/* * Copyright 2013 Advanced Micro Devices, Inc. * * Permission is hereby granted, free of charge, to any person obtaining a * copy of this software and associated documentation files (the "Software"), * to deal in the Software without restriction, including without limitation * the rights to use, copy, modify, merge, publish, distribute, sublicense, * and/or sell copies of the Software, and to permit persons to whom the * Software is furnished to do so, subject to the following conditions: * * The above copyright notice and this permission notice shall be included in * all copies or substantial portions of the Software. * * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY, * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL * THE COPYRIGHT HOLDER(S) OR AUTHOR(S) BE LIABLE FOR ANY CLAIM, DAMAGES OR * OTHER LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, * ARISING FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR * OTHER DEALINGS IN THE SOFTWARE. * * Authors: Alex Deucher */ #include #include #include "radeon.h" #include "radeon_ucode.h" #include "radeon_asic.h" #include "radeon_trace.h" #include "cikd.h" /* sdma */ #define CIK_SDMA_UCODE_SIZE 1050 #define CIK_SDMA_UCODE_VERSION 64 u32 cik_gpu_check_soft_reset(struct radeon_device *rdev); /* * sDMA - System DMA * Starting with CIK, the GPU has new asynchronous * DMA engines. These engines are used for compute * and gfx. There are two DMA engines (SDMA0, SDMA1) * and each one supports 1 ring buffer used for gfx * and 2 queues used for compute. * * The programming model is very similar to the CP * (ring buffer, IBs, etc.), but sDMA has it's own * packet format that is different from the PM4 format * used by the CP. sDMA supports copying data, writing * embedded data, solid fills, and a number of other * things. It also has support for tiling/detiling of * buffers. */ /** * cik_sdma_get_rptr - get the current read pointer * * @rdev: radeon_device pointer * @ring: radeon ring pointer * * Get the current rptr from the hardware (CIK+). */ uint32_t cik_sdma_get_rptr(struct radeon_device *rdev, struct radeon_ring *ring) { u32 rptr, reg; if (rdev->wb.enabled) { rptr = rdev->wb.wb[ring->rptr_offs/4]; } else { if (ring->idx == R600_RING_TYPE_DMA_INDEX) reg = SDMA0_GFX_RB_RPTR + SDMA0_REGISTER_OFFSET; else reg = SDMA0_GFX_RB_RPTR + SDMA1_REGISTER_OFFSET; rptr = RREG32(reg); } return (rptr & 0x3fffc) >> 2; } /** * cik_sdma_get_wptr - get the current write pointer * * @rdev: radeon_device pointer * @ring: radeon ring pointer * * Get the current wptr from the hardware (CIK+). */ uint32_t cik_sdma_get_wptr(struct radeon_device *rdev, struct radeon_ring *ring) { u32 reg; if (ring->idx == R600_RING_TYPE_DMA_INDEX) reg = SDMA0_GFX_RB_WPTR + SDMA0_REGISTER_OFFSET; else reg = SDMA0_GFX_RB_WPTR + SDMA1_REGISTER_OFFSET; return (RREG32(reg) & 0x3fffc) >> 2; } /** * cik_sdma_set_wptr - commit the write pointer * * @rdev: radeon_device pointer * @ring: radeon ring pointer * * Write the wptr back to the hardware (CIK+). */ void cik_sdma_set_wptr(struct radeon_device *rdev, struct radeon_ring *ring) { u32 reg; if (ring->idx == R600_RING_TYPE_DMA_INDEX) reg = SDMA0_GFX_RB_WPTR + SDMA0_REGISTER_OFFSET; else reg = SDMA0_GFX_RB_WPTR + SDMA1_REGISTER_OFFSET; WREG32(reg, (ring->wptr << 2) & 0x3fffc); (void)RREG32(reg); } /** * cik_sdma_ring_ib_execute - Schedule an IB on the DMA engine * * @rdev: radeon_device pointer * @ib: IB object to schedule * * Schedule an IB in the DMA ring (CIK). */ void cik_sdma_ring_ib_execute(struct radeon_device *rdev, struct radeon_ib *ib) { struct radeon_ring *ring = &rdev->ring[ib->ring]; u32 extra_bits = (ib->vm ? ib->vm->ids[ib->ring].id : 0) & 0xf; if (rdev->wb.enabled) { u32 next_rptr = ring->wptr + 5; while ((next_rptr & 7) != 4) next_rptr++; next_rptr += 4; radeon_ring_write(ring, SDMA_PACKET(SDMA_OPCODE_WRITE, SDMA_WRITE_SUB_OPCODE_LINEAR, 0)); radeon_ring_write(ring, ring->next_rptr_gpu_addr & 0xfffffffc); radeon_ring_write(ring, upper_32_bits(ring->next_rptr_gpu_addr)); radeon_ring_write(ring, 1); /* number of DWs to follow */ radeon_ring_write(ring, next_rptr); } /* IB packet must end on a 8 DW boundary */ while ((ring->wptr & 7) != 4) radeon_ring_write(ring, SDMA_PACKET(SDMA_OPCODE_NOP, 0, 0)); radeon_ring_write(ring, SDMA_PACKET(SDMA_OPCODE_INDIRECT_BUFFER, 0, extra_bits)); radeon_ring_write(ring, ib->gpu_addr & 0xffffffe0); /* base must be 32 byte aligned */ radeon_ring_write(ring, upper_32_bits(ib->gpu_addr)); radeon_ring_write(ring, ib->length_dw); } /** * cik_sdma_hdp_flush_ring_emit - emit an hdp flush on the DMA ring * * @rdev: radeon_device pointer * @ridx: radeon ring index * * Emit an hdp flush packet on the requested DMA ring. */ static void cik_sdma_hdp_flush_ring_emit(struct radeon_device *rdev, int ridx) { struct radeon_ring *ring = &rdev->ring[ridx]; u32 extra_bits = (SDMA_POLL_REG_MEM_EXTRA_OP(1) | SDMA_POLL_REG_MEM_EXTRA_FUNC(3)); /* == */ u32 ref_and_mask; if (ridx == R600_RING_TYPE_DMA_INDEX) ref_and_mask = SDMA0; else ref_and_mask = SDMA1; radeon_ring_write(ring, SDMA_PACKET(SDMA_OPCODE_POLL_REG_MEM, 0, extra_bits)); radeon_ring_write(ring, GPU_HDP_FLUSH_DONE); radeon_ring_write(ring, GPU_HDP_FLUSH_REQ); radeon_ring_write(ring, ref_and_mask); /* reference */ radeon_ring_write(ring, ref_and_mask); /* mask */ radeon_ring_write(ring, (0xfff << 16) | 10); /* retry count, poll interval */ } /** * cik_sdma_fence_ring_emit - emit a fence on the DMA ring * * @rdev: radeon_device pointer * @fence: radeon fence object * * Add a DMA fence packet to the ring to write * the fence seq number and DMA trap packet to generate * an interrupt if needed (CIK). */ void cik_sdma_fence_ring_emit(struct radeon_device *rdev, struct radeon_fence *fence) { struct radeon_ring *ring = &rdev->ring[fence->ring]; u64 addr = rdev->fence_drv[fence->ring].gpu_addr; /* write the fence */ radeon_ring_write(ring, SDMA_PACKET(SDMA_OPCODE_FENCE, 0, 0)); radeon_ring_write(ring, lower_32_bits(addr)); radeon_ring_write(ring, upper_32_bits(addr)); radeon_ring_write(ring, fence->seq); /* generate an interrupt */ radeon_ring_write(ring, SDMA_PACKET(SDMA_OPCODE_TRAP, 0, 0)); /* flush HDP */ cik_sdma_hdp_flush_ring_emit(rdev, fence->ring); } /** * cik_sdma_semaphore_ring_emit - emit a semaphore on the dma ring * * @rdev: radeon_device pointer * @ring: radeon_ring structure holding ring information * @semaphore: radeon semaphore object * @emit_wait: wait or signal semaphore * * Add a DMA semaphore packet to the ring wait on or signal * other rings (CIK). */ bool cik_sdma_semaphore_ring_emit(struct radeon_device *rdev, struct radeon_ring *ring, struct radeon_semaphore *semaphore, bool emit_wait) { u64 addr = semaphore->gpu_addr; u32 extra_bits = emit_wait ? 0 : SDMA_SEMAPHORE_EXTRA_S; radeon_ring_write(ring, SDMA_PACKET(SDMA_OPCODE_SEMAPHORE, 0, extra_bits)); radeon_ring_write(ring, addr & 0xfffffff8); radeon_ring_write(ring, upper_32_bits(addr)); return true; } /** * cik_sdma_gfx_stop - stop the gfx async dma engines * * @rdev: radeon_device pointer * * Stop the gfx async dma ring buffers (CIK). */ static void cik_sdma_gfx_stop(struct radeon_device *rdev) { u32 rb_cntl, reg_offset; int i; if ((rdev->asic->copy.copy_ring_index == R600_RING_TYPE_DMA_INDEX) || (rdev->asic->copy.copy_ring_index == CAYMAN_RING_TYPE_DMA1_INDEX)) radeon_ttm_set_active_vram_size(rdev, rdev->mc.visible_vram_size); for (i = 0; i < 2; i++) { if (i == 0) reg_offset = SDMA0_REGISTER_OFFSET; else reg_offset = SDMA1_REGISTER_OFFSET; rb_cntl = RREG32(SDMA0_GFX_RB_CNTL + reg_offset); rb_cntl &= ~SDMA_RB_ENABLE; WREG32(SDMA0_GFX_RB_CNTL + reg_offset, rb_cntl); WREG32(SDMA0_GFX_IB_CNTL + reg_offset, 0); } rdev->ring[R600_RING_TYPE_DMA_INDEX].ready = false; rdev->ring[CAYMAN_RING_TYPE_DMA1_INDEX].ready = false; } /** * cik_sdma_rlc_stop - stop the compute async dma engines * * @rdev: radeon_device pointer * * Stop the compute async dma queues (CIK). */ static void cik_sdma_rlc_stop(struct radeon_device *rdev) { /* XXX todo */ } /** * cik_sdma_ctx_switch_enable - enable/disable sdma engine preemption * * @rdev: radeon_device pointer * @enable: enable/disable preemption. * * Halt or unhalt the async dma engines (CIK). */ void cik_sdma_ctx_switch_enable(struct radeon_device *rdev, bool enable) { uint32_t reg_offset, value; int i; for (i = 0; i < 2; i++) { if (i == 0) reg_offset = SDMA0_REGISTER_OFFSET; else reg_offset = SDMA1_REGISTER_OFFSET; value = RREG32(SDMA0_CNTL + reg_offset); if (enable) value |= AUTO_CTXSW_ENABLE; else value &= ~AUTO_CTXSW_ENABLE; WREG32(SDMA0_CNTL + reg_offset, value); } } /** * cik_sdma_enable - stop the async dma engines * * @rdev: radeon_device pointer * @enable: enable/disable the DMA MEs. * * Halt or unhalt the async dma engines (CIK). */ void cik_sdma_enable(struct radeon_device *rdev, bool enable) { u32 me_cntl, reg_offset; int i; if (enable == false) { cik_sdma_gfx_stop(rdev); cik_sdma_rlc_stop(rdev); } for (i = 0; i < 2; i++) { if (i == 0) reg_offset = SDMA0_REGISTER_OFFSET; else reg_offset = SDMA1_REGISTER_OFFSET; me_cntl = RREG32(SDMA0_ME_CNTL + reg_offset); if (enable) me_cntl &= ~SDMA_HALT; else me_cntl |= SDMA_HALT; WREG32(SDMA0_ME_CNTL + reg_offset, me_cntl); } cik_sdma_ctx_switch_enable(rdev, enable); } /** * cik_sdma_gfx_resume - setup and start the async dma engines * * @rdev: radeon_device pointer * * Set up the gfx DMA ring buffers and enable them (CIK). * Returns 0 for success, error for failure. */ static int cik_sdma_gfx_resume(struct radeon_device *rdev) { struct radeon_ring *ring; u32 rb_cntl, ib_cntl; u32 rb_bufsz; u32 reg_offset, wb_offset; int i, r; for (i = 0; i < 2; i++) { if (i == 0) { ring = &rdev->ring[R600_RING_TYPE_DMA_INDEX]; reg_offset = SDMA0_REGISTER_OFFSET; wb_offset = R600_WB_DMA_RPTR_OFFSET; } else { ring = &rdev->ring[CAYMAN_RING_TYPE_DMA1_INDEX]; reg_offset = SDMA1_REGISTER_OFFSET; wb_offset = CAYMAN_WB_DMA1_RPTR_OFFSET; } WREG32(SDMA0_SEM_INCOMPLETE_TIMER_CNTL + reg_offset, 0); WREG32(SDMA0_SEM_WAIT_FAIL_TIMER_CNTL + reg_offset, 0); /* Set ring buffer size in dwords */ rb_bufsz = order_base_2(ring->ring_size / 4); rb_cntl = rb_bufsz << 1; #ifdef __BIG_ENDIAN rb_cntl |= SDMA_RB_SWAP_ENABLE | SDMA_RPTR_WRITEBACK_SWAP_ENABLE; #endif WREG32(SDMA0_GFX_RB_CNTL + reg_offset, rb_cntl); /* Initialize the ring buffer's read and write pointers */ WREG32(SDMA0_GFX_RB_RPTR + reg_offset, 0); WREG32(SDMA0_GFX_RB_WPTR + reg_offset, 0); /* set the wb address whether it's enabled or not */ WREG32(SDMA0_GFX_RB_RPTR_ADDR_HI + reg_offset, upper_32_bits(rdev->wb.gpu_addr + wb_offset) & 0xFFFFFFFF); WREG32(SDMA0_GFX_RB_RPTR_ADDR_LO + reg_offset, ((rdev->wb.gpu_addr + wb_offset) & 0xFFFFFFFC)); if (rdev->wb.enabled) rb_cntl |= SDMA_RPTR_WRITEBACK_ENABLE; WREG32(SDMA0_GFX_RB_BASE + reg_offset, ring->gpu_addr >> 8); WREG32(SDMA0_GFX_RB_BASE_HI + reg_offset, ring->gpu_addr >> 40); ring->wptr = 0; WREG32(SDMA0_GFX_RB_WPTR + reg_offset, ring->wptr << 2); /* enable DMA RB */ WREG32(SDMA0_GFX_RB_CNTL + reg_offset, rb_cntl | SDMA_RB_ENABLE); ib_cntl = SDMA_IB_ENABLE; #ifdef __BIG_ENDIAN ib_cntl |= SDMA_IB_SWAP_ENABLE; #endif /* enable DMA IBs */ WREG32(SDMA0_GFX_IB_CNTL + reg_offset, ib_cntl); ring->ready = true; r = radeon_ring_test(rdev, ring->idx, ring); if (r) { ring->ready = false; return r; } } if ((rdev->asic->copy.copy_ring_index == R600_RING_TYPE_DMA_INDEX) || (rdev->asic->copy.copy_ring_index == CAYMAN_RING_TYPE_DMA1_INDEX)) radeon_ttm_set_active_vram_size(rdev, rdev->mc.real_vram_size); return 0; } /** * cik_sdma_rlc_resume - setup and start the async dma engines * * @rdev: radeon_device pointer * * Set up the compute DMA queues and enable them (CIK). * Returns 0 for success, error for failure. */ static int cik_sdma_rlc_resume(struct radeon_device *rdev) { /* XXX todo */ return 0; } /** * cik_sdma_load_microcode - load the sDMA ME ucode * * @rdev: radeon_device pointer * * Loads the sDMA0/1 ucode. * Returns 0 for success, -EINVAL if the ucode is not available. */ static int cik_sdma_load_microcode(struct radeon_device *rdev) { int i; if (!rdev->sdma_fw) return -EINVAL; /* halt the MEs */ cik_sdma_enable(rdev, false); if (rdev->new_fw) { const struct sdma_firmware_header_v1_0 *hdr = (const struct sdma_firmware_header_v1_0 *)rdev->sdma_fw->data; const __le32 *fw_data; u32 fw_size; radeon_ucode_print_sdma_hdr(&hdr->header); /* sdma0 */ fw_data = (const __le32 *) (rdev->sdma_fw->data + le32_to_cpu(hdr->header.ucode_array_offset_bytes)); fw_size = le32_to_cpu(hdr->header.ucode_size_bytes) / 4; WREG32(SDMA0_UCODE_ADDR + SDMA0_REGISTER_OFFSET, 0); for (i = 0; i < fw_size; i++) WREG32(SDMA0_UCODE_DATA + SDMA0_REGISTER_OFFSET, le32_to_cpup(fw_data++)); WREG32(SDMA0_UCODE_DATA + SDMA0_REGISTER_OFFSET, CIK_SDMA_UCODE_VERSION); /* sdma1 */ fw_data = (const __le32 *) (rdev->sdma_fw->data + le32_to_cpu(hdr->header.ucode_array_offset_bytes)); fw_size = le32_to_cpu(hdr->header.ucode_size_bytes) / 4; WREG32(SDMA0_UCODE_ADDR + SDMA1_REGISTER_OFFSET, 0); for (i = 0; i < fw_size; i++) WREG32(SDMA0_UCODE_DATA + SDMA1_REGISTER_OFFSET, le32_to_cpup(fw_data++)); WREG32(SDMA0_UCODE_DATA + SDMA1_REGISTER_OFFSET, CIK_SDMA_UCODE_VERSION); } else { const __be32 *fw_data; /* sdma0 */ fw_data = (const __be32 *)rdev->sdma_fw->data; WREG32(SDMA0_UCODE_ADDR + SDMA0_REGISTER_OFFSET, 0); for (i = 0; i < CIK_SDMA_UCODE_SIZE; i++) WREG32(SDMA0_UCODE_DATA + SDMA0_REGISTER_OFFSET, be32_to_cpup(fw_data++)); WREG32(SDMA0_UCODE_DATA + SDMA0_REGISTER_OFFSET, CIK_SDMA_UCODE_VERSION); /* sdma1 */ fw_data = (const __be32 *)rdev->sdma_fw->data; WREG32(SDMA0_UCODE_ADDR + SDMA1_REGISTER_OFFSET, 0); for (i = 0; i < CIK_SDMA_UCODE_SIZE; i++) WREG32(SDMA0_UCODE_DATA + SDMA1_REGISTER_OFFSET, be32_to_cpup(fw_data++)); WREG32(SDMA0_UCODE_DATA + SDMA1_REGISTER_OFFSET, CIK_SDMA_UCODE_VERSION); } WREG32(SDMA0_UCODE_ADDR + SDMA0_REGISTER_OFFSET, 0); WREG32(SDMA0_UCODE_ADDR + SDMA1_REGISTER_OFFSET, 0); return 0; } /** * cik_sdma_resume - setup and start the async dma engines * * @rdev: radeon_device pointer * * Set up the DMA engines and enable them (CIK). * Returns 0 for success, error for failure. */ int cik_sdma_resume(struct radeon_device *rdev) { int r; r = cik_sdma_load_microcode(rdev); if (r) return r; /* unhalt the MEs */ cik_sdma_enable(rdev, true); /* start the gfx rings and rlc compute queues */ r = cik_sdma_gfx_resume(rdev); if (r) return r; r = cik_sdma_rlc_resume(rdev); if (r) return r; return 0; } /** * cik_sdma_fini - tear down the async dma engines * * @rdev: radeon_device pointer * * Stop the async dma engines and free the rings (CIK). */ void cik_sdma_fini(struct radeon_device *rdev) { /* halt the MEs */ cik_sdma_enable(rdev, false); radeon_ring_fini(rdev, &rdev->ring[R600_RING_TYPE_DMA_INDEX]); radeon_ring_fini(rdev, &rdev->ring[CAYMAN_RING_TYPE_DMA1_INDEX]); /* XXX - compute dma queue tear down */ } /** * cik_copy_dma - copy pages using the DMA engine * * @rdev: radeon_device pointer * @src_offset: src GPU address * @dst_offset: dst GPU address * @num_gpu_pages: number of GPU pages to xfer * @resv: reservation object to sync to * * Copy GPU paging using the DMA engine (CIK). * Used by the radeon ttm implementation to move pages if * registered as the asic copy callback. */ struct radeon_fence *cik_copy_dma(struct radeon_device *rdev, uint64_t src_offset, uint64_t dst_offset, unsigned num_gpu_pages, struct reservation_object *resv) { struct radeon_fence *fence; struct radeon_sync sync; int ring_index = rdev->asic->copy.dma_ring_index; struct radeon_ring *ring = &rdev->ring[ring_index]; u32 size_in_bytes, cur_size_in_bytes; int i, num_loops; int r = 0; radeon_sync_create(&sync); size_in_bytes = (num_gpu_pages << RADEON_GPU_PAGE_SHIFT); num_loops = DIV_ROUND_UP(size_in_bytes, 0x1fffff); r = radeon_ring_lock(rdev, ring, num_loops * 7 + 14); if (r) { DRM_ERROR("radeon: moving bo (%d).\n", r); radeon_sync_free(rdev, &sync, NULL); return ERR_PTR(r); } radeon_sync_resv(rdev, &sync, resv, false); radeon_sync_rings(rdev, &sync, ring->idx); for (i = 0; i < num_loops; i++) { cur_size_in_bytes = size_in_bytes; if (cur_size_in_bytes > 0x1fffff) cur_size_in_bytes = 0x1fffff; size_in_bytes -= cur_size_in_bytes; radeon_ring_write(ring, SDMA_PACKET(SDMA_OPCODE_COPY, SDMA_COPY_SUB_OPCODE_LINEAR, 0)); radeon_ring_write(ring, cur_size_in_bytes); radeon_ring_write(ring, 0); /* src/dst endian swap */ radeon_ring_write(ring, lower_32_bits(src_offset)); radeon_ring_write(ring, upper_32_bits(src_offset)); radeon_ring_write(ring, lower_32_bits(dst_offset)); radeon_ring_write(ring, upper_32_bits(dst_offset)); src_offset += cur_size_in_bytes; dst_offset += cur_size_in_bytes; } r = radeon_fence_emit(rdev, &fence, ring->idx); if (r) { radeon_ring_unlock_undo(rdev, ring); radeon_sync_free(rdev, &sync, NULL); return ERR_PTR(r); } radeon_ring_unlock_commit(rdev, ring, false); radeon_sync_free(rdev, &sync, fence); return fence; } /** * cik_sdma_ring_test - simple async dma engine test * * @rdev: radeon_device pointer * @ring: radeon_ring structure holding ring information * * Test the DMA engine by writing using it to write an * value to memory. (CIK). * Returns 0 for success, error for failure. */ int cik_sdma_ring_test(struct radeon_device *rdev, struct radeon_ring *ring) { unsigned i; int r; unsigned index; u32 tmp; u64 gpu_addr; if (ring->idx == R600_RING_TYPE_DMA_INDEX) index = R600_WB_DMA_RING_TEST_OFFSET; else index = CAYMAN_WB_DMA1_RING_TEST_OFFSET; gpu_addr = rdev->wb.gpu_addr + index; tmp = 0xCAFEDEAD; rdev->wb.wb[index/4] = cpu_to_le32(tmp); r = radeon_ring_lock(rdev, ring, 5); if (r) { DRM_ERROR("radeon: dma failed to lock ring %d (%d).\n", ring->idx, r); return r; } radeon_ring_write(ring, SDMA_PACKET(SDMA_OPCODE_WRITE, SDMA_WRITE_SUB_OPCODE_LINEAR, 0)); radeon_ring_write(ring, lower_32_bits(gpu_addr)); radeon_ring_write(ring, upper_32_bits(gpu_addr)); radeon_ring_write(ring, 1); /* number of DWs to follow */ radeon_ring_write(ring, 0xDEADBEEF); radeon_ring_unlock_commit(rdev, ring, false); for (i = 0; i < rdev->usec_timeout; i++) { tmp = le32_to_cpu(rdev->wb.wb[index/4]); if (tmp == 0xDEADBEEF) break; DRM_UDELAY(1); } if (i < rdev->usec_timeout) { DRM_INFO("ring test on %d succeeded in %d usecs\n", ring->idx, i); } else { DRM_ERROR("radeon: ring %d test failed (0x%08X)\n", ring->idx, tmp); r = -EINVAL; } return r; } /** * cik_sdma_ib_test - test an IB on the DMA engine * * @rdev: radeon_device pointer * @ring: radeon_ring structure holding ring information * * Test a simple IB in the DMA ring (CIK). * Returns 0 on success, error on failure. */ int cik_sdma_ib_test(struct radeon_device *rdev, struct radeon_ring *ring) { struct radeon_ib ib; unsigned i; unsigned index; int r; u32 tmp = 0; u64 gpu_addr; if (ring->idx == R600_RING_TYPE_DMA_INDEX) index = R600_WB_DMA_RING_TEST_OFFSET; else index = CAYMAN_WB_DMA1_RING_TEST_OFFSET; gpu_addr = rdev->wb.gpu_addr + index; tmp = 0xCAFEDEAD; rdev->wb.wb[index/4] = cpu_to_le32(tmp); r = radeon_ib_get(rdev, ring->idx, &ib, NULL, 256); if (r) { DRM_ERROR("radeon: failed to get ib (%d).\n", r); return r; } ib.ptr[0] = SDMA_PACKET(SDMA_OPCODE_WRITE, SDMA_WRITE_SUB_OPCODE_LINEAR, 0); ib.ptr[1] = lower_32_bits(gpu_addr); ib.ptr[2] = upper_32_bits(gpu_addr); ib.ptr[3] = 1; ib.ptr[4] = 0xDEADBEEF; ib.length_dw = 5; r = radeon_ib_schedule(rdev, &ib, NULL, false); if (r) { radeon_ib_free(rdev, &ib); DRM_ERROR("radeon: failed to schedule ib (%d).\n", r); return r; } r = radeon_fence_wait(ib.fence, false); if (r) { DRM_ERROR("radeon: fence wait failed (%d).\n", r); return r; } for (i = 0; i < rdev->usec_timeout; i++) { tmp = le32_to_cpu(rdev->wb.wb[index/4]); if (tmp == 0xDEADBEEF) break; DRM_UDELAY(1); } if (i < rdev->usec_timeout) { DRM_INFO("ib test on ring %d succeeded in %u usecs\n", ib.fence->ring, i); } else { DRM_ERROR("radeon: ib test failed (0x%08X)\n", tmp); r = -EINVAL; } radeon_ib_free(rdev, &ib); return r; } /** * cik_sdma_is_lockup - Check if the DMA engine is locked up * * @rdev: radeon_device pointer * @ring: radeon_ring structure holding ring information * * Check if the async DMA engine is locked up (CIK). * Returns true if the engine appears to be locked up, false if not. */ bool cik_sdma_is_lockup(struct radeon_device *rdev, struct radeon_ring *ring) { u32 reset_mask = cik_gpu_check_soft_reset(rdev); u32 mask; if (ring->idx == R600_RING_TYPE_DMA_INDEX) mask = RADEON_RESET_DMA; else mask = RADEON_RESET_DMA1; if (!(reset_mask & mask)) { radeon_ring_lockup_update(rdev, ring); return false; } return radeon_ring_test_lockup(rdev, ring); } /** * cik_sdma_vm_copy_pages - update PTEs by copying them from the GART * * @rdev: radeon_device pointer * @ib: indirect buffer to fill with commands * @pe: addr of the page entry * @src: src addr to copy from * @count: number of page entries to update * * Update PTEs by copying them from the GART using sDMA (CIK). */ void cik_sdma_vm_copy_pages(struct radeon_device *rdev, struct radeon_ib *ib, uint64_t pe, uint64_t src, unsigned count) { while (count) { unsigned bytes = count * 8; if (bytes > 0x1FFFF8) bytes = 0x1FFFF8; ib->ptr[ib->length_dw++] = SDMA_PACKET(SDMA_OPCODE_COPY, SDMA_WRITE_SUB_OPCODE_LINEAR, 0); ib->ptr[ib->length_dw++] = bytes; ib->ptr[ib->length_dw++] = 0; /* src/dst endian swap */ ib->ptr[ib->length_dw++] = lower_32_bits(src); ib->ptr[ib->length_dw++] = upper_32_bits(src); ib->ptr[ib->length_dw++] = lower_32_bits(pe); ib->ptr[ib->length_dw++] = upper_32_bits(pe); pe += bytes; src += bytes; count -= bytes / 8; } } /** * cik_sdma_vm_write_pages - update PTEs by writing them manually * * @rdev: radeon_device pointer * @ib: indirect buffer to fill with commands * @pe: addr of the page entry * @addr: dst addr to write into pe * @count: number of page entries to update * @incr: increase next addr by incr bytes * @flags: access flags * * Update PTEs by writing them manually using sDMA (CIK). */ void cik_sdma_vm_write_pages(struct radeon_device *rdev, struct radeon_ib *ib, uint64_t pe, uint64_t addr, unsigned count, uint32_t incr, uint32_t flags) { uint64_t value; unsigned ndw; while (count) { ndw = count * 2; if (ndw > 0xFFFFE) ndw = 0xFFFFE; /* for non-physically contiguous pages (system) */ ib->ptr[ib->length_dw++] = SDMA_PACKET(SDMA_OPCODE_WRITE, SDMA_WRITE_SUB_OPCODE_LINEAR, 0); ib->ptr[ib->length_dw++] = pe; ib->ptr[ib->length_dw++] = upper_32_bits(pe); ib->ptr[ib->length_dw++] = ndw; for (; ndw > 0; ndw -= 2, --count, pe += 8) { if (flags & R600_PTE_SYSTEM) { value = radeon_vm_map_gart(rdev, addr); value &= 0xFFFFFFFFFFFFF000ULL; } else if (flags & R600_PTE_VALID) { value = addr; } else { value = 0; } addr += incr; value |= flags; ib->ptr[ib->length_dw++] = value; ib->ptr[ib->length_dw++] = upper_32_bits(value); } } } /** * cik_sdma_vm_set_pages - update the page tables using sDMA * * @rdev: radeon_device pointer * @ib: indirect buffer to fill with commands * @pe: addr of the page entry * @addr: dst addr to write into pe * @count: number of page entries to update * @incr: increase next addr by incr bytes * @flags: access flags * * Update the page tables using sDMA (CIK). */ void cik_sdma_vm_set_pages(struct radeon_device *rdev, struct radeon_ib *ib, uint64_t pe, uint64_t addr, unsigned count, uint32_t incr, uint32_t flags) { uint64_t value; unsigned ndw; while (count) { ndw = count; if (ndw > 0x7FFFF) ndw = 0x7FFFF; if (flags & R600_PTE_VALID) value = addr; else value = 0; /* for physically contiguous pages (vram) */ ib->ptr[ib->length_dw++] = SDMA_PACKET(SDMA_OPCODE_GENERATE_PTE_PDE, 0, 0); ib->ptr[ib->length_dw++] = pe; /* dst addr */ ib->ptr[ib->length_dw++] = upper_32_bits(pe); ib->ptr[ib->length_dw++] = flags; /* mask */ ib->ptr[ib->length_dw++] = 0; ib->ptr[ib->length_dw++] = value; /* value */ ib->ptr[ib->length_dw++] = upper_32_bits(value); ib->ptr[ib->length_dw++] = incr; /* increment size */ ib->ptr[ib->length_dw++] = 0; ib->ptr[ib->length_dw++] = ndw; /* number of entries */ pe += ndw * 8; addr += ndw * incr; count -= ndw; } } /** * cik_sdma_vm_pad_ib - pad the IB to the required number of dw * * @ib: indirect buffer to fill with padding * */ void cik_sdma_vm_pad_ib(struct radeon_ib *ib) { while (ib->length_dw & 0x7) ib->ptr[ib->length_dw++] = SDMA_PACKET(SDMA_OPCODE_NOP, 0, 0); } /** * cik_dma_vm_flush - cik vm flush using sDMA * * @rdev: radeon_device pointer * * Update the page table base and flush the VM TLB * using sDMA (CIK). */ void cik_dma_vm_flush(struct radeon_device *rdev, struct radeon_ring *ring, unsigned vm_id, uint64_t pd_addr) { u32 extra_bits = (SDMA_POLL_REG_MEM_EXTRA_OP(0) | SDMA_POLL_REG_MEM_EXTRA_FUNC(0)); /* always */ radeon_ring_write(ring, SDMA_PACKET(SDMA_OPCODE_SRBM_WRITE, 0, 0xf000)); if (vm_id < 8) { radeon_ring_write(ring, (VM_CONTEXT0_PAGE_TABLE_BASE_ADDR + (vm_id << 2)) >> 2); } else { radeon_ring_write(ring, (VM_CONTEXT8_PAGE_TABLE_BASE_ADDR + ((vm_id - 8) << 2)) >> 2); } radeon_ring_write(ring, pd_addr >> 12); /* update SH_MEM_* regs */ radeon_ring_write(ring, SDMA_PACKET(SDMA_OPCODE_SRBM_WRITE, 0, 0xf000)); radeon_ring_write(ring, SRBM_GFX_CNTL >> 2); radeon_ring_write(ring, VMID(vm_id)); radeon_ring_write(ring, SDMA_PACKET(SDMA_OPCODE_SRBM_WRITE, 0, 0xf000)); radeon_ring_write(ring, SH_MEM_BASES >> 2); radeon_ring_write(ring, 0); radeon_ring_write(ring, SDMA_PACKET(SDMA_OPCODE_SRBM_WRITE, 0, 0xf000)); radeon_ring_write(ring, SH_MEM_CONFIG >> 2); radeon_ring_write(ring, 0); radeon_ring_write(ring, SDMA_PACKET(SDMA_OPCODE_SRBM_WRITE, 0, 0xf000)); radeon_ring_write(ring, SH_MEM_APE1_BASE >> 2); radeon_ring_write(ring, 1); radeon_ring_write(ring, SDMA_PACKET(SDMA_OPCODE_SRBM_WRITE, 0, 0xf000)); radeon_ring_write(ring, SH_MEM_APE1_LIMIT >> 2); radeon_ring_write(ring, 0); radeon_ring_write(ring, SDMA_PACKET(SDMA_OPCODE_SRBM_WRITE, 0, 0xf000)); radeon_ring_write(ring, SRBM_GFX_CNTL >> 2); radeon_ring_write(ring, VMID(0)); /* flush HDP */ cik_sdma_hdp_flush_ring_emit(rdev, ring->idx); /* flush TLB */ radeon_ring_write(ring, SDMA_PACKET(SDMA_OPCODE_SRBM_WRITE, 0, 0xf000)); radeon_ring_write(ring, VM_INVALIDATE_REQUEST >> 2); radeon_ring_write(ring, 1 << vm_id); radeon_ring_write(ring, SDMA_PACKET(SDMA_OPCODE_POLL_REG_MEM, 0, extra_bits)); radeon_ring_write(ring, VM_INVALIDATE_REQUEST >> 2); radeon_ring_write(ring, 0); radeon_ring_write(ring, 0); /* reference */ radeon_ring_write(ring, 0); /* mask */ radeon_ring_write(ring, (0xfff << 16) | 10); /* retry count, poll interval */ }