg), GFP_KERNEL); if (!txmsg) { ret = -ENOMEM; goto fail_put; } txmsg->dst = mstb; len = build_allocate_payload(txmsg, port->port_num, id, pbn); drm_dp_queue_down_tx(mgr, txmsg); ret = drm_dp_mst_wait_tx_reply(mstb, txmsg); if (ret > 0) { if (txmsg->reply.reply_type == 1) { ret = -EINVAL; } else ret = 0; } kfree(txmsg); fail_put: drm_dp_put_mst_branch_device(mstb); return ret; } static int drm_dp_create_payload_step1(struct drm_dp_mst_topology_mgr *mgr, int id, struct drm_dp_payload *payload) { int ret; ret = drm_dp_dpcd_write_payload(mgr, id, payload); if (ret < 0) { payload->payload_state = 0; return ret; } payload->payload_state = DP_PAYLOAD_LOCAL; return 0; } static int drm_dp_create_payload_step2(struct drm_dp_mst_topology_mgr *mgr, struct drm_dp_mst_port *port, int id, struct drm_dp_payload *payload) { int ret; ret = drm_dp_payload_send_msg(mgr, port, id, port->vcpi.pbn); if (ret < 0) return ret; payload->payload_state = DP_PAYLOAD_REMOTE; return ret; } static int drm_dp_destroy_payload_step1(struct drm_dp_mst_topology_mgr *mgr, struct drm_dp_mst_port *port, int id, struct drm_dp_payload *payload) { DRM_DEBUG_KMS("\n"); /* its okay for these to fail */ if (port) { drm_dp_payload_send_msg(mgr, port, id, 0); } drm_dp_dpcd_write_payload(mgr, id, payload); payload->payload_state = DP_PAYLOAD_DELETE_LOCAL; return 0; } static int drm_dp_destroy_payload_step2(struct drm_dp_mst_topology_mgr *mgr, int id, struct drm_dp_payload *payload) { payload->payload_state = 0; return 0; } /** * drm_dp_update_payload_part1() - Execute payload update part 1 * @mgr: manager to use. * * This iterates over all proposed virtual channels, and tries to * allocate space in the link for them. For 0->slots transitions, * this step just writes the VCPI to the MST device. For slots->0 * transitions, this writes the updated VCPIs and removes the * remote VC payloads. * * after calling this the driver should generate ACT and payload * packets. */ int drm_dp_update_payload_part1(struct drm_dp_mst_topology_mgr *mgr) { int i, j; int cur_slots = 1; struct drm_dp_payload req_payload; struct drm_dp_mst_port *port; mutex_lock(&mgr->payload_lock); for (i = 0; i < mgr->max_payloads; i++) { /* solve the current payloads - compare to the hw ones - update the hw view */ req_payload.start_slot = cur_slots; if (mgr->proposed_vcpis[i]) { port = container_of(mgr->proposed_vcpis[i], struct drm_dp_mst_port, vcpi); req_payload.num_slots = mgr->proposed_vcpis[i]->num_slots; } else { port = NULL; req_payload.num_slots = 0; } if (mgr->payloads[i].start_slot != req_payload.start_slot) { mgr->payloads[i].start_slot = req_payload.start_slot; } /* work out what is required to happen with this payload */ if (mgr->payloads[i].num_slots != req_payload.num_slots) { /* need to push an update for this payload */ if (req_payload.num_slots) { drm_dp_create_payload_step1(mgr, mgr->proposed_vcpis[i]->vcpi, &req_payload); mgr->payloads[i].num_slots = req_payload.num_slots; } else if (mgr->payloads[i].num_slots) { mgr->payloads[i].num_slots = 0; drm_dp_destroy_payload_step1(mgr, port, port->vcpi.vcpi, &mgr->payloads[i]); req_payload.payload_state = mgr->payloads[i].payload_state; mgr->payloads[i].start_slot = 0; } mgr->payloads[i].payload_state = req_payload.payload_state; } cur_slots += req_payload.num_slots; } for (i = 0; i < mgr->max_payloads; i++) { if (mgr->payloads[i].payload_state == DP_PAYLOAD_DELETE_LOCAL) { DRM_DEBUG_KMS("removing payload %d\n", i); for (j = i; j < mgr->max_payloads - 1; j++) { memcpy(&mgr->payloads[j], &mgr->payloads[j + 1], sizeof(struct drm_dp_payload)); mgr->proposed_vcpis[j] = mgr->proposed_vcpis[j + 1]; if (mgr->proposed_vcpis[j] && mgr->proposed_vcpis[j]->num_slots) { set_bit(j + 1, &mgr->payload_mask); } else { clear_bit(j + 1, &mgr->payload_mask); } } memset(&mgr->payloads[mgr->max_payloads - 1], 0, sizeof(struct drm_dp_payload)); mgr->proposed_vcpis[mgr->max_payloads - 1] = NULL; clear_bit(mgr->max_payloads, &mgr->payload_mask); } } mutex_unlock(&mgr->payload_lock); return 0; } EXPORT_SYMBOL(drm_dp_update_payload_part1); /** * drm_dp_update_payload_part2() - Execute payload update part 2 * @mgr: manager to use. * * This iterates over all proposed virtual channels, and tries to * allocate space in the link for them. For 0->slots transitions, * this step writes the remote VC payload commands. For slots->0 * this just resets some internal state. */ int drm_dp_update_payload_part2(struct drm_dp_mst_topology_mgr *mgr) { struct drm_dp_mst_port *port; int i; int ret = 0; mutex_lock(&mgr->payload_lock); for (i = 0; i < mgr->max_payloads; i++) { if (!mgr->proposed_vcpis[i]) continue; port = container_of(mgr->proposed_vcpis[i], struct drm_dp_mst_port, vcpi); DRM_DEBUG_KMS("payload %d %d\n", i, mgr->payloads[i].payload_state); if (mgr->payloads[i].payload_state == DP_PAYLOAD_LOCAL) { ret = drm_dp_create_payload_step2(mgr, port, mgr->proposed_vcpis[i]->vcpi, &mgr->payloads[i]); } else if (mgr->payloads[i].payload_state == DP_PAYLOAD_DELETE_LOCAL) { ret = drm_dp_destroy_payload_step2(mgr, mgr->proposed_vcpis[i]->vcpi, &mgr->payloads[i]); } if (ret) { mutex_unlock(&mgr->payload_lock); return ret; } } mutex_unlock(&mgr->payload_lock); return 0; } EXPORT_SYMBOL(drm_dp_update_payload_part2); #if 0 /* unused as of yet */ static int drm_dp_send_dpcd_read(struct drm_dp_mst_topology_mgr *mgr, struct drm_dp_mst_port *port, int offset, int size) { int len; struct drm_dp_sideband_msg_tx *txmsg; txmsg = kzalloc(sizeof(*txmsg), GFP_KERNEL); if (!txmsg) return -ENOMEM; len = build_dpcd_read(txmsg, port->port_num, 0, 8); txmsg->dst = port->parent; drm_dp_queue_down_tx(mgr, txmsg); return 0; } #endif static int drm_dp_send_dpcd_write(struct drm_dp_mst_topology_mgr *mgr, struct drm_dp_mst_port *port, int offset, int size, u8 *bytes) { int len; int ret; struct drm_dp_sideband_msg_tx *txmsg; struct drm_dp_mst_branch *mstb; mstb = drm_dp_get_validated_mstb_ref(mgr, port->parent); if (!mstb) return -EINVAL; txmsg = kzalloc(sizeof(*txmsg), GFP_KERNEL); if (!txmsg) { ret = -ENOMEM; goto fail_put; } len = build_dpcd_write(txmsg, port->port_num, offset, size, bytes); txmsg->dst = mstb; drm_dp_queue_down_tx(mgr, txmsg); ret = drm_dp_mst_wait_tx_reply(mstb, txmsg); if (ret > 0) { if (txmsg->reply.reply_type == 1) { ret = -EINVAL; } else ret = 0; } kfree(txmsg); fail_put: drm_dp_put_mst_branch_device(mstb); return ret; } static int drm_dp_encode_up_ack_reply(struct drm_dp_sideband_msg_tx *msg, u8 req_type) { struct drm_dp_sideband_msg_reply_body reply; reply.reply_type = 1; reply.req_type = req_type; drm_dp_encode_sideband_reply(&reply, msg); return 0; } static int drm_dp_send_up_ack_reply(struct drm_dp_mst_topology_mgr *mgr, struct drm_dp_mst_branch *mstb, int req_type, int seqno, bool broadcast) { struct drm_dp_sideband_msg_tx *txmsg; txmsg = kzalloc(sizeof(*txmsg), GFP_KERNEL); if (!txmsg) return -ENOMEM; txmsg->dst = mstb; txmsg->seqno = seqno; drm_dp_encode_up_ack_reply(txmsg, req_type); mutex_lock(&mgr->qlock); list_add_tail(&txmsg->next, &mgr->tx_msg_upq); if (!mgr->tx_up_in_progress) { process_single_up_tx_qlock(mgr); } mutex_unlock(&mgr->qlock); return 0; } static int drm_dp_get_vc_payload_bw(int dp_link_bw, int dp_link_count) { switch (dp_link_bw) { case DP_LINK_BW_1_62: return 3 * dp_link_count; case DP_LINK_BW_2_7: return 5 * dp_link_count; case DP_LINK_BW_5_4: return 10 * dp_link_count; } BUG(); } /** * drm_dp_mst_topology_mgr_set_mst() - Set the MST state for a topology manager * @mgr: manager to set state for * @mst_state: true to enable MST on this connector - false to disable. * * This is called by the driver when it detects an MST capable device plugged * into a DP MST capable port, or when a DP MST capable device is unplugged. */ int drm_dp_mst_topology_mgr_set_mst(struct drm_dp_mst_topology_mgr *mgr, bool mst_state) { int ret = 0; struct drm_dp_mst_branch *mstb = NULL; mutex_lock(&mgr->lock); if (mst_state == mgr->mst_state) goto out_unlock; mgr->mst_state = mst_state; /* set the device into MST mode */ if (mst_state) { WARN_ON(mgr->mst_primary); /* get dpcd info */ ret = drm_dp_dpcd_read(mgr->aux, DP_DPCD_REV, mgr->dpcd, DP_RECEIVER_CAP_SIZE); if (ret != DP_RECEIVER_CAP_SIZE) { DRM_DEBUG_KMS("failed to read DPCD\n"); goto out_unlock; } mgr->pbn_div = drm_dp_get_vc_payload_bw(mgr->dpcd[1], mgr->dpcd[2] & DP_MAX_LANE_COUNT_MASK); mgr->total_pbn = 2560; mgr->total_slots = DIV_ROUND_UP(mgr->total_pbn, mgr->pbn_div); mgr->avail_slots = mgr->total_slots; /* add initial branch device at LCT 1 */ mstb = drm_dp_add_mst_branch_device(1, NULL); if (mstb == NULL) { ret = -ENOMEM; goto out_unlock; } mstb->mgr = mgr; /* give this the main reference */ mgr->mst_primary = mstb; kref_get(&mgr->mst_primary->kref); { struct drm_dp_payload reset_pay; reset_pay.start_slot = 0; reset_pay.num_slots = 0x3f; drm_dp_dpcd_write_payload(mgr, 0, &reset_pay); } ret = drm_dp_dpcd_writeb(mgr->aux, DP_MSTM_CTRL, DP_MST_EN | DP_UP_REQ_EN | DP_UPSTREAM_IS_SRC); if (ret < 0) { goto out_unlock; } /* sort out guid */ ret = drm_dp_dpcd_read(mgr->aux, DP_GUID, mgr->guid, 16); if (ret != 16) { DRM_DEBUG_KMS("failed to read DP GUID %d\n", ret); goto out_unlock; } mgr->guid_valid = drm_dp_validate_guid(mgr, mgr->guid); if (!mgr->guid_valid) { ret = drm_dp_dpcd_write(mgr->aux, DP_GUID, mgr->guid, 16); mgr->guid_valid = true; } queue_work(system_long_wq, &mgr->work); ret = 0; } else { /* disable MST on the device */ mstb = mgr->mst_primary; mgr->mst_primary = NULL; /* this can fail if the device is gone */ drm_dp_dpcd_writeb(mgr->aux, DP_MSTM_CTRL, 0); ret = 0; memset(mgr->payloads, 0, mgr->max_payloads * sizeof(struct drm_dp_payload)); mgr->payload_mask = 0; set_bit(0, &mgr->payload_mask); mgr->vcpi_mask = 0; } out_unlock: mutex_unlock(&mgr->lock); if (mstb) drm_dp_put_mst_branch_device(mstb); return ret; } EXPORT_SYMBOL(drm_dp_mst_topology_mgr_set_mst); /** * drm_dp_mst_topology_mgr_suspend() - suspend the MST manager * @mgr: manager to suspend * * This function tells the MST device that we can't handle UP messages * anymore. This should stop it from sending any since we are suspended. */ void drm_dp_mst_topology_mgr_suspend(struct drm_dp_mst_topology_mgr *mgr) { mutex_lock(&mgr->lock); drm_dp_dpcd_writeb(mgr->aux, DP_MSTM_CTRL, DP_MST_EN | DP_UPSTREAM_IS_SRC); mutex_unlock(&mgr->lock); } EXPORT_SYMBOL(drm_dp_mst_topology_mgr_suspend); /** * drm_dp_mst_topology_mgr_resume() - resume the MST manager * @mgr: manager to resume * * This will fetch DPCD and see if the device is still there, * if it is, it will rewrite the MSTM control bits, and return. * * if the device fails this returns -1, and the driver should do * a full MST reprobe, in case we were undocked. */ int drm_dp_mst_topology_mgr_resume(struct drm_dp_mst_topology_mgr *mgr) { int ret = 0; mutex_lock(&mgr->lock); if (mgr->mst_primary) { int sret; sret = drm_dp_dpcd_read(mgr->aux, DP_DPCD_REV, mgr->dpcd, DP_RECEIVER_CAP_SIZE); if (sret != DP_RECEIVER_CAP_SIZE) { DRM_DEBUG_KMS("dpcd read failed - undocked during suspend?\n"); ret = -1; goto out_unlock; } ret = drm_dp_dpcd_writeb(mgr->aux, DP_MSTM_CTRL, DP_MST_EN | DP_UP_REQ_EN | DP_UPSTREAM_IS_SRC); if (ret < 0) { DRM_DEBUG_KMS("mst write failed - undocked during suspend?\n"); ret = -1; goto out_unlock; } ret = 0; } else ret = -1; out_unlock: mutex_unlock(&mgr->lock); return ret; } EXPORT_SYMBOL(drm_dp_mst_topology_mgr_resume); static void drm_dp_get_one_sb_msg(struct drm_dp_mst_topology_mgr *mgr, bool up) { int len; u8 replyblock[32]; int replylen, origlen, curreply; int ret; struct drm_dp_sideband_msg_rx *msg; int basereg = up ? DP_SIDEBAND_MSG_UP_REQ_BASE : DP_SIDEBAND_MSG_DOWN_REP_BASE; msg = up ? &mgr->up_req_recv : &mgr->down_rep_recv; len = min(mgr->max_dpcd_transaction_bytes, 16); ret = drm_dp_dpcd_read(mgr->aux, basereg, replyblock, len); if (ret != len) { DRM_DEBUG_KMS("failed to read DPCD down rep %d %d\n", len, ret); return; } ret = drm_dp_sideband_msg_build(msg, replyblock, len, true); if (!ret) { DRM_DEBUG_KMS("sideband msg build failed %d\n", replyblock[0]); return; } replylen = msg->curchunk_len + msg->curchunk_hdrlen; origlen = replylen; replylen -= len; curreply = len; while (replylen > 0) { len = min3(replylen, mgr->max_dpcd_transaction_bytes, 16); ret = drm_dp_dpcd_read(mgr->aux, basereg + curreply, replyblock, len); if (ret != len) { DRM_DEBUG_KMS("failed to read a chunk\n"); } ret = drm_dp_sideband_msg_build(msg, replyblock, len, false); if (ret == false) DRM_DEBUG_KMS("failed to build sideband msg\n"); curreply += len; replylen -= len; } } static int drm_dp_mst_handle_down_rep(struct drm_dp_mst_topology_mgr *mgr) { int ret = 0; drm_dp_get_one_sb_msg(mgr, false); if (mgr->down_rep_recv.have_eomt) { struct drm_dp_sideband_msg_tx *txmsg; struct drm_dp_mst_branch *mstb; int slot = -1; mstb = drm_dp_get_mst_branch_device(mgr, mgr->down_rep_recv.initial_hdr.lct, mgr->down_rep_recv.initial_hdr.rad); if (!mstb) { DRM_DEBUG_KMS("Got MST reply from unknown device %d\n", mgr->down_rep_recv.initial_hdr.lct); memset(&mgr->down_rep_recv, 0, sizeof(struct drm_dp_sideband_msg_rx)); return 0; } /* find the message */ slot = mgr->down_rep_recv.initial_hdr.seqno; mutex_lock(&mgr->qlock); txmsg = mstb->tx_slots[slot]; /* remove from slots */ mutex_unlock(&mgr->qlock); if (!txmsg) { DRM_DEBUG_KMS("Got MST reply with no msg %p %d %d %02x %02x\n", mstb, mgr->down_rep_recv.initial_hdr.seqno, mgr->down_rep_recv.initial_hdr.lct, mgr->down_rep_recv.initial_hdr.rad[0], mgr->down_rep_recv.msg[0]); drm_dp_put_mst_branch_device(mstb); memset(&mgr->down_rep_recv, 0, sizeof(struct drm_dp_sideband_msg_rx)); return 0; } drm_dp_sideband_parse_reply(&mgr->down_rep_recv, &txmsg->reply); if (txmsg->reply.reply_type == 1) { DRM_DEBUG_KMS("Got NAK reply: req 0x%02x, reason 0x%02x, nak data 0x%02x\n", txmsg->reply.req_type, txmsg->reply.u.nak.reason, txmsg->reply.u.nak.nak_data); } memset(&mgr->down_rep_recv, 0, sizeof(struct drm_dp_sideband_msg_rx)); drm_dp_put_mst_branch_device(mstb); mutex_lock(&mgr->qlock); txmsg->state = DRM_DP_SIDEBAND_TX_RX; mstb->tx_slots[slot] = NULL; mutex_unlock(&mgr->qlock); wake_up(&mgr->tx_waitq); } return ret; } static int drm_dp_mst_handle_up_req(struct drm_dp_mst_topology_mgr *mgr) { int ret = 0; drm_dp_get_one_sb_msg(mgr, true); if (mgr->up_req_recv.have_eomt) { struct drm_dp_sideband_msg_req_body msg; struct drm_dp_mst_branch *mstb; bool seqno; mstb = drm_dp_get_mst_branch_device(mgr, mgr->up_req_recv.initial_hdr.lct, mgr->up_req_recv.initial_hdr.rad); if (!mstb) { DRM_DEBUG_KMS("Got MST reply from unknown device %d\n", mgr->up_req_recv.initial_hdr.lct); memset(&mgr->up_req_recv, 0, sizeof(struct drm_dp_sideband_msg_rx)); return 0; } seqno = mgr->up_req_recv.initial_hdr.seqno; drm_dp_sideband_parse_req(&mgr->up_req_recv, &msg); if (msg.req_type == DP_CONNECTION_STATUS_NOTIFY) { drm_dp_send_up_ack_reply(mgr, mstb, msg.req_type, seqno, false); drm_dp_update_port(mstb, &msg.u.conn_stat); DRM_DEBUG_KMS("Got CSN: pn: %d ldps:%d ddps: %d mcs: %d ip: %d pdt: %d\n", msg.u.conn_stat.port_number, msg.u.conn_stat.legacy_device_plug_status, msg.u.conn_stat.displayport_device_plug_status, msg.u.conn_stat.message_capability_status, msg.u.conn_stat.input_port, msg.u.conn_stat.peer_device_type); (*mgr->cbs->hotplug)(mgr); } else if (msg.req_type == DP_RESOURCE_STATUS_NOTIFY) { drm_dp_send_up_ack_reply(mgr, mstb, msg.req_type, seqno, false); DRM_DEBUG_KMS("Got RSN: pn: %d avail_pbn %d\n", msg.u.resource_stat.port_number, msg.u.resource_stat.available_pbn); } drm_dp_put_mst_branch_device(mstb); memset(&mgr->up_req_recv, 0, sizeof(struct drm_dp_sideband_msg_rx)); } return ret; } /** * drm_dp_mst_hpd_irq() - MST hotplug IRQ notify * @mgr: manager to notify irq for. * @esi: 4 bytes from SINK_COUNT_ESI * @handled: whether the hpd interrupt was consumed or not * * This should be called from the driver when it detects a short IRQ, * along with the value of the DEVICE_SERVICE_IRQ_VECTOR_ESI0. The * topology manager will process the sideband messages received as a result * of this. */ int drm_dp_mst_hpd_irq(struct drm_dp_mst_topology_mgr *mgr, u8 *esi, bool *handled) { int ret = 0; int sc; *handled = false; sc = esi[0] & 0x3f; if (sc != mgr->sink_count) { mgr->sink_count = sc; *handled = true; } if (esi[1] & DP_DOWN_REP_MSG_RDY) { ret = drm_dp_mst_handle_down_rep(mgr); *handled = true; } if (esi[1] & DP_UP_REQ_MSG_RDY) { ret |= drm_dp_mst_handle_up_req(mgr); *handled = true; } drm_dp_mst_kick_tx(mgr); return ret; } EXPORT_SYMBOL(drm_dp_mst_hpd_irq); /** * drm_dp_mst_detect_port() - get connection status for an MST port * @mgr: manager for this port * @port: unverified pointer to a port * * This returns the current connection state for a port. It validates the * port pointer still exists so the caller doesn't require a reference */ enum drm_connector_status drm_dp_mst_detect_port(struct drm_dp_mst_topology_mgr *mgr, struct drm_dp_mst_port *port) { enum drm_connector_status status = connector_status_disconnected; /* we need to search for the port in the mgr in case its gone */ port = drm_dp_get_validated_port_ref(mgr, port); if (!port) return connector_status_disconnected; if (!port->ddps) goto out; switch (port->pdt) { case DP_PEER_DEVICE_NONE: case DP_PEER_DEVICE_MST_BRANCHING: break; case DP_PEER_DEVICE_SST_SINK: status = connector_status_connected; break; case DP_PEER_DEVICE_DP_LEGACY_CONV: if (port->ldps) status = connector_status_connected; break; } out: drm_dp_put_port(port); return status; } EXPORT_SYMBOL(drm_dp_mst_detect_port); /** * drm_dp_mst_get_edid() - get EDID for an MST port * @connector: toplevel connector to get EDID for * @mgr: manager for this port * @port: unverified pointer to a port. * * This returns an EDID for the port connected to a connector, * It validates the pointer still exists so the caller doesn't require a * reference. */ struct edid *drm_dp_mst_get_edid(struct drm_connector *connector, struct drm_dp_mst_topology_mgr *mgr, struct drm_dp_mst_port *port) { struct edid *edid = NULL; /* we need to search for the port in the mgr in case its gone */ port = drm_dp_get_validated_port_ref(mgr, port); if (!port) return NULL; edid = drm_get_edid(connector, &port->aux.ddc); drm_dp_put_port(port); return edid; } EXPORT_SYMBOL(drm_dp_mst_get_edid); /** * drm_dp_find_vcpi_slots() - find slots for this PBN value * @mgr: manager to use * @pbn: payload bandwidth to convert into slots. */ int drm_dp_find_vcpi_slots(struct drm_dp_mst_topology_mgr *mgr, int pbn) { int num_slots; num_slots = DIV_ROUND_UP(pbn, mgr->pbn_div); if (num_slots > mgr->avail_slots) return -ENOSPC; return num_slots; } EXPORT_SYMBOL(drm_dp_find_vcpi_slots); static int drm_dp_init_vcpi(struct drm_dp_mst_topology_mgr *mgr, struct drm_dp_vcpi *vcpi, int pbn) { int num_slots; int ret; num_slots = DIV_ROUND_UP(pbn, mgr->pbn_div); if (num_slots > mgr->avail_slots) return -ENOSPC; vcpi->pbn = pbn; vcpi->aligned_pbn = num_slots * mgr->pbn_div; vcpi->num_slots = num_slots; ret = drm_dp_mst_assign_payload_id(mgr, vcpi); if (ret < 0) return ret; return 0; } /** * drm_dp_mst_allocate_vcpi() - Allocate a virtual channel * @mgr: manager for this port * @port: port to allocate a virtual channel for. * @pbn: payload bandwidth number to request * @slots: returned number of slots for this PBN. */ bool drm_dp_mst_allocate_vcpi(struct drm_dp_mst_topology_mgr *mgr, struct drm_dp_mst_port *port, int pbn, int *slots) { int ret; port = drm_dp_get_validated_port_ref(mgr, port); if (!port) return false; if (port->vcpi.vcpi > 0) { DRM_DEBUG_KMS("payload: vcpi %d already allocated for pbn %d - requested pbn %d\n", port->vcpi.vcpi, port->vcpi.pbn, pbn); if (pbn == port->vcpi.pbn) { *slots = port->vcpi.num_slots; return true; } } ret = drm_dp_init_vcpi(mgr, &port->vcpi, pbn); if (ret) { DRM_DEBUG_KMS("failed to init vcpi %d %d %d\n", DIV_ROUND_UP(pbn, mgr->pbn_div), mgr->avail_slots, ret); goto out; } DRM_DEBUG_KMS("initing vcpi for %d %d\n", pbn, port->vcpi.num_slots); *slots = port->vcpi.num_slots; drm_dp_put_port(port); return true; out: return false; } EXPORT_SYMBOL(drm_dp_mst_allocate_vcpi); /** * drm_dp_mst_reset_vcpi_slots() - Reset number of slots to 0 for VCPI * @mgr: manager for this port * @port: unverified pointer to a port. * * This just resets the number of slots for the ports VCPI for later programming. */ void drm_dp_mst_reset_vcpi_slots(struct drm_dp_mst_topology_mgr *mgr, struct drm_dp_mst_port *port) { port = drm_dp_get_validated_port_ref(mgr, port); if (!port) return; port->vcpi.num_slots = 0; drm_dp_put_port(port); } EXPORT_SYMBOL(drm_dp_mst_reset_vcpi_slots); /** * drm_dp_mst_deallocate_vcpi() - deallocate a VCPI * @mgr: manager for this port * @port: unverified port to deallocate vcpi for */ void drm_dp_mst_deallocate_vcpi(struct drm_dp_mst_topology_mgr *mgr, struct drm_dp_mst_port *port) { port = drm_dp_get_validated_port_ref(mgr, port); if (!port) return; drm_dp_mst_put_payload_id(mgr, port->vcpi.vcpi); port->vcpi.num_slots = 0; port->vcpi.pbn = 0; port->vcpi.aligned_pbn = 0; port->vcpi.vcpi = 0; drm_dp_put_port(port); } EXPORT_SYMBOL(drm_dp_mst_deallocate_vcpi); static int drm_dp_dpcd_write_payload(struct drm_dp_mst_topology_mgr *mgr, int id, struct drm_dp_payload *payload) { u8 payload_alloc[3], status; int ret; int retries = 0; drm_dp_dpcd_writeb(mgr->aux, DP_PAYLOAD_TABLE_UPDATE_STATUS, DP_PAYLOAD_TABLE_UPDATED); payload_alloc[0] = id; payload_alloc[1] = payload->start_slot; payload_alloc[2] = payload->num_slots; ret = drm_dp_dpcd_write(mgr->aux, DP_PAYLOAD_ALLOCATE_SET, payload_alloc, 3); if (ret != 3) { DRM_DEBUG_KMS("failed to write payload allocation %d\n", ret); goto fail; } retry: ret = drm_dp_dpcd_readb(mgr->aux, DP_PAYLOAD_TABLE_UPDATE_STATUS, &status); if (ret < 0) { DRM_DEBUG_KMS("failed to read payload table status %d\n", ret); goto fail; } if (!(status & DP_PAYLOAD_TABLE_UPDATED)) { retries++; if (retries < 20) { usleep_range(10000, 20000); goto retry; } DRM_DEBUG_KMS("status not set after read payload table status %d\n", status); ret = -EINVAL; goto fail; } ret = 0; fail: return ret; } /** * drm_dp_check_act_status() - Check ACT handled status. * @mgr: manager to use * * Check the payload status bits in the DPCD for ACT handled completion. */ int drm_dp_check_act_status(struct drm_dp_mst_topology_mgr *mgr) { u8 status; int ret; int count = 0; do { ret = drm_dp_dpcd_readb(mgr->aux, DP_PAYLOAD_TABLE_UPDATE_STATUS, &status); if (ret < 0) { DRM_DEBUG_KMS("failed to read payload table status %d\n", ret); goto fail; } if (status & DP_PAYLOAD_ACT_HANDLED) break; count++; udelay(100); } while (count < 30); if (!(status & DP_PAYLOAD_ACT_HANDLED)) { DRM_DEBUG_KMS("failed to get ACT bit %d after %d retries\n", status, count); ret = -EINVAL; goto fail; } return 0; fail: return ret; } EXPORT_SYMBOL(drm_dp_check_act_status); /** * drm_dp_calc_pbn_mode() - Calculate the PBN for a mode. * @clock: dot clock for the mode * @bpp: bpp for the mode. * * This uses the formula in the spec to calculate the PBN value for a mode. */ int drm_dp_calc_pbn_mode(int clock, int bpp) { fixed20_12 pix_bw; fixed20_12 fbpp; fixed20_12 result; fixed20_12 margin, tmp; u32 res; pix_bw.full = dfixed_const(clock); fbpp.full = dfixed_const(bpp); tmp.full = dfixed_const(8); fbpp.full = dfixed_div(fbpp, tmp); result.full = dfixed_mul(pix_bw, fbpp); margin.full = dfixed_const(54); tmp.full = dfixed_const(64); margin.full = dfixed_div(margin, tmp); result.full = dfixed_div(result, margin); margin.full = dfixed_const(1006); tmp.full = dfixed_const(1000); margin.full = dfixed_div(margin, tmp); result.full = dfixed_mul(result, margin); result.full = dfixed_div(result, tmp); result.full = dfixed_ceil(result); res = dfixed_trunc(result); return res; } EXPORT_SYMBOL(drm_dp_calc_pbn_mode); static int test_calc_pbn_mode(void) { int ret; ret = drm_dp_calc_pbn_mode(154000, 30); if (ret != 689) return -EINVAL; ret = drm_dp_calc_pbn_mode(234000, 30); if (ret != 1047) return -EINVAL; return 0; } /* we want to kick the TX after we've ack the up/down IRQs. */ static void drm_dp_mst_kick_tx(struct drm_dp_mst_topology_mgr *mgr) { queue_work(system_long_wq, &mgr->tx_work); } static void drm_dp_mst_dump_mstb(struct seq_file *m, struct drm_dp_mst_branch *mstb) { struct drm_dp_mst_port *port; int tabs = mstb->lct; char prefix[10]; int i; for (i = 0; i < tabs; i++) prefix[i] = '\t'; prefix[i] = '\0'; seq_printf(m, "%smst: %p, %d\n", prefix, mstb, mstb->num_ports); list_for_each_entry(port, &mstb->ports, next) { seq_printf(m, "%sport: %d: ddps: %d ldps: %d, %p, conn: %p\n", prefix, port->port_num, port->ddps, port->ldps, port, port->connector); if (port->mstb) drm_dp_mst_dump_mstb(m, port->mstb); } } static bool dump_dp_payload_table(struct drm_dp_mst_topology_mgr *mgr, char *buf) { int ret; int i; for (i = 0; i < 4; i++) { ret = drm_dp_dpcd_read(mgr->aux, DP_PAYLOAD_TABLE_UPDATE_STATUS + (i * 16), &buf[i * 16], 16); if (ret != 16) break; } if (i == 4) return true; return false; } /** * drm_dp_mst_dump_topology(): dump topology to seq file. * @m: seq_file to dump output to * @mgr: manager to dump current topology for. * * helper to dump MST topology to a seq file for debugfs. */ void drm_dp_mst_dump_topology(struct seq_file *m, struct drm_dp_mst_topology_mgr *mgr) { int i; struct drm_dp_mst_port *port; mutex_lock(&mgr->lock); if (mgr->mst_primary) drm_dp_mst_dump_mstb(m, mgr->mst_primary); /* dump VCPIs */ mutex_unlock(&mgr->lock); mutex_lock(&mgr->payload_lock); seq_printf(m, "vcpi: %lx %lx\n", mgr->payload_mask, mgr->vcpi_mask); for (i = 0; i < mgr->max_payloads; i++) { if (mgr->proposed_vcpis[i]) { port = container_of(mgr->proposed_vcpis[i], struct drm_dp_mst_port, vcpi); seq_printf(m, "vcpi %d: %d %d %d\n", i, port->port_num, port->vcpi.vcpi, port->vcpi.num_slots); } else seq_printf(m, "vcpi %d:unsed\n", i); } for (i = 0; i < mgr->max_payloads; i++) { seq_printf(m, "payload %d: %d, %d, %d\n", i, mgr->payloads[i].payload_state, mgr->payloads[i].start_slot, mgr->payloads[i].num_slots); } mutex_unlock(&mgr->payload_lock); mutex_lock(&mgr->lock); if (mgr->mst_primary) { u8 buf[64]; bool bret; int ret; ret = drm_dp_dpcd_read(mgr->aux, DP_DPCD_REV, buf, DP_RECEIVER_CAP_SIZE); seq_printf(m, "dpcd: "); for (i = 0; i < DP_RECEIVER_CAP_SIZE; i++) seq_printf(m, "%02x ", buf[i]); seq_printf(m, "\n"); ret = drm_dp_dpcd_read(mgr->aux, DP_FAUX_CAP, buf, 2); seq_printf(m, "faux/mst: "); for (i = 0; i < 2; i++) seq_printf(m, "%02x ", buf[i]); seq_printf(m, "\n"); ret = drm_dp_dpcd_read(mgr->aux, DP_MSTM_CTRL, buf, 1); seq_printf(m, "mst ctrl: "); for (i = 0; i < 1; i++) seq_printf(m, "%02x ", buf[i]); seq_printf(m, "\n"); bret = dump_dp_payload_table(mgr, buf); if (bret == true) { seq_printf(m, "payload table: "); for (i = 0; i < 63; i++) seq_printf(m, "%02x ", buf[i]); seq_printf(m, "\n"); } } mutex_unlock(&mgr->lock); } EXPORT_SYMBOL(drm_dp_mst_dump_topology); static void drm_dp_tx_work(struct work_struct *work) { struct drm_dp_mst_topology_mgr *mgr = container_of(work, struct drm_dp_mst_topology_mgr, tx_work); mutex_lock(&mgr->qlock); if (mgr->tx_down_in_progress) process_single_down_tx_qlock(mgr); mutex_unlock(&mgr->qlock); } /** * drm_dp_mst_topology_mgr_init - initialise a topology manager * @mgr: manager struct to initialise * @dev: device providing this structure - for i2c addition. * @aux: DP helper aux channel to talk to this device * @max_dpcd_transaction_bytes: hw specific DPCD transaction limit * @max_payloads: maximum number of payloads this GPU can source * @conn_base_id: the connector object ID the MST device is connected to. * * Return 0 for success, or negative error code on failure */ int drm_dp_mst_topology_mgr_init(struct drm_dp_mst_topology_mgr *mgr, struct device *dev, struct drm_dp_aux *aux, int max_dpcd_transaction_bytes, int max_payloads, int conn_base_id) { mutex_init(&mgr->lock); mutex_init(&mgr->qlock); mutex_init(&mgr->payload_lock); INIT_LIST_HEAD(&mgr->tx_msg_upq); INIT_LIST_HEAD(&mgr->tx_msg_downq); INIT_WORK(&mgr->work, drm_dp_mst_link_probe_work); INIT_WORK(&mgr->tx_work, drm_dp_tx_work); init_waitqueue_head(&mgr->tx_waitq); mgr->dev = dev; mgr->aux = aux; mgr->max_dpcd_transaction_bytes = max_dpcd_transaction_bytes; mgr->max_payloads = max_payloads; mgr->conn_base_id = conn_base_id; mgr->payloads = kcalloc(max_payloads, sizeof(struct drm_dp_payload), GFP_KERNEL); if (!mgr->payloads) return -ENOMEM; mgr->proposed_vcpis = kcalloc(max_payloads, sizeof(struct drm_dp_vcpi *), GFP_KERNEL); if (!mgr->proposed_vcpis) return -ENOMEM; set_bit(0, &mgr->payload_mask); test_calc_pbn_mode(); return 0; } EXPORT_SYMBOL(drm_dp_mst_topology_mgr_init); /** * drm_dp_mst_topology_mgr_destroy() - destroy topology manager. * @mgr: manager to destroy */ void drm_dp_mst_topology_mgr_destroy(struct drm_dp_mst_topology_mgr *mgr) { mutex_lock(&mgr->payload_lock); kfree(mgr->payloads); mgr->payloads = NULL; kfree(mgr->proposed_vcpis); mgr->proposed_vcpis = NULL; mutex_unlock(&mgr->payload_lock); mgr->dev = NULL; mgr->aux = NULL; } EXPORT_SYMBOL(drm_dp_mst_topology_mgr_destroy); /* I2C device */ static int drm_dp_mst_i2c_xfer(struct i2c_adapter *adapter, struct i2c_msg *msgs, int num) { struct drm_dp_aux *aux = adapter->algo_data; struct drm_dp_mst_port *port = container_of(aux, struct drm_dp_mst_port, aux); struct drm_dp_mst_branch *mstb; struct drm_dp_mst_topology_mgr *mgr = port->mgr; unsigned int i; bool reading = false; struct drm_dp_sideband_msg_req_body msg; struct drm_dp_sideband_msg_tx *txmsg = NULL; int ret; mstb = drm_dp_get_validated_mstb_ref(mgr, port->parent); if (!mstb) return -EREMOTEIO; /* construct i2c msg */ /* see if last msg is a read */ if (msgs[num - 1].flags & I2C_M_RD) reading = true; if (!reading) { DRM_DEBUG_KMS("Unsupported I2C transaction for MST device\n"); ret = -EIO; goto out; } msg.req_type = DP_REMOTE_I2C_READ; msg.u.i2c_read.num_transactions = num - 1; msg.u.i2c_read.port_number = port->port_num; for (i = 0; i < num - 1; i++) { msg.u.i2c_read.transactions[i].i2c_dev_id = msgs[i].addr; msg.u.i2c_read.transactions[i].num_bytes = msgs[i].len; msg.u.i2c_read.transactions[i].bytes = msgs[i].buf; } msg.u.i2c_read.read_i2c_device_id = msgs[num - 1].addr; msg.u.i2c_read.num_bytes_read = msgs[num - 1].len; txmsg = kzalloc(sizeof(*txmsg), GFP_KERNEL); if (!txmsg) { ret = -ENOMEM; goto out; } txmsg->dst = mstb; drm_dp_encode_sideband_req(&msg, txmsg); drm_dp_queue_down_tx(mgr, txmsg); ret = drm_dp_mst_wait_tx_reply(mstb, txmsg); if (ret > 0) { if (txmsg->reply.reply_type == 1) { /* got a NAK back */ ret = -EREMOTEIO; goto out; } if (txmsg->reply.u.remote_i2c_read_ack.num_bytes != msgs[num - 1].len) { ret = -EIO; goto out; } memcpy(msgs[num - 1].buf, txmsg->reply.u.remote_i2c_read_ack.bytes, msgs[num - 1].len); ret = num; } out: kfree(txmsg); drm_dp_put_mst_branch_device(mstb); return ret; } static u32 drm_dp_mst_i2c_functionality(struct i2c_adapter *adapter) { return I2C_FUNC_I2C | I2C_FUNC_SMBUS_EMUL | I2C_FUNC_SMBUS_READ_BLOCK_DATA | I2C_FUNC_SMBUS_BLOCK_PROC_CALL | I2C_FUNC_10BIT_ADDR; } static const struct i2c_algorithm drm_dp_mst_i2c_algo = { .functionality = drm_dp_mst_i2c_functionality, .master_xfer = drm_dp_mst_i2c_xfer, }; /** * drm_dp_mst_register_i2c_bus() - register an I2C adapter for I2C-over-AUX * @aux: DisplayPort AUX channel * * Returns 0 on success or a negative error code on failure. */ static int drm_dp_mst_register_i2c_bus(struct drm_dp_aux *aux) { aux->ddc.algo = &drm_dp_mst_i2c_algo; aux->ddc.algo_data = aux; aux->ddc.retries = 3; aux->ddc.class = I2C_CLASS_DDC; aux->ddc.owner = THIS_MODULE; aux->ddc.dev.parent = aux->dev; aux->ddc.dev.of_node = aux->dev->of_node; strlcpy(aux->ddc.name, aux->name ? aux->name : dev_name(aux->dev), sizeof(aux->ddc.name)); return i2c_add_adapter(&aux->ddc); } /** * drm_dp_mst_unregister_i2c_bus() - unregister an I2C-over-AUX adapter * @aux: DisplayPort AUX channel */ static void drm_dp_mst_unregister_i2c_bus(struct drm_dp_aux *aux) { i2c_del_adapter(&aux->ddc); }