/* * Copyright (c) 2016-2018, The Linux Foundation. All rights reserved. * Copyright (C) 2013 Red Hat * Author: Rob Clark * * This program is free software; you can redistribute it and/or modify it * under the terms of the GNU General Public License version 2 as published by * the Free Software Foundation. * * This program is distributed in the hope that it will be useful, but WITHOUT * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or * FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License for * more details. * * You should have received a copy of the GNU General Public License along with * this program. If not, see . */ #include #include #include #include "msm_drv.h" #include "msm_debugfs.h" #include "msm_fence.h" #include "msm_gpu.h" #include "msm_kms.h" /* * MSM driver version: * - 1.0.0 - initial interface * - 1.1.0 - adds madvise, and support for submits with > 4 cmd buffers * - 1.2.0 - adds explicit fence support for submit ioctl * - 1.3.0 - adds GMEM_BASE + NR_RINGS params, SUBMITQUEUE_NEW + * SUBMITQUEUE_CLOSE ioctls, and MSM_INFO_IOVA flag for * MSM_GEM_INFO ioctl. */ #define MSM_VERSION_MAJOR 1 #define MSM_VERSION_MINOR 3 #define MSM_VERSION_PATCHLEVEL 0 static const struct drm_mode_config_funcs mode_config_funcs = { .fb_create = msm_framebuffer_create, .output_poll_changed = drm_fb_helper_output_poll_changed, .atomic_check = drm_atomic_helper_check, .atomic_commit = drm_atomic_helper_commit, }; static const struct drm_mode_config_helper_funcs mode_config_helper_funcs = { .atomic_commit_tail = msm_atomic_commit_tail, }; #ifdef CONFIG_DRM_MSM_REGISTER_LOGGING static bool reglog = false; MODULE_PARM_DESC(reglog, "Enable register read/write logging"); module_param(reglog, bool, 0600); #else #define reglog 0 #endif #ifdef CONFIG_DRM_FBDEV_EMULATION static bool fbdev = true; MODULE_PARM_DESC(fbdev, "Enable fbdev compat layer"); module_param(fbdev, bool, 0600); #endif static char *vram = "16m"; MODULE_PARM_DESC(vram, "Configure VRAM size (for devices without IOMMU/GPUMMU)"); module_param(vram, charp, 0); bool dumpstate = false; MODULE_PARM_DESC(dumpstate, "Dump KMS state on errors"); module_param(dumpstate, bool, 0600); static bool modeset = true; MODULE_PARM_DESC(modeset, "Use kernel modesetting [KMS] (1=on (default), 0=disable)"); module_param(modeset, bool, 0600); /* * Util/helpers: */ int msm_clk_bulk_get(struct device *dev, struct clk_bulk_data **bulk) { struct property *prop; const char *name; struct clk_bulk_data *local; int i = 0, ret, count; count = of_property_count_strings(dev->of_node, "clock-names"); if (count < 1) return 0; local = devm_kcalloc(dev, sizeof(struct clk_bulk_data *), count, GFP_KERNEL); if (!local) return -ENOMEM; of_property_for_each_string(dev->of_node, "clock-names", prop, name) { local[i].id = devm_kstrdup(dev, name, GFP_KERNEL); if (!local[i].id) { devm_kfree(dev, local); return -ENOMEM; } i++; } ret = devm_clk_bulk_get(dev, count, local); if (ret) { for (i = 0; i < count; i++) devm_kfree(dev, (void *) local[i].id); devm_kfree(dev, local); return ret; } *bulk = local; return count; } struct clk *msm_clk_bulk_get_clock(struct clk_bulk_data *bulk, int count, const char *name) { int i; char n[32]; snprintf(n, sizeof(n), "%s_clk", name); for (i = 0; bulk && i < count; i++) { if (!strcmp(bulk[i].id, name) || !strcmp(bulk[i].id, n)) return bulk[i].clk; } return NULL; } struct clk *msm_clk_get(struct platform_device *pdev, const char *name) { struct clk *clk; char name2[32]; clk = devm_clk_get(&pdev->dev, name); if (!IS_ERR(clk) || PTR_ERR(clk) == -EPROBE_DEFER) return clk; snprintf(name2, sizeof(name2), "%s_clk", name); clk = devm_clk_get(&pdev->dev, name2); if (!IS_ERR(clk)) dev_warn(&pdev->dev, "Using legacy clk name binding. Use " "\"%s\" instead of \"%s\"\n", name, name2); return clk; } void __iomem *msm_ioremap(struct platform_device *pdev, const char *name, const char *dbgname) { struct resource *res; unsigned long size; void __iomem *ptr; if (name) res = platform_get_resource_byname(pdev, IORESOURCE_MEM, name); else res = platform_get_resource(pdev, IORESOURCE_MEM, 0); if (!res) { dev_err(&pdev->dev, "failed to get memory resource: %s\n", name); return ERR_PTR(-EINVAL); } size = resource_size(res); ptr = devm_ioremap_nocache(&pdev->dev, res->start, size); if (!ptr) { dev_err(&pdev->dev, "failed to ioremap: %s\n", name); return ERR_PTR(-ENOMEM); } if (reglog) printk(KERN_DEBUG "IO:region %s %p %08lx\n", dbgname, ptr, size); return ptr; } void msm_writel(u32 data, void __iomem *addr) { if (reglog) printk(KERN_DEBUG "IO:W %p %08x\n", addr, data); writel(data, addr); } u32 msm_readl(const void __iomem *addr) { u32 val = readl(addr); if (reglog) pr_err("IO:R %p %08x\n", addr, val); return val; } struct vblank_event { struct list_head node; int crtc_id; bool enable; }; static void vblank_ctrl_worker(struct kthread_work *work) { struct msm_vblank_ctrl *vbl_ctrl = container_of(work, struct msm_vblank_ctrl, work); struct msm_drm_private *priv = container_of(vbl_ctrl, struct msm_drm_private, vblank_ctrl); struct msm_kms *kms = priv->kms; struct vblank_event *vbl_ev, *tmp; unsigned long flags; spin_lock_irqsave(&vbl_ctrl->lock, flags); list_for_each_entry_safe(vbl_ev, tmp, &vbl_ctrl->event_list, node) { list_del(&vbl_ev->node); spin_unlock_irqrestore(&vbl_ctrl->lock, flags); if (vbl_ev->enable) kms->funcs->enable_vblank(kms, priv->crtcs[vbl_ev->crtc_id]); else kms->funcs->disable_vblank(kms, priv->crtcs[vbl_ev->crtc_id]); kfree(vbl_ev); spin_lock_irqsave(&vbl_ctrl->lock, flags); } spin_unlock_irqrestore(&vbl_ctrl->lock, flags); } static int vblank_ctrl_queue_work(struct msm_drm_private *priv, int crtc_id, bool enable) { struct msm_vblank_ctrl *vbl_ctrl = &priv->vblank_ctrl; struct vblank_event *vbl_ev; unsigned long flags; vbl_ev = kzalloc(sizeof(*vbl_ev), GFP_ATOMIC); if (!vbl_ev) return -ENOMEM; vbl_ev->crtc_id = crtc_id; vbl_ev->enable = enable; spin_lock_irqsave(&vbl_ctrl->lock, flags); list_add_tail(&vbl_ev->node, &vbl_ctrl->event_list); spin_unlock_irqrestore(&vbl_ctrl->lock, flags); kthread_queue_work(&priv->disp_thread[crtc_id].worker, &vbl_ctrl->work); return 0; } static int msm_drm_uninit(struct device *dev) { struct platform_device *pdev = to_platform_device(dev); struct drm_device *ddev = platform_get_drvdata(pdev); struct msm_drm_private *priv = ddev->dev_private; struct msm_kms *kms = priv->kms; struct msm_mdss *mdss = priv->mdss; struct msm_vblank_ctrl *vbl_ctrl = &priv->vblank_ctrl; struct vblank_event *vbl_ev, *tmp; int i; /* We must cancel and cleanup any pending vblank enable/disable * work before drm_irq_uninstall() to avoid work re-enabling an * irq after uninstall has disabled it. */ kthread_flush_work(&vbl_ctrl->work); list_for_each_entry_safe(vbl_ev, tmp, &vbl_ctrl->event_list, node) { list_del(&vbl_ev->node); kfree(vbl_ev); } /* clean up display commit/event worker threads */ for (i = 0; i < priv->num_crtcs; i++) { if (priv->disp_thread[i].thread) { kthread_flush_worker(&priv->disp_thread[i].worker); kthread_stop(priv->disp_thread[i].thread); priv->disp_thread[i].thread = NULL; } if (priv->event_thread[i].thread) { kthread_flush_worker(&priv->event_thread[i].worker); kthread_stop(priv->event_thread[i].thread); priv->event_thread[i].thread = NULL; } } msm_gem_shrinker_cleanup(ddev); drm_kms_helper_poll_fini(ddev); drm_dev_unregister(ddev); msm_perf_debugfs_cleanup(priv); msm_rd_debugfs_cleanup(priv); #ifdef CONFIG_DRM_FBDEV_EMULATION if (fbdev && priv->fbdev) msm_fbdev_free(ddev); #endif drm_atomic_helper_shutdown(ddev); drm_mode_config_cleanup(ddev); pm_runtime_get_sync(dev); drm_irq_uninstall(ddev); pm_runtime_put_sync(dev); flush_workqueue(priv->wq); destroy_workqueue(priv->wq); if (kms && kms->funcs) kms->funcs->destroy(kms); if (priv->vram.paddr) { unsigned long attrs = DMA_ATTR_NO_KERNEL_MAPPING; drm_mm_takedown(&priv->vram.mm); dma_free_attrs(dev, priv->vram.size, NULL, priv->vram.paddr, attrs); } component_unbind_all(dev, ddev); if (mdss && mdss->funcs) mdss->funcs->destroy(ddev); ddev->dev_private = NULL; drm_dev_unref(ddev); kfree(priv); return 0; } #define KMS_MDP4 4 #define KMS_MDP5 5 #define KMS_DPU 3 static int get_mdp_ver(struct platform_device *pdev) { struct device *dev = &pdev->dev; return (int) (unsigned long) of_device_get_match_data(dev); } #include static int msm_init_vram(struct drm_device *dev) { struct msm_drm_private *priv = dev->dev_private; struct device_node *node; unsigned long size = 0; int ret = 0; /* In the device-tree world, we could have a 'memory-region' * phandle, which gives us a link to our "vram". Allocating * is all nicely abstracted behind the dma api, but we need * to know the entire size to allocate it all in one go. There * are two cases: * 1) device with no IOMMU, in which case we need exclusive * access to a VRAM carveout big enough for all gpu * buffers * 2) device with IOMMU, but where the bootloader puts up * a splash screen. In this case, the VRAM carveout * need only be large enough for fbdev fb. But we need * exclusive access to the buffer to avoid the kernel * using those pages for other purposes (which appears * as corruption on screen before we have a chance to * load and do initial modeset) */ node = of_parse_phandle(dev->dev->of_node, "memory-region", 0); if (node) { struct resource r; ret = of_address_to_resource(node, 0, &r); of_node_put(node); if (ret) return ret; size = r.end - r.start; DRM_INFO("using VRAM carveout: %lx@%pa\n", size, &r.start); /* if we have no IOMMU, then we need to use carveout allocator. * Grab the entire CMA chunk carved out in early startup in * mach-msm: */ } else if (!iommu_present(&platform_bus_type)) { DRM_INFO("using %s VRAM carveout\n", vram); size = memparse(vram, NULL); } if (size) { unsigned long attrs = 0; void *p; priv->vram.size = size; drm_mm_init(&priv->vram.mm, 0, (size >> PAGE_SHIFT) - 1); spin_lock_init(&priv->vram.lock); attrs |= DMA_ATTR_NO_KERNEL_MAPPING; attrs |= DMA_ATTR_WRITE_COMBINE; /* note that for no-kernel-mapping, the vaddr returned * is bogus, but non-null if allocation succeeded: */ p = dma_alloc_attrs(dev->dev, size, &priv->vram.paddr, GFP_KERNEL, attrs); if (!p) { dev_err(dev->dev, "failed to allocate VRAM\n"); priv->vram.paddr = 0; return -ENOMEM; } dev_info(dev->dev, "VRAM: %08x->%08x\n", (uint32_t)priv->vram.paddr, (uint32_t)(priv->vram.paddr + size)); } return ret; } static int msm_drm_init(struct device *dev, struct drm_driver *drv) { struct platform_device *pdev = to_platform_device(dev); struct drm_device *ddev; struct msm_drm_private *priv; struct msm_kms *kms; struct msm_mdss *mdss; int ret, i; struct sched_param param; ddev = drm_dev_alloc(drv, dev); if (IS_ERR(ddev)) { dev_err(dev, "failed to allocate drm_device\n"); return PTR_ERR(ddev); } platform_set_drvdata(pdev, ddev); priv = kzalloc(sizeof(*priv), GFP_KERNEL); if (!priv) { ret = -ENOMEM; goto err_unref_drm_dev; } ddev->dev_private = priv; priv->dev = ddev; switch (get_mdp_ver(pdev)) { case KMS_MDP5: ret = mdp5_mdss_init(ddev); break; case KMS_DPU: ret = dpu_mdss_init(ddev); break; default: ret = 0; break; } if (ret) goto err_free_priv; mdss = priv->mdss; priv->wq = alloc_ordered_workqueue("msm", 0); INIT_LIST_HEAD(&priv->inactive_list); INIT_LIST_HEAD(&priv->vblank_ctrl.event_list); kthread_init_work(&priv->vblank_ctrl.work, vblank_ctrl_worker); spin_lock_init(&priv->vblank_ctrl.lock); drm_mode_config_init(ddev); /* Bind all our sub-components: */ ret = component_bind_all(dev, ddev); if (ret) goto err_destroy_mdss; ret = msm_init_vram(ddev); if (ret) goto err_msm_uninit; msm_gem_shrinker_init(ddev); switch (get_mdp_ver(pdev)) { case KMS_MDP4: kms = mdp4_kms_init(ddev); priv->kms = kms; break; case KMS_MDP5: kms = mdp5_kms_init(ddev); break; case KMS_DPU: kms = dpu_kms_init(ddev); priv->kms = kms; break; default: kms = ERR_PTR(-ENODEV); break; } if (IS_ERR(kms)) { /* * NOTE: once we have GPU support, having no kms should not * be considered fatal.. ideally we would still support gpu * and (for example) use dmabuf/prime to share buffers with * imx drm driver on iMX5 */ dev_err(dev, "failed to load kms\n"); ret = PTR_ERR(kms); goto err_msm_uninit; } /* Enable normalization of plane zpos */ ddev->mode_config.normalize_zpos = true; if (kms) { ret = kms->funcs->hw_init(kms); if (ret) { dev_err(dev, "kms hw init failed: %d\n", ret); goto err_msm_uninit; } } ddev->mode_config.funcs = &mode_config_funcs; ddev->mode_config.helper_private = &mode_config_helper_funcs; /** * this priority was found during empiric testing to have appropriate * realtime scheduling to process display updates and interact with * other real time and normal priority task */ param.sched_priority = 16; for (i = 0; i < priv->num_crtcs; i++) { /* initialize display thread */ priv->disp_thread[i].crtc_id = priv->crtcs[i]->base.id; kthread_init_worker(&priv->disp_thread[i].worker); priv->disp_thread[i].dev = ddev; priv->disp_thread[i].thread = kthread_run(kthread_worker_fn, &priv->disp_thread[i].worker, "crtc_commit:%d", priv->disp_thread[i].crtc_id); ret = sched_setscheduler(priv->disp_thread[i].thread, SCHED_FIFO, ¶m); if (ret) pr_warn("display thread priority update failed: %d\n", ret); if (IS_ERR(priv->disp_thread[i].thread)) { dev_err(dev, "failed to create crtc_commit kthread\n"); priv->disp_thread[i].thread = NULL; } /* initialize event thread */ priv->event_thread[i].crtc_id = priv->crtcs[i]->base.id; kthread_init_worker(&priv->event_thread[i].worker); priv->event_thread[i].dev = ddev; priv->event_thread[i].thread = kthread_run(kthread_worker_fn, &priv->event_thread[i].worker, "crtc_event:%d", priv->event_thread[i].crtc_id); /** * event thread should also run at same priority as disp_thread * because it is handling frame_done events. A lower priority * event thread and higher priority disp_thread can causes * frame_pending counters beyond 2. This can lead to commit * failure at crtc commit level. */ ret = sched_setscheduler(priv->event_thread[i].thread, SCHED_FIFO, ¶m); if (ret) pr_warn("display event thread priority update failed: %d\n", ret); if (IS_ERR(priv->event_thread[i].thread)) { dev_err(dev, "failed to create crtc_event kthread\n"); priv->event_thread[i].thread = NULL; } if ((!priv->disp_thread[i].thread) || !priv->event_thread[i].thread) { /* clean up previously created threads if any */ for ( ; i >= 0; i--) { if (priv->disp_thread[i].thread) { kthread_stop( priv->disp_thread[i].thread); priv->disp_thread[i].thread = NULL; } if (priv->event_thread[i].thread) { kthread_stop( priv->event_thread[i].thread); priv->event_thread[i].thread = NULL; } } goto err_msm_uninit; } } ret = drm_vblank_init(ddev, priv->num_crtcs); if (ret < 0) { dev_err(dev, "failed to initialize vblank\n"); goto err_msm_uninit; } if (kms) { pm_runtime_get_sync(dev); ret = drm_irq_install(ddev, kms->irq); pm_runtime_put_sync(dev); if (ret < 0) { dev_err(dev, "failed to install IRQ handler\n"); goto err_msm_uninit; } } ret = drm_dev_register(ddev, 0); if (ret) goto err_msm_uninit; drm_mode_config_reset(ddev); #ifdef CONFIG_DRM_FBDEV_EMULATION if (fbdev) priv->fbdev = msm_fbdev_init(ddev); #endif ret = msm_debugfs_late_init(ddev); if (ret) goto err_msm_uninit; drm_kms_helper_poll_init(ddev); return 0; err_msm_uninit: msm_drm_uninit(dev); return ret; err_destroy_mdss: if (mdss && mdss->funcs) mdss->funcs->destroy(ddev); err_free_priv: kfree(priv); err_unref_drm_dev: drm_dev_unref(ddev); return ret; } /* * DRM operations: */ static void load_gpu(struct drm_device *dev) { static DEFINE_MUTEX(init_lock); struct msm_drm_private *priv = dev->dev_private; mutex_lock(&init_lock); if (!priv->gpu) priv->gpu = adreno_load_gpu(dev); mutex_unlock(&init_lock); } static int context_init(struct drm_device *dev, struct drm_file *file) { struct msm_file_private *ctx; ctx = kzalloc(sizeof(*ctx), GFP_KERNEL); if (!ctx) return -ENOMEM; msm_submitqueue_init(dev, ctx); file->driver_priv = ctx; return 0; } static int msm_open(struct drm_device *dev, struct drm_file *file) { /* For now, load gpu on open.. to avoid the requirement of having * firmware in the initrd. */ load_gpu(dev); return context_init(dev, file); } static void context_close(struct msm_file_private *ctx) { msm_submitqueue_close(ctx); kfree(ctx); } static void msm_postclose(struct drm_device *dev, struct drm_file *file) { struct msm_drm_private *priv = dev->dev_private; struct msm_file_private *ctx = file->driver_priv; mutex_lock(&dev->struct_mutex); if (ctx == priv->lastctx) priv->lastctx = NULL; mutex_unlock(&dev->struct_mutex); context_close(ctx); } static irqreturn_t msm_irq(int irq, void *arg) { struct drm_device *dev = arg; struct msm_drm_private *priv = dev->dev_private; struct msm_kms *kms = priv->kms; BUG_ON(!kms); return kms->funcs->irq(kms); } static void msm_irq_preinstall(struct drm_device *dev) { struct msm_drm_private *priv = dev->dev_private; struct msm_kms *kms = priv->kms; BUG_ON(!kms); kms->funcs->irq_preinstall(kms); } static int msm_irq_postinstall(struct drm_device *dev) { struct msm_drm_private *priv = dev->dev_private; struct msm_kms *kms = priv->kms; BUG_ON(!kms); return kms->funcs->irq_postinstall(kms); } static void msm_irq_uninstall(struct drm_device *dev) { struct msm_drm_private *priv = dev->dev_private; struct msm_kms *kms = priv->kms; BUG_ON(!kms); kms->funcs->irq_uninstall(kms); } static int msm_enable_vblank(struct drm_device *dev, unsigned int pipe) { struct msm_drm_private *priv = dev->dev_private; struct msm_kms *kms = priv->kms; if (!kms) return -ENXIO; DBG("dev=%p, crtc=%u", dev, pipe); return vblank_ctrl_queue_work(priv, pipe, true); } static void msm_disable_vblank(struct drm_device *dev, unsigned int pipe) { struct msm_drm_private *priv = dev->dev_private; struct msm_kms *kms = priv->kms; if (!kms) return; DBG("dev=%p, crtc=%u", dev, pipe); vblank_ctrl_queue_work(priv, pipe, false); } /* * DRM ioctls: */ static int msm_ioctl_get_param(struct drm_device *dev, void *data, struct drm_file *file) { struct msm_drm_private *priv = dev->dev_private; struct drm_msm_param *args = data; struct msm_gpu *gpu; /* for now, we just have 3d pipe.. eventually this would need to * be more clever to dispatch to appropriate gpu module: */ if (args->pipe != MSM_PIPE_3D0) return -EINVAL; gpu = priv->gpu; if (!gpu) return -ENXIO; return gpu->funcs->get_param(gpu, args->param, &args->value); } static int msm_ioctl_gem_new(struct drm_device *dev, void *data, struct drm_file *file) { struct drm_msm_gem_new *args = data; if (args->flags & ~MSM_BO_FLAGS) { DRM_ERROR("invalid flags: %08x\n", args->flags); return -EINVAL; } return msm_gem_new_handle(dev, file, args->size, args->flags, &args->handle); } static inline ktime_t to_ktime(struct drm_msm_timespec timeout) { return ktime_set(timeout.tv_sec, timeout.tv_nsec); } static int msm_ioctl_gem_cpu_prep(struct drm_device *dev, void *data, struct drm_file *file) { struct drm_msm_gem_cpu_prep *args = data; struct drm_gem_object *obj; ktime_t timeout = to_ktime(args->timeout); int ret; if (args->op & ~MSM_PREP_FLAGS) { DRM_ERROR("invalid op: %08x\n", args->op); return -EINVAL; } obj = drm_gem_object_lookup(file, args->handle); if (!obj) return -ENOENT; ret = msm_gem_cpu_prep(obj, args->op, &timeout); drm_gem_object_put_unlocked(obj); return ret; } static int msm_ioctl_gem_cpu_fini(struct drm_device *dev, void *data, struct drm_file *file) { struct drm_msm_gem_cpu_fini *args = data; struct drm_gem_object *obj; int ret; obj = drm_gem_object_lookup(file, args->handle); if (!obj) return -ENOENT; ret = msm_gem_cpu_fini(obj); drm_gem_object_put_unlocked(obj); return ret; } static int msm_ioctl_gem_info_iova(struct drm_device *dev, struct drm_gem_object *obj, uint64_t *iova) { struct msm_drm_private *priv = dev->dev_private; if (!priv->gpu) return -EINVAL; return msm_gem_get_iova(obj, priv->gpu->aspace, iova); } static int msm_ioctl_gem_info(struct drm_device *dev, void *data, struct drm_file *file) { struct drm_msm_gem_info *args = data; struct drm_gem_object *obj; int ret = 0; if (args->flags & ~MSM_INFO_FLAGS) return -EINVAL; obj = drm_gem_object_lookup(file, args->handle); if (!obj) return -ENOENT; if (args->flags & MSM_INFO_IOVA) { uint64_t iova; ret = msm_ioctl_gem_info_iova(dev, obj, &iova); if (!ret) args->offset = iova; } else { args->offset = msm_gem_mmap_offset(obj); } drm_gem_object_put_unlocked(obj); return ret; } static int msm_ioctl_wait_fence(struct drm_device *dev, void *data, struct drm_file *file) { struct msm_drm_private *priv = dev->dev_private; struct drm_msm_wait_fence *args = data; ktime_t timeout = to_ktime(args->timeout); struct msm_gpu_submitqueue *queue; struct msm_gpu *gpu = priv->gpu; int ret; if (args->pad) { DRM_ERROR("invalid pad: %08x\n", args->pad); return -EINVAL; } if (!gpu) return 0; queue = msm_submitqueue_get(file->driver_priv, args->queueid); if (!queue) return -ENOENT; ret = msm_wait_fence(gpu->rb[queue->prio]->fctx, args->fence, &timeout, true); msm_submitqueue_put(queue); return ret; } static int msm_ioctl_gem_madvise(struct drm_device *dev, void *data, struct drm_file *file) { struct drm_msm_gem_madvise *args = data; struct drm_gem_object *obj; int ret; switch (args->madv) { case MSM_MADV_DONTNEED: case MSM_MADV_WILLNEED: break; default: return -EINVAL; } ret = mutex_lock_interruptible(&dev->struct_mutex); if (ret) return ret; obj = drm_gem_object_lookup(file, args->handle); if (!obj) { ret = -ENOENT; goto unlock; } ret = msm_gem_madvise(obj, args->madv); if (ret >= 0) { args->retained = ret; ret = 0; } drm_gem_object_put(obj); unlock: mutex_unlock(&dev->struct_mutex); return ret; } static int msm_ioctl_submitqueue_new(struct drm_device *dev, void *data, struct drm_file *file) { struct drm_msm_submitqueue *args = data; if (args->flags & ~MSM_SUBMITQUEUE_FLAGS) return -EINVAL; return msm_submitqueue_create(dev, file->driver_priv, args->prio, args->flags, &args->id); } static int msm_ioctl_submitqueue_close(struct drm_device *dev, void *data, struct drm_file *file) { u32 id = *(u32 *) data; return msm_submitqueue_remove(file->driver_priv, id); } static const struct drm_ioctl_desc msm_ioctls[] = { DRM_IOCTL_DEF_DRV(MSM_GET_PARAM, msm_ioctl_get_param, DRM_AUTH|DRM_RENDER_ALLOW), DRM_IOCTL_DEF_DRV(MSM_GEM_NEW, msm_ioctl_gem_new, DRM_AUTH|DRM_RENDER_ALLOW), DRM_IOCTL_DEF_DRV(MSM_GEM_INFO, msm_ioctl_gem_info, DRM_AUTH|DRM_RENDER_ALLOW), DRM_IOCTL_DEF_DRV(MSM_GEM_CPU_PREP, msm_ioctl_gem_cpu_prep, DRM_AUTH|DRM_RENDER_ALLOW), DRM_IOCTL_DEF_DRV(MSM_GEM_CPU_FINI, msm_ioctl_gem_cpu_fini, DRM_AUTH|DRM_RENDER_ALLOW), DRM_IOCTL_DEF_DRV(MSM_GEM_SUBMIT, msm_ioctl_gem_submit, DRM_AUTH|DRM_RENDER_ALLOW), DRM_IOCTL_DEF_DRV(MSM_WAIT_FENCE, msm_ioctl_wait_fence, DRM_AUTH|DRM_RENDER_ALLOW), DRM_IOCTL_DEF_DRV(MSM_GEM_MADVISE, msm_ioctl_gem_madvise, DRM_AUTH|DRM_RENDER_ALLOW), DRM_IOCTL_DEF_DRV(MSM_SUBMITQUEUE_NEW, msm_ioctl_submitqueue_new, DRM_AUTH|DRM_RENDER_ALLOW), DRM_IOCTL_DEF_DRV(MSM_SUBMITQUEUE_CLOSE, msm_ioctl_submitqueue_close, DRM_AUTH|DRM_RENDER_ALLOW), }; static const struct vm_operations_struct vm_ops = { .fault = msm_gem_fault, .open = drm_gem_vm_open, .close = drm_gem_vm_close, }; static const struct file_operations fops = { .owner = THIS_MODULE, .open = drm_open, .release = drm_release, .unlocked_ioctl = drm_ioctl, .compat_ioctl = drm_compat_ioctl, .poll = drm_poll, .read = drm_read, .llseek = no_llseek, .mmap = msm_gem_mmap, }; static struct drm_driver msm_driver = { .driver_features = DRIVER_HAVE_IRQ | DRIVER_GEM | DRIVER_PRIME | DRIVER_RENDER | DRIVER_ATOMIC | DRIVER_MODESET, .open = msm_open, .postclose = msm_postclose, .lastclose = drm_fb_helper_lastclose, .irq_handler = msm_irq, .irq_preinstall = msm_irq_preinstall, .irq_postinstall = msm_irq_postinstall, .irq_uninstall = msm_irq_uninstall, .enable_vblank = msm_enable_vblank, .disable_vblank = msm_disable_vblank, .gem_free_object = msm_gem_free_object, .gem_vm_ops = &vm_ops, .dumb_create = msm_gem_dumb_create, .dumb_map_offset = msm_gem_dumb_map_offset, .prime_handle_to_fd = drm_gem_prime_handle_to_fd, .prime_fd_to_handle = drm_gem_prime_fd_to_handle, .gem_prime_export = drm_gem_prime_export, .gem_prime_import = drm_gem_prime_import, .gem_prime_res_obj = msm_gem_prime_res_obj, .gem_prime_pin = msm_gem_prime_pin, .gem_prime_unpin = msm_gem_prime_unpin, .gem_prime_get_sg_table = msm_gem_prime_get_sg_table, .gem_prime_import_sg_table = msm_gem_prime_import_sg_table, .gem_prime_vmap = msm_gem_prime_vmap, .gem_prime_vunmap = msm_gem_prime_vunmap, .gem_prime_mmap = msm_gem_prime_mmap, #ifdef CONFIG_DEBUG_FS .debugfs_init = msm_debugfs_init, #endif .ioctls = msm_ioctls, .num_ioctls = ARRAY_SIZE(msm_ioctls), .fops = &fops, .name = "msm", .desc = "MSM Snapdragon DRM", .date = "20130625", .major = MSM_VERSION_MAJOR, .minor = MSM_VERSION_MINOR, .patchlevel = MSM_VERSION_PATCHLEVEL, }; #ifdef CONFIG_PM_SLEEP static int msm_pm_suspend(struct device *dev) { struct drm_device *ddev = dev_get_drvdata(dev); struct msm_drm_private *priv = ddev->dev_private; struct msm_kms *kms = priv->kms; /* TODO: Use atomic helper suspend/resume */ if (kms && kms->funcs && kms->funcs->pm_suspend) return kms->funcs->pm_suspend(dev); drm_kms_helper_poll_disable(ddev); priv->pm_state = drm_atomic_helper_suspend(ddev); if (IS_ERR(priv->pm_state)) { drm_kms_helper_poll_enable(ddev); return PTR_ERR(priv->pm_state); } return 0; } static int msm_pm_resume(struct device *dev) { struct drm_device *ddev = dev_get_drvdata(dev); struct msm_drm_private *priv = ddev->dev_private; struct msm_kms *kms = priv->kms; /* TODO: Use atomic helper suspend/resume */ if (kms && kms->funcs && kms->funcs->pm_resume) return kms->funcs->pm_resume(dev); drm_atomic_helper_resume(ddev, priv->pm_state); drm_kms_helper_poll_enable(ddev); return 0; } #endif #ifdef CONFIG_PM static int msm_runtime_suspend(struct device *dev) { struct drm_device *ddev = dev_get_drvdata(dev); struct msm_drm_private *priv = ddev->dev_private; struct msm_mdss *mdss = priv->mdss; DBG(""); if (mdss && mdss->funcs) return mdss->funcs->disable(mdss); return 0; } static int msm_runtime_resume(struct device *dev) { struct drm_device *ddev = dev_get_drvdata(dev); struct msm_drm_private *priv = ddev->dev_private; struct msm_mdss *mdss = priv->mdss; DBG(""); if (mdss && mdss->funcs) return mdss->funcs->enable(mdss); return 0; } #endif static const struct dev_pm_ops msm_pm_ops = { SET_SYSTEM_SLEEP_PM_OPS(msm_pm_suspend, msm_pm_resume) SET_RUNTIME_PM_OPS(msm_runtime_suspend, msm_runtime_resume, NULL) }; /* * Componentized driver support: */ /* * NOTE: duplication of the same code as exynos or imx (or probably any other). * so probably some room for some helpers */ static int compare_of(struct device *dev, void *data) { return dev->of_node == data; } /* * Identify what components need to be added by parsing what remote-endpoints * our MDP output ports are connected to. In the case of LVDS on MDP4, there * is no external component that we need to add since LVDS is within MDP4 * itself. */ static int add_components_mdp(struct device *mdp_dev, struct component_match **matchptr) { struct device_node *np = mdp_dev->of_node; struct device_node *ep_node; struct device *master_dev; /* * on MDP4 based platforms, the MDP platform device is the component * master that adds other display interface components to itself. * * on MDP5 based platforms, the MDSS platform device is the component * master that adds MDP5 and other display interface components to * itself. */ if (of_device_is_compatible(np, "qcom,mdp4")) master_dev = mdp_dev; else master_dev = mdp_dev->parent; for_each_endpoint_of_node(np, ep_node) { struct device_node *intf; struct of_endpoint ep; int ret; ret = of_graph_parse_endpoint(ep_node, &ep); if (ret) { dev_err(mdp_dev, "unable to parse port endpoint\n"); of_node_put(ep_node); return ret; } /* * The LCDC/LVDS port on MDP4 is a speacial case where the * remote-endpoint isn't a component that we need to add */ if (of_device_is_compatible(np, "qcom,mdp4") && ep.port == 0) continue; /* * It's okay if some of the ports don't have a remote endpoint * specified. It just means that the port isn't connected to * any external interface. */ intf = of_graph_get_remote_port_parent(ep_node); if (!intf) continue; drm_of_component_match_add(master_dev, matchptr, compare_of, intf); of_node_put(intf); } return 0; } static int compare_name_mdp(struct device *dev, void *data) { return (strstr(dev_name(dev), "mdp") != NULL); } static int add_display_components(struct device *dev, struct component_match **matchptr) { struct device *mdp_dev; int ret; /* * MDP5/DPU based devices don't have a flat hierarchy. There is a top * level parent: MDSS, and children: MDP5/DPU, DSI, HDMI, eDP etc. * Populate the children devices, find the MDP5/DPU node, and then add * the interfaces to our components list. */ if (of_device_is_compatible(dev->of_node, "qcom,mdss") || of_device_is_compatible(dev->of_node, "qcom,sdm845-mdss")) { ret = of_platform_populate(dev->of_node, NULL, NULL, dev); if (ret) { dev_err(dev, "failed to populate children devices\n"); return ret; } mdp_dev = device_find_child(dev, NULL, compare_name_mdp); if (!mdp_dev) { dev_err(dev, "failed to find MDSS MDP node\n"); of_platform_depopulate(dev); return -ENODEV; } put_device(mdp_dev); /* add the MDP component itself */ drm_of_component_match_add(dev, matchptr, compare_of, mdp_dev->of_node); } else { /* MDP4 */ mdp_dev = dev; } ret = add_components_mdp(mdp_dev, matchptr); if (ret) of_platform_depopulate(dev); return ret; } /* * We don't know what's the best binding to link the gpu with the drm device. * Fow now, we just hunt for all the possible gpus that we support, and add them * as components. */ static const struct of_device_id msm_gpu_match[] = { { .compatible = "qcom,adreno" }, { .compatible = "qcom,adreno-3xx" }, { .compatible = "qcom,kgsl-3d0" }, { }, }; static int add_gpu_components(struct device *dev, struct component_match **matchptr) { struct device_node *np; np = of_find_matching_node(NULL, msm_gpu_match); if (!np) return 0; drm_of_component_match_add(dev, matchptr, compare_of, np); of_node_put(np); return 0; } static int msm_drm_bind(struct device *dev) { return msm_drm_init(dev, &msm_driver); } static void msm_drm_unbind(struct device *dev) { msm_drm_uninit(dev); } static const struct component_master_ops msm_drm_ops = { .bind = msm_drm_bind, .unbind = msm_drm_unbind, }; /* * Platform driver: */ static int msm_pdev_probe(struct platform_device *pdev) { struct component_match *match = NULL; int ret; ret = add_display_components(&pdev->dev, &match); if (ret) return ret; ret = add_gpu_components(&pdev->dev, &match); if (ret) return ret; /* on all devices that I am aware of, iommu's which can map * any address the cpu can see are used: */ ret = dma_set_mask_and_coherent(&pdev->dev, ~0); if (ret) return ret; return component_master_add_with_match(&pdev->dev, &msm_drm_ops, match); } static int msm_pdev_remove(struct platform_device *pdev) { component_master_del(&pdev->dev, &msm_drm_ops); of_platform_depopulate(&pdev->dev); return 0; } static const struct of_device_id dt_match[] = { { .compatible = "qcom,mdp4", .data = (void *)KMS_MDP4 }, { .compatible = "qcom,mdss", .data = (void *)KMS_MDP5 }, { .compatible = "qcom,sdm845-mdss", .data = (void *)KMS_DPU }, {} }; MODULE_DEVICE_TABLE(of, dt_match); static struct platform_driver msm_platform_driver = { .probe = msm_pdev_probe, .remove = msm_pdev_remove, .driver = { .name = "msm", .of_match_table = dt_match, .pm = &msm_pm_ops, }, }; static int __init msm_drm_register(void) { if (!modeset) return -EINVAL; DBG("init"); msm_mdp_register(); msm_dpu_register(); msm_dsi_register(); msm_edp_register(); msm_hdmi_register(); adreno_register(); return platform_driver_register(&msm_platform_driver); } static void __exit msm_drm_unregister(void) { DBG("fini"); platform_driver_unregister(&msm_platform_driver); msm_hdmi_unregister(); adreno_unregister(); msm_edp_unregister(); msm_dsi_unregister(); msm_mdp_unregister(); msm_dpu_unregister(); } module_init(msm_drm_register); module_exit(msm_drm_unregister); MODULE_AUTHOR("Rob Clark