/* tda18271-fe.c - driver for the Philips / NXP TDA18271 silicon tuner Copyright (C) 2007 Michael Krufky (mkrufky@linuxtv.org) This program is free software; you can redistribute it and/or modify it under the terms of the GNU General Public License as published by the Free Software Foundation; either version 2 of the License, or (at your option) any later version. This program is distributed in the hope that it will be useful, but WITHOUT ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License for more details. You should have received a copy of the GNU General Public License along with this program; if not, write to the Free Software Foundation, Inc., 675 Mass Ave, Cambridge, MA 02139, USA. */ #include #include #include "tda18271-priv.h" int tda18271_debug; module_param_named(debug, tda18271_debug, int, 0644); MODULE_PARM_DESC(debug, "set debug level (info=1, map=2, reg=4 (or-able))"); /*---------------------------------------------------------------------*/ static int tda18271_i2c_gate_ctrl(struct dvb_frontend *fe, int enable) { struct tda18271_priv *priv = fe->tuner_priv; enum tda18271_i2c_gate gate; int ret = 0; switch (priv->gate) { case TDA18271_GATE_DIGITAL: case TDA18271_GATE_ANALOG: gate = priv->gate; break; case TDA18271_GATE_AUTO: default: switch (priv->mode) { case TDA18271_DIGITAL: gate = TDA18271_GATE_DIGITAL; break; case TDA18271_ANALOG: default: gate = TDA18271_GATE_ANALOG; break; } } switch (gate) { case TDA18271_GATE_ANALOG: if (fe->ops.analog_ops.i2c_gate_ctrl) ret = fe->ops.analog_ops.i2c_gate_ctrl(fe, enable); break; case TDA18271_GATE_DIGITAL: if (fe->ops.i2c_gate_ctrl) ret = fe->ops.i2c_gate_ctrl(fe, enable); break; default: ret = -EINVAL; break; } return ret; }; /*---------------------------------------------------------------------*/ static void tda18271_dump_regs(struct dvb_frontend *fe, int extended) { struct tda18271_priv *priv = fe->tuner_priv; unsigned char *regs = priv->tda18271_regs; tda_reg("=== TDA18271 REG DUMP ===\n"); tda_reg("ID_BYTE = 0x%02x\n", 0xff & regs[R_ID]); tda_reg("THERMO_BYTE = 0x%02x\n", 0xff & regs[R_TM]); tda_reg("POWER_LEVEL_BYTE = 0x%02x\n", 0xff & regs[R_PL]); tda_reg("EASY_PROG_BYTE_1 = 0x%02x\n", 0xff & regs[R_EP1]); tda_reg("EASY_PROG_BYTE_2 = 0x%02x\n", 0xff & regs[R_EP2]); tda_reg("EASY_PROG_BYTE_3 = 0x%02x\n", 0xff & regs[R_EP3]); tda_reg("EASY_PROG_BYTE_4 = 0x%02x\n", 0xff & regs[R_EP4]); tda_reg("EASY_PROG_BYTE_5 = 0x%02x\n", 0xff & regs[R_EP5]); tda_reg("CAL_POST_DIV_BYTE = 0x%02x\n", 0xff & regs[R_CPD]); tda_reg("CAL_DIV_BYTE_1 = 0x%02x\n", 0xff & regs[R_CD1]); tda_reg("CAL_DIV_BYTE_2 = 0x%02x\n", 0xff & regs[R_CD2]); tda_reg("CAL_DIV_BYTE_3 = 0x%02x\n", 0xff & regs[R_CD3]); tda_reg("MAIN_POST_DIV_BYTE = 0x%02x\n", 0xff & regs[R_MPD]); tda_reg("MAIN_DIV_BYTE_1 = 0x%02x\n", 0xff & regs[R_MD1]); tda_reg("MAIN_DIV_BYTE_2 = 0x%02x\n", 0xff & regs[R_MD2]); tda_reg("MAIN_DIV_BYTE_3 = 0x%02x\n", 0xff & regs[R_MD3]); /* only dump extended regs if DBG_ADV is set */ if (!(tda18271_debug & DBG_ADV)) return; /* W indicates write-only registers. * Register dump for write-only registers shows last value written. */ tda_reg("EXTENDED_BYTE_1 = 0x%02x\n", 0xff & regs[R_EB1]); tda_reg("EXTENDED_BYTE_2 = 0x%02x\n", 0xff & regs[R_EB2]); tda_reg("EXTENDED_BYTE_3 = 0x%02x\n", 0xff & regs[R_EB3]); tda_reg("EXTENDED_BYTE_4 = 0x%02x\n", 0xff & regs[R_EB4]); tda_reg("EXTENDED_BYTE_5 = 0x%02x\n", 0xff & regs[R_EB5]); tda_reg("EXTENDED_BYTE_6 = 0x%02x\n", 0xff & regs[R_EB6]); tda_reg("EXTENDED_BYTE_7 = 0x%02x\n", 0xff & regs[R_EB7]); tda_reg("EXTENDED_BYTE_8 = 0x%02x\n", 0xff & regs[R_EB8]); tda_reg("EXTENDED_BYTE_9 W = 0x%02x\n", 0xff & regs[R_EB9]); tda_reg("EXTENDED_BYTE_10 = 0x%02x\n", 0xff & regs[R_EB10]); tda_reg("EXTENDED_BYTE_11 = 0x%02x\n", 0xff & regs[R_EB11]); tda_reg("EXTENDED_BYTE_12 = 0x%02x\n", 0xff & regs[R_EB12]); tda_reg("EXTENDED_BYTE_13 = 0x%02x\n", 0xff & regs[R_EB13]); tda_reg("EXTENDED_BYTE_14 = 0x%02x\n", 0xff & regs[R_EB14]); tda_reg("EXTENDED_BYTE_15 = 0x%02x\n", 0xff & regs[R_EB15]); tda_reg("EXTENDED_BYTE_16 W = 0x%02x\n", 0xff & regs[R_EB16]); tda_reg("EXTENDED_BYTE_17 W = 0x%02x\n", 0xff & regs[R_EB17]); tda_reg("EXTENDED_BYTE_18 = 0x%02x\n", 0xff & regs[R_EB18]); tda_reg("EXTENDED_BYTE_19 W = 0x%02x\n", 0xff & regs[R_EB19]); tda_reg("EXTENDED_BYTE_20 W = 0x%02x\n", 0xff & regs[R_EB20]); tda_reg("EXTENDED_BYTE_21 = 0x%02x\n", 0xff & regs[R_EB21]); tda_reg("EXTENDED_BYTE_22 = 0x%02x\n", 0xff & regs[R_EB22]); tda_reg("EXTENDED_BYTE_23 = 0x%02x\n", 0xff & regs[R_EB23]); } static void tda18271_read_regs(struct dvb_frontend *fe) { struct tda18271_priv *priv = fe->tuner_priv; unsigned char *regs = priv->tda18271_regs; unsigned char buf = 0x00; int ret; struct i2c_msg msg[] = { { .addr = priv->i2c_addr, .flags = 0, .buf = &buf, .len = 1 }, { .addr = priv->i2c_addr, .flags = I2C_M_RD, .buf = regs, .len = 16 } }; tda18271_i2c_gate_ctrl(fe, 1); /* read all registers */ ret = i2c_transfer(priv->i2c_adap, msg, 2); tda18271_i2c_gate_ctrl(fe, 0); if (ret != 2) tda_err("ERROR: i2c_transfer returned: %d\n", ret); if (tda18271_debug & DBG_REG) tda18271_dump_regs(fe, 0); } static void tda18271_read_extended(struct dvb_frontend *fe) { struct tda18271_priv *priv = fe->tuner_priv; unsigned char *regs = priv->tda18271_regs; unsigned char regdump[TDA18271_NUM_REGS]; unsigned char buf = 0x00; int ret, i; struct i2c_msg msg[] = { { .addr = priv->i2c_addr, .flags = 0, .buf = &buf, .len = 1 }, { .addr = priv->i2c_addr, .flags = I2C_M_RD, .buf = regdump, .len = TDA18271_NUM_REGS } }; tda18271_i2c_gate_ctrl(fe, 1); /* read all registers */ ret = i2c_transfer(priv->i2c_adap, msg, 2); tda18271_i2c_gate_ctrl(fe, 0); if (ret != 2) tda_err("ERROR: i2c_transfer returned: %d\n", ret); for (i = 0; i <= TDA18271_NUM_REGS; i++) { /* don't update write-only registers */ if ((i != R_EB9) && (i != R_EB16) && (i != R_EB17) && (i != R_EB19) && (i != R_EB20)) regs[i] = regdump[i]; } if (tda18271_debug & DBG_REG) tda18271_dump_regs(fe, 1); } static void tda18271_write_regs(struct dvb_frontend *fe, int idx, int len) { struct tda18271_priv *priv = fe->tuner_priv; unsigned char *regs = priv->tda18271_regs; unsigned char buf[TDA18271_NUM_REGS+1]; struct i2c_msg msg = { .addr = priv->i2c_addr, .flags = 0, .buf = buf, .len = len+1 }; int i, ret; BUG_ON((len == 0) || (idx+len > sizeof(buf))); buf[0] = idx; for (i = 1; i <= len; i++) { buf[i] = regs[idx-1+i]; } tda18271_i2c_gate_ctrl(fe, 1); /* write registers */ ret = i2c_transfer(priv->i2c_adap, &msg, 1); tda18271_i2c_gate_ctrl(fe, 0); if (ret != 1) tda_err("ERROR: i2c_transfer returned: %d\n", ret); } /*---------------------------------------------------------------------*/ static int tda18271_init_regs(struct dvb_frontend *fe) { struct tda18271_priv *priv = fe->tuner_priv; unsigned char *regs = priv->tda18271_regs; tda_dbg("initializing registers for device @ %d-%04x\n", i2c_adapter_id(priv->i2c_adap), priv->i2c_addr); /* initialize registers */ switch (priv->id) { case TDA18271HDC1: regs[R_ID] = 0x83; break; case TDA18271HDC2: regs[R_ID] = 0x84; break; }; regs[R_TM] = 0x08; regs[R_PL] = 0x80; regs[R_EP1] = 0xc6; regs[R_EP2] = 0xdf; regs[R_EP3] = 0x16; regs[R_EP4] = 0x60; regs[R_EP5] = 0x80; regs[R_CPD] = 0x80; regs[R_CD1] = 0x00; regs[R_CD2] = 0x00; regs[R_CD3] = 0x00; regs[R_MPD] = 0x00; regs[R_MD1] = 0x00; regs[R_MD2] = 0x00; regs[R_MD3] = 0x00; switch (priv->id) { case TDA18271HDC1: regs[R_EB1] = 0xff; break; case TDA18271HDC2: regs[R_EB1] = 0xfc; break; }; regs[R_EB2] = 0x01; regs[R_EB3] = 0x84; regs[R_EB4] = 0x41; regs[R_EB5] = 0x01; regs[R_EB6] = 0x84; regs[R_EB7] = 0x40; regs[R_EB8] = 0x07; regs[R_EB9] = 0x00; regs[R_EB10] = 0x00; regs[R_EB11] = 0x96; switch (priv->id) { case TDA18271HDC1: regs[R_EB12] = 0x0f; break; case TDA18271HDC2: regs[R_EB12] = 0x33; break; }; regs[R_EB13] = 0xc1; regs[R_EB14] = 0x00; regs[R_EB15] = 0x8f; regs[R_EB16] = 0x00; regs[R_EB17] = 0x00; switch (priv->id) { case TDA18271HDC1: regs[R_EB18] = 0x00; break; case TDA18271HDC2: regs[R_EB18] = 0x8c; break; }; regs[R_EB19] = 0x00; regs[R_EB20] = 0x20; switch (priv->id) { case TDA18271HDC1: regs[R_EB21] = 0x33; break; case TDA18271HDC2: regs[R_EB21] = 0xb3; break; }; regs[R_EB22] = 0x48; regs[R_EB23] = 0xb0; tda18271_write_regs(fe, 0x00, TDA18271_NUM_REGS); /* setup agc1 gain */ regs[R_EB17] = 0x00; tda18271_write_regs(fe, R_EB17, 1); regs[R_EB17] = 0x03; tda18271_write_regs(fe, R_EB17, 1); regs[R_EB17] = 0x43; tda18271_write_regs(fe, R_EB17, 1); regs[R_EB17] = 0x4c; tda18271_write_regs(fe, R_EB17, 1); /* setup agc2 gain */ if ((priv->id) == TDA18271HDC1) { regs[R_EB20] = 0xa0; tda18271_write_regs(fe, R_EB20, 1); regs[R_EB20] = 0xa7; tda18271_write_regs(fe, R_EB20, 1); regs[R_EB20] = 0xe7; tda18271_write_regs(fe, R_EB20, 1); regs[R_EB20] = 0xec; tda18271_write_regs(fe, R_EB20, 1); } /* image rejection calibration */ /* low-band */ regs[R_EP3] = 0x1f; regs[R_EP4] = 0x66; regs[R_EP5] = 0x81; regs[R_CPD] = 0xcc; regs[R_CD1] = 0x6c; regs[R_CD2] = 0x00; regs[R_CD3] = 0x00; regs[R_MPD] = 0xcd; regs[R_MD1] = 0x77; regs[R_MD2] = 0x08; regs[R_MD3] = 0x00; switch (priv->id) { case TDA18271HDC1: tda18271_write_regs(fe, R_EP3, 11); break; case TDA18271HDC2: tda18271_write_regs(fe, R_EP3, 12); break; }; if ((priv->id) == TDA18271HDC2) { /* main pll cp source on */ regs[R_EB4] = 0x61; tda18271_write_regs(fe, R_EB4, 1); msleep(1); /* main pll cp source off */ regs[R_EB4] = 0x41; tda18271_write_regs(fe, R_EB4, 1); } msleep(5); /* pll locking */ /* launch detector */ tda18271_write_regs(fe, R_EP1, 1); msleep(5); /* wanted low measurement */ regs[R_EP5] = 0x85; regs[R_CPD] = 0xcb; regs[R_CD1] = 0x66; regs[R_CD2] = 0x70; tda18271_write_regs(fe, R_EP3, 7); msleep(5); /* pll locking */ /* launch optimization algorithm */ tda18271_write_regs(fe, R_EP2, 1); msleep(30); /* image low optimization completion */ /* mid-band */ regs[R_EP5] = 0x82; regs[R_CPD] = 0xa8; regs[R_CD2] = 0x00; regs[R_MPD] = 0xa9; regs[R_MD1] = 0x73; regs[R_MD2] = 0x1a; tda18271_write_regs(fe, R_EP3, 11); msleep(5); /* pll locking */ tda18271_write_regs(fe, R_EP1, 1); msleep(5); /* wanted mid measurement */ regs[R_EP5] = 0x86; regs[R_CPD] = 0xa8; regs[R_CD1] = 0x66; regs[R_CD2] = 0xa0; tda18271_write_regs(fe, R_EP3, 7); msleep(5); /* pll locking */ /* launch optimization algorithm */ tda18271_write_regs(fe, R_EP2, 1); msleep(30); /* image mid optimization completion */ /* high-band */ regs[R_EP5] = 0x83; regs[R_CPD] = 0x98; regs[R_CD1] = 0x65; regs[R_CD2] = 0x00; regs[R_MPD] = 0x99; regs[R_MD1] = 0x71; regs[R_MD2] = 0xcd; tda18271_write_regs(fe, R_EP3, 11); msleep(5); /* pll locking */ /* launch detector */ tda18271_write_regs(fe, R_EP1, 1); msleep(5); /* wanted high measurement */ regs[R_EP5] = 0x87; regs[R_CD1] = 0x65; regs[R_CD2] = 0x50; tda18271_write_regs(fe, R_EP3, 7); msleep(5); /* pll locking */ /* launch optimization algorithm */ tda18271_write_regs(fe, R_EP2, 1); msleep(30); /* image high optimization completion */ /* return to normal mode */ regs[R_EP4] = 0x64; tda18271_write_regs(fe, R_EP4, 1); /* synchronize */ tda18271_write_regs(fe, R_EP1, 1); return 0; } static int tda18271_init(struct dvb_frontend *fe) { struct tda18271_priv *priv = fe->tuner_priv; unsigned char *regs = priv->tda18271_regs; tda18271_read_regs(fe); /* test IR_CAL_OK to see if we need init */ if ((regs[R_EP1] & 0x08) == 0) tda18271_init_regs(fe); return 0; } static int tda18271_calc_main_pll(struct dvb_frontend *fe, u32 freq) { /* Sets Main Post-Divider & Divider bytes, but does not write them */ struct tda18271_priv *priv = fe->tuner_priv; unsigned char *regs = priv->tda18271_regs; u8 d, pd; u32 div; int ret = tda18271_lookup_pll_map(fe, MAIN_PLL, &freq, &pd, &d); if (ret < 0) goto fail; regs[R_MPD] = (0x77 & pd); switch (priv->mode) { case TDA18271_ANALOG: regs[R_MPD] &= ~0x08; break; case TDA18271_DIGITAL: regs[R_MPD] |= 0x08; break; } div = ((d * (freq / 1000)) << 7) / 125; regs[R_MD1] = 0x7f & (div >> 16); regs[R_MD2] = 0xff & (div >> 8); regs[R_MD3] = 0xff & div; fail: return ret; } static int tda18271_calc_cal_pll(struct dvb_frontend *fe, u32 freq) { /* Sets Cal Post-Divider & Divider bytes, but does not write them */ struct tda18271_priv *priv = fe->tuner_priv; unsigned char *regs = priv->tda18271_regs; u8 d, pd; u32 div; int ret = tda18271_lookup_pll_map(fe, CAL_PLL, &freq, &pd, &d); if (ret < 0) goto fail; regs[R_CPD] = pd; div = ((d * (freq / 1000)) << 7) / 125; regs[R_CD1] = 0x7f & (div >> 16); regs[R_CD2] = 0xff & (div >> 8); regs[R_CD3] = 0xff & div; fail: return ret; } static int tda18271_calc_bp_filter(struct dvb_frontend *fe, u32 *freq) { /* Sets BP filter bits, but does not write them */ struct tda18271_priv *priv = fe->tuner_priv; unsigned char *regs = priv->tda18271_regs; u8 val; int ret = tda18271_lookup_map(fe, BP_FILTER, freq, &val); if (ret < 0) goto fail; regs[R_EP1] &= ~0x07; /* clear bp filter bits */ regs[R_EP1] |= (0x07 & val); fail: return ret; } static int tda18271_calc_km(struct dvb_frontend *fe, u32 *freq) { /* Sets K & M bits, but does not write them */ struct tda18271_priv *priv = fe->tuner_priv; unsigned char *regs = priv->tda18271_regs; u8 val; int ret = tda18271_lookup_map(fe, RF_CAL_KMCO, freq, &val); if (ret < 0) goto fail; regs[R_EB13] &= ~0x7c; /* clear k & m bits */ regs[R_EB13] |= (0x7c & val); fail: return ret; } static int tda18271_calc_rf_band(struct dvb_frontend *fe, u32 *freq) { /* Sets RF Band bits, but does not write them */ struct tda18271_priv *priv = fe->tuner_priv; unsigned char *regs = priv->tda18271_regs; u8 val; int ret = tda18271_lookup_map(fe, RF_BAND, freq, &val); if (ret < 0) goto fail; regs[R_EP2] &= ~0xe0; /* clear rf band bits */ regs[R_EP2] |= (0xe0 & (val << 5)); fail: return ret; } static int tda18271_calc_gain_taper(struct dvb_frontend *fe, u32 *freq) { /* Sets Gain Taper bits, but does not write them */ struct tda18271_priv *priv = fe->tuner_priv; unsigned char *regs = priv->tda18271_regs; u8 val; int ret = tda18271_lookup_map(fe, GAIN_TAPER, freq, &val); if (ret < 0) goto fail; regs[R_EP2] &= ~0x1f; /* clear gain taper bits */ regs[R_EP2] |= (0x1f & val); fail: return ret; } static int tda18271_calc_ir_measure(struct dvb_frontend *fe, u32 *freq) { /* Sets IR Meas bits, but does not write them */ struct tda18271_priv *priv = fe->tuner_priv; unsigned char *regs = priv->tda18271_regs; u8 val; int ret = tda18271_lookup_map(fe, IR_MEASURE, freq, &val); if (ret < 0) goto fail; regs[R_EP5] &= ~0x07; regs[R_EP5] |= (0x07 & val); fail: return ret; } static int tda18271_calc_rf_cal(struct dvb_frontend *fe, u32 *freq) { /* Sets RF Cal bits, but does not write them */ struct tda18271_priv *priv = fe->tuner_priv; unsigned char *regs = priv->tda18271_regs; u8 val; int ret = tda18271_lookup_map(fe, RF_CAL, freq, &val); if (ret < 0) goto fail; regs[R_EB14] = val; fail: return ret; } /* ------------------------------------------------------------------ */ static int tda18271_channel_configuration(struct dvb_frontend *fe, u32 ifc, u32 freq, u32 bw, u8 std) { struct tda18271_priv *priv = fe->tuner_priv; unsigned char *regs = priv->tda18271_regs; u32 N; /* update TV broadcast parameters */ /* set standard */ regs[R_EP3] &= ~0x1f; /* clear std bits */ regs[R_EP3] |= std; /* set cal mode to normal */ regs[R_EP4] &= ~0x03; /* update IF output level & IF notch frequency */ regs[R_EP4] &= ~0x1c; /* clear if level bits */ switch (priv->mode) { case TDA18271_ANALOG: regs[R_MPD] &= ~0x80; /* IF notch = 0 */ break; case TDA18271_DIGITAL: regs[R_EP4] |= 0x04; /* IF level = 1 */ regs[R_MPD] |= 0x80; /* IF notch = 1 */ break; } regs[R_EP4] &= ~0x80; /* FM_RFn: turn this bit on only for fm radio */ /* update RF_TOP / IF_TOP */ switch (priv->mode) { case TDA18271_ANALOG: regs[R_EB22] = 0x2c; break; case TDA18271_DIGITAL: regs[R_EB22] = 0x37; break; } tda18271_write_regs(fe, R_EB22, 1); /* --------------------------------------------------------------- */ /* disable Power Level Indicator */ regs[R_EP1] |= 0x40; /* frequency dependent parameters */ tda18271_calc_ir_measure(fe, &freq); tda18271_calc_bp_filter(fe, &freq); tda18271_calc_rf_band(fe, &freq); tda18271_calc_gain_taper(fe, &freq); /* --------------------------------------------------------------- */ /* dual tuner and agc1 extra configuration */ /* main vco when Master, cal vco when slave */ regs[R_EB1] |= 0x04; /* FIXME: assumes master */ /* agc1 always active */ regs[R_EB1] &= ~0x02; /* agc1 has priority on agc2 */ regs[R_EB1] &= ~0x01; tda18271_write_regs(fe, R_EB1, 1); /* --------------------------------------------------------------- */ N = freq + ifc; /* FIXME: assumes master */ tda18271_calc_main_pll(fe, N); tda18271_write_regs(fe, R_MPD, 4); tda18271_write_regs(fe, R_TM, 7); /* main pll charge pump source */ regs[R_EB4] |= 0x20; tda18271_write_regs(fe, R_EB4, 1); msleep(1); /* normal operation for the main pll */ regs[R_EB4] &= ~0x20; tda18271_write_regs(fe, R_EB4, 1); msleep(5); return 0; } static int tda18271_read_thermometer(struct dvb_frontend *fe) { struct tda18271_priv *priv = fe->tuner_priv; unsigned char *regs = priv->tda18271_regs; int tm; /* switch thermometer on */ regs[R_TM] |= 0x10; tda18271_write_regs(fe, R_TM, 1); /* read thermometer info */ tda18271_read_regs(fe); if ((((regs[R_TM] & 0x0f) == 0x00) && ((regs[R_TM] & 0x20) == 0x20)) || (((regs[R_TM] & 0x0f) == 0x08) && ((regs[R_TM] & 0x20) == 0x00))) { if ((regs[R_TM] & 0x20) == 0x20) regs[R_TM] &= ~0x20; else regs[R_TM] |= 0x20; tda18271_write_regs(fe, R_TM, 1); msleep(10); /* temperature sensing */ /* read thermometer info */ tda18271_read_regs(fe); } tm = tda18271_lookup_thermometer(fe); /* switch thermometer off */ regs[R_TM] &= ~0x10; tda18271_write_regs(fe, R_TM, 1); /* set CAL mode to normal */ regs[R_EP4] &= ~0x03; tda18271_write_regs(fe, R_EP4, 1); return tm; } static int tda18271_rf_tracking_filters_correction(struct dvb_frontend *fe, u32 freq, int tm_rfcal) { struct tda18271_priv *priv = fe->tuner_priv; struct tda18271_rf_tracking_filter_cal *map = priv->rf_cal_state; unsigned char *regs = priv->tda18271_regs; int tm_current, rfcal_comp, approx, i; u8 dc_over_dt, rf_tab; /* power up */ regs[R_EP3] &= ~0xe0; /* sm = 0, sm_lt = 0, sm_xt = 0 */ tda18271_write_regs(fe, R_EP3, 1); /* read die current temperature */ tm_current = tda18271_read_thermometer(fe); /* frequency dependent parameters */ tda18271_calc_rf_cal(fe, &freq); rf_tab = regs[R_EB14]; i = tda18271_lookup_rf_band(fe, &freq, NULL); if (i < 0) return -EINVAL; if ((0 == map[i].rf3) || (freq / 1000 < map[i].rf2)) { approx = map[i].rf_a1 * (freq / 1000 - map[i].rf1) + map[i].rf_b1 + rf_tab; } else { approx = map[i].rf_a2 * (freq / 1000 - map[i].rf2) + map[i].rf_b2 + rf_tab; } if (approx < 0) approx = 0; if (approx > 255) approx = 255; tda18271_lookup_map(fe, RF_CAL_DC_OVER_DT, &freq, &dc_over_dt); /* calculate temperature compensation */ rfcal_comp = dc_over_dt * (tm_current - tm_rfcal); regs[R_EB14] = approx + rfcal_comp; tda18271_write_regs(fe, R_EB14, 1); return 0; } static int tda18271_por(struct dvb_frontend *fe) { struct tda18271_priv *priv = fe->tuner_priv; unsigned char *regs = priv->tda18271_regs; /* power up detector 1 */ regs[R_EB12] &= ~0x20; tda18271_write_regs(fe, R_EB12, 1); regs[R_EB18] &= ~0x80; /* turn agc1 loop on */ regs[R_EB18] &= ~0x03; /* set agc1_gain to 6 dB */ tda18271_write_regs(fe, R_EB18, 1); regs[R_EB21] |= 0x03; /* set agc2_gain to -6 dB */ /* POR mode */ regs[R_EP3] &= ~0xe0; /* clear sm, sm_lt, sm_xt */ regs[R_EP3] |= 0x80; /* sm = 1, sm_lt = 0, sm_xt = 0 */ tda18271_write_regs(fe, R_EP3, 1); /* disable 1.5 MHz low pass filter */ regs[R_EB23] &= ~0x04; /* forcelp_fc2_en = 0 */ regs[R_EB23] &= ~0x02; /* XXX: lp_fc[2] = 0 */ tda18271_write_regs(fe, R_EB21, 3); return 0; } static int tda18271_calibrate_rf(struct dvb_frontend *fe, u32 freq) { struct tda18271_priv *priv = fe->tuner_priv; unsigned char *regs = priv->tda18271_regs; u32 N; /* set CAL mode to normal */ regs[R_EP4] &= ~0x03; tda18271_write_regs(fe, R_EP4, 1); /* switch off agc1 */ regs[R_EP3] |= 0x40; /* sm_lt = 1 */ regs[R_EB18] |= 0x03; /* set agc1_gain to 15 dB */ tda18271_write_regs(fe, R_EB18, 1); /* frequency dependent parameters */ tda18271_calc_bp_filter(fe, &freq); tda18271_calc_gain_taper(fe, &freq); tda18271_calc_rf_band(fe, &freq); tda18271_calc_km(fe, &freq); tda18271_write_regs(fe, R_EP1, 3); tda18271_write_regs(fe, R_EB13, 1); /* main pll charge pump source */ regs[R_EB4] |= 0x20; tda18271_write_regs(fe, R_EB4, 1); /* cal pll charge pump source */ regs[R_EB7] |= 0x20; tda18271_write_regs(fe, R_EB7, 1); /* force dcdc converter to 0 V */ regs[R_EB14] = 0x00; tda18271_write_regs(fe, R_EB14, 1); /* disable plls lock */ regs[R_EB20] &= ~0x20; tda18271_write_regs(fe, R_EB20, 1); /* set CAL mode to RF tracking filter calibration */ regs[R_EP4] |= 0x03; tda18271_write_regs(fe, R_EP4, 2); /* --------------------------------------------------------------- */ /* set the internal calibration signal */ N = freq; tda18271_calc_main_pll(fe, N); tda18271_write_regs(fe, R_MPD, 4); /* downconvert internal calibration */ N += 1000000; tda18271_calc_main_pll(fe, N); tda18271_write_regs(fe, R_MPD, 4); msleep(5); tda18271_write_regs(fe, R_EP2, 1); tda18271_write_regs(fe, R_EP1, 1); tda18271_write_regs(fe, R_EP2, 1); tda18271_write_regs(fe, R_EP1, 1); /* --------------------------------------------------------------- */ /* normal operation for the main pll */ regs[R_EB4] &= ~0x20; tda18271_write_regs(fe, R_EB4, 1); /* normal operation for the cal pll */ regs[R_EB7] &= ~0x20; tda18271_write_regs(fe, R_EB7, 1); msleep(5); /* plls locking */ /* launch the rf tracking filters calibration */ regs[R_EB20] |= 0x20; tda18271_write_regs(fe, R_EB20, 1); msleep(60); /* calibration */ /* --------------------------------------------------------------- */ /* set CAL mode to normal */ regs[R_EP4] &= ~0x03; /* switch on agc1 */ regs[R_EP3] &= ~0x40; /* sm_lt = 0 */ regs[R_EB18] &= ~0x03; /* set agc1_gain to 6 dB */ tda18271_write_regs(fe, R_EB18, 1); tda18271_write_regs(fe, R_EP3, 2); /* synchronization */ tda18271_write_regs(fe, R_EP1, 1); /* get calibration result */ tda18271_read_extended(fe); return regs[R_EB14]; } static int tda18271_powerscan(struct dvb_frontend *fe, u32 *freq_in, u32 *freq_out) { struct tda18271_priv *priv = fe->tuner_priv; unsigned char *regs = priv->tda18271_regs; int sgn, bcal, count, wait; u8 cid_target; u16 count_limit; u32 freq; freq = *freq_in; tda18271_calc_rf_band(fe, &freq); tda18271_calc_rf_cal(fe, &freq); tda18271_calc_gain_taper(fe, &freq); tda18271_lookup_cid_target(fe, &freq, &cid_target, &count_limit); tda18271_write_regs(fe, R_EP2, 1); tda18271_write_regs(fe, R_EB14, 1); /* downconvert frequency */ freq += 1000000; tda18271_calc_main_pll(fe, freq); tda18271_write_regs(fe, R_MPD, 4); msleep(5); /* pll locking */ /* detection mode */ regs[R_EP4] &= ~0x03; regs[R_EP4] |= 0x01; tda18271_write_regs(fe, R_EP4, 1); /* launch power detection measurement */ tda18271_write_regs(fe, R_EP2, 1); /* read power detection info, stored in EB10 */ tda18271_read_extended(fe); /* algorithm initialization */ sgn = 1; *freq_out = *freq_in; bcal = 0; count = 0; wait = false; while ((regs[R_EB10] & 0x3f) < cid_target) { /* downconvert updated freq to 1 MHz */ freq = *freq_in + (sgn * count) + 1000000; tda18271_calc_main_pll(fe, freq); tda18271_write_regs(fe, R_MPD, 4); if (wait) { msleep(5); /* pll locking */ wait = false; } else udelay(100); /* pll locking */ /* launch power detection measurement */ tda18271_write_regs(fe, R_EP2, 1); /* read power detection info, stored in EB10 */ tda18271_read_extended(fe); count += 200; if (count < count_limit) continue; if (sgn <= 0) break; sgn = -1 * sgn; count = 200; wait = true; } if ((regs[R_EB10] & 0x3f) >= cid_target) { bcal = 1; *freq_out = freq - 1000000; } else bcal = 0; tda_dbg("bcal = %d, freq_in = %d, freq_out = %d (freq = %d)\n", bcal, *freq_in, *freq_out, freq); return bcal; } static int tda18271_powerscan_init(struct dvb_frontend *fe) { struct tda18271_priv *priv = fe->tuner_priv; unsigned char *regs = priv->tda18271_regs; /* set standard to digital */ regs[R_EP3] &= ~0x1f; /* clear std bits */ regs[R_EP3] |= 0x12; /* set cal mode to normal */ regs[R_EP4] &= ~0x03; /* update IF output level & IF notch frequency */ regs[R_EP4] &= ~0x1c; /* clear if level bits */ tda18271_write_regs(fe, R_EP3, 2); regs[R_EB18] &= ~0x03; /* set agc1_gain to 6 dB */ tda18271_write_regs(fe, R_EB18, 1); regs[R_EB21] &= ~0x03; /* set agc2_gain to -15 dB */ /* 1.5 MHz low pass filter */ regs[R_EB23] |= 0x04; /* forcelp_fc2_en = 1 */ regs[R_EB23] |= 0x02; /* lp_fc[2] = 1 */ tda18271_write_regs(fe, R_EB21, 3); return 0; } static int tda18271_rf_tracking_filters_init(struct dvb_frontend *fe, u32 freq) { struct tda18271_priv *priv = fe->tuner_priv; struct tda18271_rf_tracking_filter_cal *map = priv->rf_cal_state; unsigned char *regs = priv->tda18271_regs; int bcal, rf, i; #define RF1 0 #define RF2 1 #define RF3 2 u32 rf_default[3]; u32 rf_freq[3]; u8 prog_cal[3]; u8 prog_tab[3]; i = tda18271_lookup_rf_band(fe, &freq, NULL); if (i < 0) return i; rf_default[RF1] = 1000 * map[i].rf1_def; rf_default[RF2] = 1000 * map[i].rf2_def; rf_default[RF3] = 1000 * map[i].rf3_def; for (rf = RF1; rf <= RF3; rf++) { if (0 == rf_default[rf]) return 0; tda_dbg("freq = %d, rf = %d\n", freq, rf); /* look for optimized calibration frequency */ bcal = tda18271_powerscan(fe, &rf_default[rf], &rf_freq[rf]); tda18271_calc_rf_cal(fe, &rf_freq[rf]); prog_tab[rf] = regs[R_EB14]; if (1 == bcal) prog_cal[rf] = tda18271_calibrate_rf(fe, rf_freq[rf]); else prog_cal[rf] = prog_tab[rf]; switch (rf) { case RF1: map[i].rf_a1 = 0; map[i].rf_b1 = prog_cal[RF1] - prog_tab[RF1]; map[i].rf1 = rf_freq[RF1] / 1000; break; case RF2: map[i].rf_a1 = (prog_cal[RF2] - prog_tab[RF2] - prog_cal[RF1] + prog_tab[RF1]) / ((rf_freq[RF2] - rf_freq[RF1]) / 1000); map[i].rf2 = rf_freq[RF2] / 1000; break; case RF3: map[i].rf_a2 = (prog_cal[RF3] - prog_tab[RF3] - prog_cal[RF2] + prog_tab[RF2]) / ((rf_freq[RF3] - rf_freq[RF2]) / 1000); map[i].rf_b2 = prog_cal[RF2] - prog_tab[RF2]; map[i].rf3 = rf_freq[RF3] / 1000; break; default: BUG(); } } return 0; } static int tda18271_calc_rf_filter_curve(struct dvb_frontend *fe, int *tm_rfcal) { struct tda18271_priv *priv = fe->tuner_priv; unsigned int i; tda_info("tda18271: performing RF tracking filter calibration\n"); /* wait for die temperature stabilization */ msleep(200); tda18271_powerscan_init(fe); /* rf band calibration */ for (i = 0; priv->rf_cal_state[i].rfmax != 0; i++) tda18271_rf_tracking_filters_init(fe, 1000 * priv->rf_cal_state[i].rfmax); *tm_rfcal = tda18271_read_thermometer(fe); return 0; } /* ------------------------------------------------------------------ */ static int tda18271_init_cal(struct dvb_frontend *fe, int *tm) { struct tda18271_priv *priv = fe->tuner_priv; if (priv->cal_initialized) return 0; /* initialization */ tda18271_init(fe); tda18271_calc_rf_filter_curve(fe, tm); tda18271_por(fe); priv->cal_initialized = true; return 0; } static int tda18271c2_tune(struct dvb_frontend *fe, u32 ifc, u32 freq, u32 bw, u8 std) { int tm = 0; tda_dbg("freq = %d, ifc = %d\n", freq, ifc); tda18271_init_cal(fe, &tm); tda18271_rf_tracking_filters_correction(fe, freq, tm); tda18271_channel_configuration(fe, ifc, freq, bw, std); return 0; } /* ------------------------------------------------------------------ */ static int tda18271c1_tune(struct dvb_frontend *fe, u32 ifc, u32 freq, u32 bw, u8 std) { struct tda18271_priv *priv = fe->tuner_priv; unsigned char *regs = priv->tda18271_regs; u32 N = 0; tda18271_init(fe); tda_dbg("freq = %d, ifc = %d\n", freq, ifc); /* RF tracking filter calibration */ /* calculate bp filter */ tda18271_calc_bp_filter(fe, &freq); tda18271_write_regs(fe, R_EP1, 1); regs[R_EB4] &= 0x07; regs[R_EB4] |= 0x60; tda18271_write_regs(fe, R_EB4, 1); regs[R_EB7] = 0x60; tda18271_write_regs(fe, R_EB7, 1); regs[R_EB14] = 0x00; tda18271_write_regs(fe, R_EB14, 1); regs[R_EB20] = 0xcc; tda18271_write_regs(fe, R_EB20, 1); /* set cal mode to RF tracking filter calibration */ regs[R_EP4] |= 0x03; /* calculate cal pll */ switch (priv->mode) { case TDA18271_ANALOG: N = freq - 1250000; break; case TDA18271_DIGITAL: N = freq + bw / 2; break; } tda18271_calc_cal_pll(fe, N); /* calculate main pll */ switch (priv->mode) { case TDA18271_ANALOG: N = freq - 250000; break; case TDA18271_DIGITAL: N = freq + bw / 2 + 1000000; break; } tda18271_calc_main_pll(fe, N); tda18271_write_regs(fe, R_EP3, 11); msleep(5); /* RF tracking filter calibration initialization */ /* search for K,M,CO for RF calibration */ tda18271_calc_km(fe, &freq); tda18271_write_regs(fe, R_EB13, 1); /* search for rf band */ tda18271_calc_rf_band(fe, &freq); /* search for gain taper */ tda18271_calc_gain_taper(fe, &freq); tda18271_write_regs(fe, R_EP2, 1); tda18271_write_regs(fe, R_EP1, 1); tda18271_write_regs(fe, R_EP2, 1); tda18271_write_regs(fe, R_EP1, 1); regs[R_EB4] &= 0x07; regs[R_EB4] |= 0x40; tda18271_write_regs(fe, R_EB4, 1); regs[R_EB7] = 0x40; tda18271_write_regs(fe, R_EB7, 1); msleep(10); regs[R_EB20] = 0xec; tda18271_write_regs(fe, R_EB20, 1); msleep(60); /* RF tracking filter calibration completion */ regs[R_EP4] &= ~0x03; /* set cal mode to normal */ tda18271_write_regs(fe, R_EP4, 1); tda18271_write_regs(fe, R_EP1, 1); /* RF tracking filter correction for VHF_Low band */ if (0 == tda18271_calc_rf_cal(fe, &freq)) tda18271_write_regs(fe, R_EB14, 1); /* Channel Configuration */ switch (priv->mode) { case TDA18271_ANALOG: regs[R_EB22] = 0x2c; break; case TDA18271_DIGITAL: regs[R_EB22] = 0x37; break; } tda18271_write_regs(fe, R_EB22, 1); regs[R_EP1] |= 0x40; /* set dis power level on */ /* set standard */ regs[R_EP3] &= ~0x1f; /* clear std bits */ /* see table 22 */ regs[R_EP3] |= std; regs[R_EP4] &= ~0x03; /* set cal mode to normal */ regs[R_EP4] &= ~0x1c; /* clear if level bits */ switch (priv->mode) { case TDA18271_ANALOG: regs[R_MPD] &= ~0x80; /* IF notch = 0 */ break; case TDA18271_DIGITAL: regs[R_EP4] |= 0x04; regs[R_MPD] |= 0x80; break; } regs[R_EP4] &= ~0x80; /* turn this bit on only for fm */ /* image rejection validity */ tda18271_calc_ir_measure(fe, &freq); /* calculate MAIN PLL */ N = freq + ifc; tda18271_calc_main_pll(fe, N); tda18271_write_regs(fe, R_TM, 15); msleep(5); return 0; } /* ------------------------------------------------------------------ */ static int tda18271_set_params(struct dvb_frontend *fe, struct dvb_frontend_parameters *params) { struct tda18271_priv *priv = fe->tuner_priv; struct tda18271_std_map *std_map = priv->std; u8 std; u32 bw, sgIF = 0; u32 freq = params->frequency; BUG_ON(!priv->tune || !priv->std); priv->mode = TDA18271_DIGITAL; /* see table 22 */ if (fe->ops.info.type == FE_ATSC) { switch (params->u.vsb.modulation) { case VSB_8: case VSB_16: std = std_map->atsc_6.std_bits; sgIF = std_map->atsc_6.if_freq; break; case QAM_64: case QAM_256: std = std_map->qam_6.std_bits; sgIF = std_map->qam_6.if_freq; break; default: tda_warn("modulation not set!\n"); return -EINVAL; } #if 0 /* userspace request is already center adjusted */ freq += 1750000; /* Adjust to center (+1.75MHZ) */ #endif bw = 6000000; } else if (fe->ops.info.type == FE_OFDM) { switch (params->u.ofdm.bandwidth) { case BANDWIDTH_6_MHZ: bw = 6000000; std = std_map->dvbt_6.std_bits; sgIF = std_map->dvbt_6.if_freq; break; case BANDWIDTH_7_MHZ: bw = 7000000; std = std_map->dvbt_7.std_bits; sgIF = std_map->dvbt_7.if_freq; break; case BANDWIDTH_8_MHZ: bw = 8000000; std = std_map->dvbt_8.std_bits; sgIF = std_map->dvbt_8.if_freq; break; default: tda_warn("bandwidth not set!\n"); return -EINVAL; } } else { tda_warn("modulation type not supported!\n"); return -EINVAL; } return priv->tune(fe, sgIF, freq, bw, std); } static int tda18271_set_analog_params(struct dvb_frontend *fe, struct analog_parameters *params) { struct tda18271_priv *priv = fe->tuner_priv; struct tda18271_std_map *std_map = priv->std; char *mode; u8 std; u32 sgIF, freq = params->frequency * 62500; BUG_ON(!priv->tune || !priv->std); priv->mode = TDA18271_ANALOG; if (params->std & V4L2_STD_MN) { std = std_map->atv_mn.std_bits; sgIF = std_map->atv_mn.if_freq; mode = "MN"; } else if (params->std & V4L2_STD_B) { std = std_map->atv_b.std_bits; sgIF = std_map->atv_b.if_freq; mode = "B"; } else if (params->std & V4L2_STD_GH) { std = std_map->atv_gh.std_bits; sgIF = std_map->atv_gh.if_freq; mode = "GH"; } else if (params->std & V4L2_STD_PAL_I) { std = std_map->atv_i.std_bits; sgIF = std_map->atv_i.if_freq; mode = "I"; } else if (params->std & V4L2_STD_DK) { std = std_map->atv_dk.std_bits; sgIF = std_map->atv_dk.if_freq; mode = "DK"; } else if (params->std & V4L2_STD_SECAM_L) { std = std_map->atv_l.std_bits; sgIF = std_map->atv_l.if_freq; mode = "L"; } else if (params->std & V4L2_STD_SECAM_LC) { std = std_map->atv_lc.std_bits; sgIF = std_map->atv_lc.if_freq; mode = "L'"; } else { std = std_map->atv_i.std_bits; sgIF = std_map->atv_i.if_freq; mode = "xx"; } tda_dbg("setting tda18271 to system %s\n", mode); return priv->tune(fe, sgIF, freq, 0, std); } static int tda18271_release(struct dvb_frontend *fe) { kfree(fe->tuner_priv); fe->tuner_priv = NULL; return 0; } static int tda18271_get_frequency(struct dvb_frontend *fe, u32 *frequency) { struct tda18271_priv *priv = fe->tuner_priv; *frequency = priv->frequency; return 0; } static int tda18271_get_bandwidth(struct dvb_frontend *fe, u32 *bandwidth) { struct tda18271_priv *priv = fe->tuner_priv; *bandwidth = priv->bandwidth; return 0; } static int tda18271_get_id(struct dvb_frontend *fe) { struct tda18271_priv *priv = fe->tuner_priv; unsigned char *regs = priv->tda18271_regs; char *name; int ret = 0; tda18271_read_regs(fe); switch (regs[R_ID] & 0x7f) { case 3: name = "TDA18271HD/C1"; priv->id = TDA18271HDC1; priv->tune = tda18271c1_tune; break; case 4: name = "TDA18271HD/C2"; priv->id = TDA18271HDC2; priv->tune = tda18271c2_tune; break; default: name = "Unknown device"; ret = -EINVAL; break; } tda_info("%s detected @ %d-%04x%s\n", name, i2c_adapter_id(priv->i2c_adap), priv->i2c_addr, (0 == ret) ? "" : ", device not supported."); return ret; } static struct dvb_tuner_ops tda18271_tuner_ops = { .info = { .name = "NXP TDA18271HD", .frequency_min = 45000000, .frequency_max = 864000000, .frequency_step = 62500 }, .init = tda18271_init, .set_params = tda18271_set_params, .set_analog_params = tda18271_set_analog_params, .release = tda18271_release, .get_frequency = tda18271_get_frequency, .get_bandwidth = tda18271_get_bandwidth, }; struct dvb_frontend *tda18271_attach(struct dvb_frontend *fe, u8 addr, struct i2c_adapter *i2c, enum tda18271_i2c_gate gate) { struct tda18271_priv *priv = NULL; priv = kzalloc(sizeof(struct tda18271_priv), GFP_KERNEL); if (priv == NULL) return NULL; priv->i2c_addr = addr; priv->i2c_adap = i2c; priv->gate = gate; priv->cal_initialized = false; fe->tuner_priv = priv; if (tda18271_get_id(fe) < 0) goto fail; if (tda18271_assign_map_layout(fe) < 0) goto fail; memcpy(&fe->ops.tuner_ops, &tda18271_tuner_ops, sizeof(struct dvb_tuner_ops)); tda18271_init_regs(fe); return fe; fail: tda18271_release(fe); return NULL; } EXPORT_SYMBOL_GPL(tda18271_attach); MODULE_DESCRIPTION("NXP TDA18271HD analog / digital tuner driver"); MODULE_AUTHOR("Michael Krufky "); MODULE_LICENSE("GPL"); MODULE_VERSION("0.2"); /* * Overrides for Emacs so that we follow Linus's tabbing style. * --------------------------------------------------------------------------- * Local variables: * c-basic-offset: 8 * End: */