/******************************************************************************* * Filename: target_core_transport.c * * This file contains the Generic Target Engine Core. * * Copyright (c) 2002, 2003, 2004, 2005 PyX Technologies, Inc. * Copyright (c) 2005, 2006, 2007 SBE, Inc. * Copyright (c) 2007-2010 Rising Tide Systems * Copyright (c) 2008-2010 Linux-iSCSI.org * * Nicholas A. Bellinger * * This program is free software; you can redistribute it and/or modify * it under the terms of the GNU General Public License as published by * the Free Software Foundation; either version 2 of the License, or * (at your option) any later version. * * This program is distributed in the hope that it will be useful, * but WITHOUT ANY WARRANTY; without even the implied warranty of * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the * GNU General Public License for more details. * * You should have received a copy of the GNU General Public License * along with this program; if not, write to the Free Software * Foundation, Inc., 59 Temple Place - Suite 330, Boston, MA 02111-1307, USA. * ******************************************************************************/ #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include "target_core_internal.h" #include "target_core_alua.h" #include "target_core_pr.h" #include "target_core_ua.h" static int sub_api_initialized; static struct workqueue_struct *target_completion_wq; static struct kmem_cache *se_sess_cache; struct kmem_cache *se_tmr_req_cache; struct kmem_cache *se_ua_cache; struct kmem_cache *t10_pr_reg_cache; struct kmem_cache *t10_alua_lu_gp_cache; struct kmem_cache *t10_alua_lu_gp_mem_cache; struct kmem_cache *t10_alua_tg_pt_gp_cache; struct kmem_cache *t10_alua_tg_pt_gp_mem_cache; static int transport_generic_write_pending(struct se_cmd *); static int transport_processing_thread(void *param); static int __transport_execute_tasks(struct se_device *dev, struct se_cmd *); static void transport_complete_task_attr(struct se_cmd *cmd); static void transport_handle_queue_full(struct se_cmd *cmd, struct se_device *dev); static void transport_free_dev_tasks(struct se_cmd *cmd); static int transport_generic_get_mem(struct se_cmd *cmd); static void transport_put_cmd(struct se_cmd *cmd); static void transport_remove_cmd_from_queue(struct se_cmd *cmd); static int transport_set_sense_codes(struct se_cmd *cmd, u8 asc, u8 ascq); static void transport_generic_request_failure(struct se_cmd *); static void target_complete_ok_work(struct work_struct *work); int init_se_kmem_caches(void) { se_tmr_req_cache = kmem_cache_create("se_tmr_cache", sizeof(struct se_tmr_req), __alignof__(struct se_tmr_req), 0, NULL); if (!se_tmr_req_cache) { pr_err("kmem_cache_create() for struct se_tmr_req" " failed\n"); goto out; } se_sess_cache = kmem_cache_create("se_sess_cache", sizeof(struct se_session), __alignof__(struct se_session), 0, NULL); if (!se_sess_cache) { pr_err("kmem_cache_create() for struct se_session" " failed\n"); goto out_free_tmr_req_cache; } se_ua_cache = kmem_cache_create("se_ua_cache", sizeof(struct se_ua), __alignof__(struct se_ua), 0, NULL); if (!se_ua_cache) { pr_err("kmem_cache_create() for struct se_ua failed\n"); goto out_free_sess_cache; } t10_pr_reg_cache = kmem_cache_create("t10_pr_reg_cache", sizeof(struct t10_pr_registration), __alignof__(struct t10_pr_registration), 0, NULL); if (!t10_pr_reg_cache) { pr_err("kmem_cache_create() for struct t10_pr_registration" " failed\n"); goto out_free_ua_cache; } t10_alua_lu_gp_cache = kmem_cache_create("t10_alua_lu_gp_cache", sizeof(struct t10_alua_lu_gp), __alignof__(struct t10_alua_lu_gp), 0, NULL); if (!t10_alua_lu_gp_cache) { pr_err("kmem_cache_create() for t10_alua_lu_gp_cache" " failed\n"); goto out_free_pr_reg_cache; } t10_alua_lu_gp_mem_cache = kmem_cache_create("t10_alua_lu_gp_mem_cache", sizeof(struct t10_alua_lu_gp_member), __alignof__(struct t10_alua_lu_gp_member), 0, NULL); if (!t10_alua_lu_gp_mem_cache) { pr_err("kmem_cache_create() for t10_alua_lu_gp_mem_" "cache failed\n"); goto out_free_lu_gp_cache; } t10_alua_tg_pt_gp_cache = kmem_cache_create("t10_alua_tg_pt_gp_cache", sizeof(struct t10_alua_tg_pt_gp), __alignof__(struct t10_alua_tg_pt_gp), 0, NULL); if (!t10_alua_tg_pt_gp_cache) { pr_err("kmem_cache_create() for t10_alua_tg_pt_gp_" "cache failed\n"); goto out_free_lu_gp_mem_cache; } t10_alua_tg_pt_gp_mem_cache = kmem_cache_create( "t10_alua_tg_pt_gp_mem_cache", sizeof(struct t10_alua_tg_pt_gp_member), __alignof__(struct t10_alua_tg_pt_gp_member), 0, NULL); if (!t10_alua_tg_pt_gp_mem_cache) { pr_err("kmem_cache_create() for t10_alua_tg_pt_gp_" "mem_t failed\n"); goto out_free_tg_pt_gp_cache; } target_completion_wq = alloc_workqueue("target_completion", WQ_MEM_RECLAIM, 0); if (!target_completion_wq) goto out_free_tg_pt_gp_mem_cache; return 0; out_free_tg_pt_gp_mem_cache: kmem_cache_destroy(t10_alua_tg_pt_gp_mem_cache); out_free_tg_pt_gp_cache: kmem_cache_destroy(t10_alua_tg_pt_gp_cache); out_free_lu_gp_mem_cache: kmem_cache_destroy(t10_alua_lu_gp_mem_cache); out_free_lu_gp_cache: kmem_cache_destroy(t10_alua_lu_gp_cache); out_free_pr_reg_cache: kmem_cache_destroy(t10_pr_reg_cache); out_free_ua_cache: kmem_cache_destroy(se_ua_cache); out_free_sess_cache: kmem_cache_destroy(se_sess_cache); out_free_tmr_req_cache: kmem_cache_destroy(se_tmr_req_cache); out: return -ENOMEM; } void release_se_kmem_caches(void) { destroy_workqueue(target_completion_wq); kmem_cache_destroy(se_tmr_req_cache); kmem_cache_destroy(se_sess_cache); kmem_cache_destroy(se_ua_cache); kmem_cache_destroy(t10_pr_reg_cache); kmem_cache_destroy(t10_alua_lu_gp_cache); kmem_cache_destroy(t10_alua_lu_gp_mem_cache); kmem_cache_destroy(t10_alua_tg_pt_gp_cache); kmem_cache_destroy(t10_alua_tg_pt_gp_mem_cache); } /* This code ensures unique mib indexes are handed out. */ static DEFINE_SPINLOCK(scsi_mib_index_lock); static u32 scsi_mib_index[SCSI_INDEX_TYPE_MAX]; /* * Allocate a new row index for the entry type specified */ u32 scsi_get_new_index(scsi_index_t type) { u32 new_index; BUG_ON((type < 0) || (type >= SCSI_INDEX_TYPE_MAX)); spin_lock(&scsi_mib_index_lock); new_index = ++scsi_mib_index[type]; spin_unlock(&scsi_mib_index_lock); return new_index; } static void transport_init_queue_obj(struct se_queue_obj *qobj) { atomic_set(&qobj->queue_cnt, 0); INIT_LIST_HEAD(&qobj->qobj_list); init_waitqueue_head(&qobj->thread_wq); spin_lock_init(&qobj->cmd_queue_lock); } void transport_subsystem_check_init(void) { int ret; if (sub_api_initialized) return; ret = request_module("target_core_iblock"); if (ret != 0) pr_err("Unable to load target_core_iblock\n"); ret = request_module("target_core_file"); if (ret != 0) pr_err("Unable to load target_core_file\n"); ret = request_module("target_core_pscsi"); if (ret != 0) pr_err("Unable to load target_core_pscsi\n"); ret = request_module("target_core_stgt"); if (ret != 0) pr_err("Unable to load target_core_stgt\n"); sub_api_initialized = 1; return; } struct se_session *transport_init_session(void) { struct se_session *se_sess; se_sess = kmem_cache_zalloc(se_sess_cache, GFP_KERNEL); if (!se_sess) { pr_err("Unable to allocate struct se_session from" " se_sess_cache\n"); return ERR_PTR(-ENOMEM); } INIT_LIST_HEAD(&se_sess->sess_list); INIT_LIST_HEAD(&se_sess->sess_acl_list); INIT_LIST_HEAD(&se_sess->sess_cmd_list); INIT_LIST_HEAD(&se_sess->sess_wait_list); spin_lock_init(&se_sess->sess_cmd_lock); return se_sess; } EXPORT_SYMBOL(transport_init_session); /* * Called with spin_lock_bh(&struct se_portal_group->session_lock called. */ void __transport_register_session( struct se_portal_group *se_tpg, struct se_node_acl *se_nacl, struct se_session *se_sess, void *fabric_sess_ptr) { unsigned char buf[PR_REG_ISID_LEN]; se_sess->se_tpg = se_tpg; se_sess->fabric_sess_ptr = fabric_sess_ptr; /* * Used by struct se_node_acl's under ConfigFS to locate active se_session-t * * Only set for struct se_session's that will actually be moving I/O. * eg: *NOT* discovery sessions. */ if (se_nacl) { /* * If the fabric module supports an ISID based TransportID, * save this value in binary from the fabric I_T Nexus now. */ if (se_tpg->se_tpg_tfo->sess_get_initiator_sid != NULL) { memset(&buf[0], 0, PR_REG_ISID_LEN); se_tpg->se_tpg_tfo->sess_get_initiator_sid(se_sess, &buf[0], PR_REG_ISID_LEN); se_sess->sess_bin_isid = get_unaligned_be64(&buf[0]); } spin_lock_irq(&se_nacl->nacl_sess_lock); /* * The se_nacl->nacl_sess pointer will be set to the * last active I_T Nexus for each struct se_node_acl. */ se_nacl->nacl_sess = se_sess; list_add_tail(&se_sess->sess_acl_list, &se_nacl->acl_sess_list); spin_unlock_irq(&se_nacl->nacl_sess_lock); } list_add_tail(&se_sess->sess_list, &se_tpg->tpg_sess_list); pr_debug("TARGET_CORE[%s]: Registered fabric_sess_ptr: %p\n", se_tpg->se_tpg_tfo->get_fabric_name(), se_sess->fabric_sess_ptr); } EXPORT_SYMBOL(__transport_register_session); void transport_register_session( struct se_portal_group *se_tpg, struct se_node_acl *se_nacl, struct se_session *se_sess, void *fabric_sess_ptr) { spin_lock_bh(&se_tpg->session_lock); __transport_register_session(se_tpg, se_nacl, se_sess, fabric_sess_ptr); spin_unlock_bh(&se_tpg->session_lock); } EXPORT_SYMBOL(transport_register_session); void transport_deregister_session_configfs(struct se_session *se_sess) { struct se_node_acl *se_nacl; unsigned long flags; /* * Used by struct se_node_acl's under ConfigFS to locate active struct se_session */ se_nacl = se_sess->se_node_acl; if (se_nacl) { spin_lock_irqsave(&se_nacl->nacl_sess_lock, flags); list_del(&se_sess->sess_acl_list); /* * If the session list is empty, then clear the pointer. * Otherwise, set the struct se_session pointer from the tail * element of the per struct se_node_acl active session list. */ if (list_empty(&se_nacl->acl_sess_list)) se_nacl->nacl_sess = NULL; else { se_nacl->nacl_sess = container_of( se_nacl->acl_sess_list.prev, struct se_session, sess_acl_list); } spin_unlock_irqrestore(&se_nacl->nacl_sess_lock, flags); } } EXPORT_SYMBOL(transport_deregister_session_configfs); void transport_free_session(struct se_session *se_sess) { kmem_cache_free(se_sess_cache, se_sess); } EXPORT_SYMBOL(transport_free_session); void transport_deregister_session(struct se_session *se_sess) { struct se_portal_group *se_tpg = se_sess->se_tpg; struct se_node_acl *se_nacl; unsigned long flags; if (!se_tpg) { transport_free_session(se_sess); return; } spin_lock_irqsave(&se_tpg->session_lock, flags); list_del(&se_sess->sess_list); se_sess->se_tpg = NULL; se_sess->fabric_sess_ptr = NULL; spin_unlock_irqrestore(&se_tpg->session_lock, flags); /* * Determine if we need to do extra work for this initiator node's * struct se_node_acl if it had been previously dynamically generated. */ se_nacl = se_sess->se_node_acl; if (se_nacl) { spin_lock_irqsave(&se_tpg->acl_node_lock, flags); if (se_nacl->dynamic_node_acl) { if (!se_tpg->se_tpg_tfo->tpg_check_demo_mode_cache( se_tpg)) { list_del(&se_nacl->acl_list); se_tpg->num_node_acls--; spin_unlock_irqrestore(&se_tpg->acl_node_lock, flags); core_tpg_wait_for_nacl_pr_ref(se_nacl); core_free_device_list_for_node(se_nacl, se_tpg); se_tpg->se_tpg_tfo->tpg_release_fabric_acl(se_tpg, se_nacl); spin_lock_irqsave(&se_tpg->acl_node_lock, flags); } } spin_unlock_irqrestore(&se_tpg->acl_node_lock, flags); } transport_free_session(se_sess); pr_debug("TARGET_CORE[%s]: Deregistered fabric_sess\n", se_tpg->se_tpg_tfo->get_fabric_name()); } EXPORT_SYMBOL(transport_deregister_session); /* * Called with cmd->t_state_lock held. */ static void transport_all_task_dev_remove_state(struct se_cmd *cmd) { struct se_device *dev = cmd->se_dev; struct se_task *task; unsigned long flags; if (!dev) return; list_for_each_entry(task, &cmd->t_task_list, t_list) { if (task->task_flags & TF_ACTIVE) continue; spin_lock_irqsave(&dev->execute_task_lock, flags); if (task->t_state_active) { pr_debug("Removed ITT: 0x%08x dev: %p task[%p]\n", cmd->se_tfo->get_task_tag(cmd), dev, task); list_del(&task->t_state_list); atomic_dec(&cmd->t_task_cdbs_ex_left); task->t_state_active = false; } spin_unlock_irqrestore(&dev->execute_task_lock, flags); } } /* transport_cmd_check_stop(): * * 'transport_off = 1' determines if t_transport_active should be cleared. * 'transport_off = 2' determines if task_dev_state should be removed. * * A non-zero u8 t_state sets cmd->t_state. * Returns 1 when command is stopped, else 0. */ static int transport_cmd_check_stop( struct se_cmd *cmd, int transport_off, u8 t_state) { unsigned long flags; spin_lock_irqsave(&cmd->t_state_lock, flags); /* * Determine if IOCTL context caller in requesting the stopping of this * command for LUN shutdown purposes. */ if (atomic_read(&cmd->transport_lun_stop)) { pr_debug("%s:%d atomic_read(&cmd->transport_lun_stop)" " == TRUE for ITT: 0x%08x\n", __func__, __LINE__, cmd->se_tfo->get_task_tag(cmd)); atomic_set(&cmd->t_transport_active, 0); if (transport_off == 2) transport_all_task_dev_remove_state(cmd); spin_unlock_irqrestore(&cmd->t_state_lock, flags); complete(&cmd->transport_lun_stop_comp); return 1; } /* * Determine if frontend context caller is requesting the stopping of * this command for frontend exceptions. */ if (atomic_read(&cmd->t_transport_stop)) { pr_debug("%s:%d atomic_read(&cmd->t_transport_stop) ==" " TRUE for ITT: 0x%08x\n", __func__, __LINE__, cmd->se_tfo->get_task_tag(cmd)); if (transport_off == 2) transport_all_task_dev_remove_state(cmd); /* * Clear struct se_cmd->se_lun before the transport_off == 2 handoff * to FE. */ if (transport_off == 2) cmd->se_lun = NULL; spin_unlock_irqrestore(&cmd->t_state_lock, flags); complete(&cmd->t_transport_stop_comp); return 1; } if (transport_off) { atomic_set(&cmd->t_transport_active, 0); if (transport_off == 2) { transport_all_task_dev_remove_state(cmd); /* * Clear struct se_cmd->se_lun before the transport_off == 2 * handoff to fabric module. */ cmd->se_lun = NULL; /* * Some fabric modules like tcm_loop can release * their internally allocated I/O reference now and * struct se_cmd now. * * Fabric modules are expected to return '1' here if the * se_cmd being passed is released at this point, * or zero if not being released. */ if (cmd->se_tfo->check_stop_free != NULL) { spin_unlock_irqrestore( &cmd->t_state_lock, flags); return cmd->se_tfo->check_stop_free(cmd); } } spin_unlock_irqrestore(&cmd->t_state_lock, flags); return 0; } else if (t_state) cmd->t_state = t_state; spin_unlock_irqrestore(&cmd->t_state_lock, flags); return 0; } static int transport_cmd_check_stop_to_fabric(struct se_cmd *cmd) { return transport_cmd_check_stop(cmd, 2, 0); } static void transport_lun_remove_cmd(struct se_cmd *cmd) { struct se_lun *lun = cmd->se_lun; unsigned long flags; if (!lun) return; spin_lock_irqsave(&cmd->t_state_lock, flags); if (!atomic_read(&cmd->transport_dev_active)) { spin_unlock_irqrestore(&cmd->t_state_lock, flags); goto check_lun; } atomic_set(&cmd->transport_dev_active, 0); transport_all_task_dev_remove_state(cmd); spin_unlock_irqrestore(&cmd->t_state_lock, flags); check_lun: spin_lock_irqsave(&lun->lun_cmd_lock, flags); if (atomic_read(&cmd->transport_lun_active)) { list_del(&cmd->se_lun_node); atomic_set(&cmd->transport_lun_active, 0); #if 0 pr_debug("Removed ITT: 0x%08x from LUN LIST[%d]\n" cmd->se_tfo->get_task_tag(cmd), lun->unpacked_lun); #endif } spin_unlock_irqrestore(&lun->lun_cmd_lock, flags); } void transport_cmd_finish_abort(struct se_cmd *cmd, int remove) { if (!cmd->se_tmr_req) transport_lun_remove_cmd(cmd); if (transport_cmd_check_stop_to_fabric(cmd)) return; if (remove) { transport_remove_cmd_from_queue(cmd); transport_put_cmd(cmd); } } static void transport_add_cmd_to_queue(struct se_cmd *cmd, int t_state, bool at_head) { struct se_device *dev = cmd->se_dev; struct se_queue_obj *qobj = &dev->dev_queue_obj; unsigned long flags; if (t_state) { spin_lock_irqsave(&cmd->t_state_lock, flags); cmd->t_state = t_state; atomic_set(&cmd->t_transport_active, 1); spin_unlock_irqrestore(&cmd->t_state_lock, flags); } spin_lock_irqsave(&qobj->cmd_queue_lock, flags); /* If the cmd is already on the list, remove it before we add it */ if (!list_empty(&cmd->se_queue_node)) list_del(&cmd->se_queue_node); else atomic_inc(&qobj->queue_cnt); if (at_head) list_add(&cmd->se_queue_node, &qobj->qobj_list); else list_add_tail(&cmd->se_queue_node, &qobj->qobj_list); atomic_set(&cmd->t_transport_queue_active, 1); spin_unlock_irqrestore(&qobj->cmd_queue_lock, flags); wake_up_interruptible(&qobj->thread_wq); } static struct se_cmd * transport_get_cmd_from_queue(struct se_queue_obj *qobj) { struct se_cmd *cmd; unsigned long flags; spin_lock_irqsave(&qobj->cmd_queue_lock, flags); if (list_empty(&qobj->qobj_list)) { spin_unlock_irqrestore(&qobj->cmd_queue_lock, flags); return NULL; } cmd = list_first_entry(&qobj->qobj_list, struct se_cmd, se_queue_node); atomic_set(&cmd->t_transport_queue_active, 0); list_del_init(&cmd->se_queue_node); atomic_dec(&qobj->queue_cnt); spin_unlock_irqrestore(&qobj->cmd_queue_lock, flags); return cmd; } static void transport_remove_cmd_from_queue(struct se_cmd *cmd) { struct se_queue_obj *qobj = &cmd->se_dev->dev_queue_obj; unsigned long flags; spin_lock_irqsave(&qobj->cmd_queue_lock, flags); if (!atomic_read(&cmd->t_transport_queue_active)) { spin_unlock_irqrestore(&qobj->cmd_queue_lock, flags); return; } atomic_set(&cmd->t_transport_queue_active, 0); atomic_dec(&qobj->queue_cnt); list_del_init(&cmd->se_queue_node); spin_unlock_irqrestore(&qobj->cmd_queue_lock, flags); if (atomic_read(&cmd->t_transport_queue_active)) { pr_err("ITT: 0x%08x t_transport_queue_active: %d\n", cmd->se_tfo->get_task_tag(cmd), atomic_read(&cmd->t_transport_queue_active)); } } /* * Completion function used by TCM subsystem plugins (such as FILEIO) * for queueing up response from struct se_subsystem_api->do_task() */ void transport_complete_sync_cache(struct se_cmd *cmd, int good) { struct se_task *task = list_entry(cmd->t_task_list.next, struct se_task, t_list); if (good) { cmd->scsi_status = SAM_STAT_GOOD; task->task_scsi_status = GOOD; } else { task->task_scsi_status = SAM_STAT_CHECK_CONDITION; task->task_se_cmd->scsi_sense_reason = TCM_LOGICAL_UNIT_COMMUNICATION_FAILURE; } transport_complete_task(task, good); } EXPORT_SYMBOL(transport_complete_sync_cache); static void target_complete_failure_work(struct work_struct *work) { struct se_cmd *cmd = container_of(work, struct se_cmd, work); transport_generic_request_failure(cmd); } /* transport_complete_task(): * * Called from interrupt and non interrupt context depending * on the transport plugin. */ void transport_complete_task(struct se_task *task, int success) { struct se_cmd *cmd = task->task_se_cmd; struct se_device *dev = cmd->se_dev; unsigned long flags; spin_lock_irqsave(&cmd->t_state_lock, flags); task->task_flags &= ~TF_ACTIVE; /* * See if any sense data exists, if so set the TASK_SENSE flag. * Also check for any other post completion work that needs to be * done by the plugins. */ if (dev && dev->transport->transport_complete) { if (dev->transport->transport_complete(task) != 0) { cmd->se_cmd_flags |= SCF_TRANSPORT_TASK_SENSE; task->task_flags |= TF_HAS_SENSE; success = 1; } } /* * See if we are waiting for outstanding struct se_task * to complete for an exception condition */ if (task->task_flags & TF_REQUEST_STOP) { spin_unlock_irqrestore(&cmd->t_state_lock, flags); complete(&task->task_stop_comp); return; } if (!success) cmd->t_tasks_failed = 1; /* * Decrement the outstanding t_task_cdbs_left count. The last * struct se_task from struct se_cmd will complete itself into the * device queue depending upon int success. */ if (!atomic_dec_and_test(&cmd->t_task_cdbs_left)) { spin_unlock_irqrestore(&cmd->t_state_lock, flags); return; } if (cmd->t_tasks_failed) { cmd->scsi_sense_reason = TCM_LOGICAL_UNIT_COMMUNICATION_FAILURE; INIT_WORK(&cmd->work, target_complete_failure_work); } else { atomic_set(&cmd->t_transport_complete, 1); INIT_WORK(&cmd->work, target_complete_ok_work); } cmd->t_state = TRANSPORT_COMPLETE; atomic_set(&cmd->t_transport_active, 1); spin_unlock_irqrestore(&cmd->t_state_lock, flags); queue_work(target_completion_wq, &cmd->work); } EXPORT_SYMBOL(transport_complete_task); /* * Called by transport_add_tasks_from_cmd() once a struct se_cmd's * struct se_task list are ready to be added to the active execution list * struct se_device * Called with se_dev_t->execute_task_lock called. */ static inline int transport_add_task_check_sam_attr( struct se_task *task, struct se_task *task_prev, struct se_device *dev) { /* * No SAM Task attribute emulation enabled, add to tail of * execution queue */ if (dev->dev_task_attr_type != SAM_TASK_ATTR_EMULATED) { list_add_tail(&task->t_execute_list, &dev->execute_task_list); return 0; } /* * HEAD_OF_QUEUE attribute for received CDB, which means * the first task that is associated with a struct se_cmd goes to * head of the struct se_device->execute_task_list, and task_prev * after that for each subsequent task */ if (task->task_se_cmd->sam_task_attr == MSG_HEAD_TAG) { list_add(&task->t_execute_list, (task_prev != NULL) ? &task_prev->t_execute_list : &dev->execute_task_list); pr_debug("Set HEAD_OF_QUEUE for task CDB: 0x%02x" " in execution queue\n", task->task_se_cmd->t_task_cdb[0]); return 1; } /* * For ORDERED, SIMPLE or UNTAGGED attribute tasks once they have been * transitioned from Dermant -> Active state, and are added to the end * of the struct se_device->execute_task_list */ list_add_tail(&task->t_execute_list, &dev->execute_task_list); return 0; } /* __transport_add_task_to_execute_queue(): * * Called with se_dev_t->execute_task_lock called. */ static void __transport_add_task_to_execute_queue( struct se_task *task, struct se_task *task_prev, struct se_device *dev) { int head_of_queue; head_of_queue = transport_add_task_check_sam_attr(task, task_prev, dev); atomic_inc(&dev->execute_tasks); if (task->t_state_active) return; /* * Determine if this task needs to go to HEAD_OF_QUEUE for the * state list as well. Running with SAM Task Attribute emulation * will always return head_of_queue == 0 here */ if (head_of_queue) list_add(&task->t_state_list, (task_prev) ? &task_prev->t_state_list : &dev->state_task_list); else list_add_tail(&task->t_state_list, &dev->state_task_list); task->t_state_active = true; pr_debug("Added ITT: 0x%08x task[%p] to dev: %p\n", task->task_se_cmd->se_tfo->get_task_tag(task->task_se_cmd), task, dev); } static void transport_add_tasks_to_state_queue(struct se_cmd *cmd) { struct se_device *dev = cmd->se_dev; struct se_task *task; unsigned long flags; spin_lock_irqsave(&cmd->t_state_lock, flags); list_for_each_entry(task, &cmd->t_task_list, t_list) { spin_lock(&dev->execute_task_lock); if (!task->t_state_active) { list_add_tail(&task->t_state_list, &dev->state_task_list); task->t_state_active = true; pr_debug("Added ITT: 0x%08x task[%p] to dev: %p\n", task->task_se_cmd->se_tfo->get_task_tag( task->task_se_cmd), task, dev); } spin_unlock(&dev->execute_task_lock); } spin_unlock_irqrestore(&cmd->t_state_lock, flags); } static void __transport_add_tasks_from_cmd(struct se_cmd *cmd) { struct se_device *dev = cmd->se_dev; struct se_task *task, *task_prev = NULL; list_for_each_entry(task, &cmd->t_task_list, t_list) { if (!list_empty(&task->t_execute_list)) continue; /* * __transport_add_task_to_execute_queue() handles the * SAM Task Attribute emulation if enabled */ __transport_add_task_to_execute_queue(task, task_prev, dev); task_prev = task; } } static void transport_add_tasks_from_cmd(struct se_cmd *cmd) { unsigned long flags; struct se_device *dev = cmd->se_dev; spin_lock_irqsave(&dev->execute_task_lock, flags); __transport_add_tasks_from_cmd(cmd); spin_unlock_irqrestore(&dev->execute_task_lock, flags); } void __transport_remove_task_from_execute_queue(struct se_task *task, struct se_device *dev) { list_del_init(&task->t_execute_list); atomic_dec(&dev->execute_tasks); } static void transport_remove_task_from_execute_queue( struct se_task *task, struct se_device *dev) { unsigned long flags; if (WARN_ON(list_empty(&task->t_execute_list))) return; spin_lock_irqsave(&dev->execute_task_lock, flags); __transport_remove_task_from_execute_queue(task, dev); spin_unlock_irqrestore(&dev->execute_task_lock, flags); } /* * Handle QUEUE_FULL / -EAGAIN and -ENOMEM status */ static void target_qf_do_work(struct work_struct *work) { struct se_device *dev = container_of(work, struct se_device, qf_work_queue); LIST_HEAD(qf_cmd_list); struct se_cmd *cmd, *cmd_tmp; spin_lock_irq(&dev->qf_cmd_lock); list_splice_init(&dev->qf_cmd_list, &qf_cmd_list); spin_unlock_irq(&dev->qf_cmd_lock); list_for_each_entry_safe(cmd, cmd_tmp, &qf_cmd_list, se_qf_node) { list_del(&cmd->se_qf_node); atomic_dec(&dev->dev_qf_count); smp_mb__after_atomic_dec(); pr_debug("Processing %s cmd: %p QUEUE_FULL in work queue" " context: %s\n", cmd->se_tfo->get_fabric_name(), cmd, (cmd->t_state == TRANSPORT_COMPLETE_QF_OK) ? "COMPLETE_OK" : (cmd->t_state == TRANSPORT_COMPLETE_QF_WP) ? "WRITE_PENDING" : "UNKNOWN"); transport_add_cmd_to_queue(cmd, cmd->t_state, true); } } unsigned char *transport_dump_cmd_direction(struct se_cmd *cmd) { switch (cmd->data_direction) { case DMA_NONE: return "NONE"; case DMA_FROM_DEVICE: return "READ"; case DMA_TO_DEVICE: return "WRITE"; case DMA_BIDIRECTIONAL: return "BIDI"; default: break; } return "UNKNOWN"; } void transport_dump_dev_state( struct se_device *dev, char *b, int *bl) { *bl += sprintf(b + *bl, "Status: "); switch (dev->dev_status) { case TRANSPORT_DEVICE_ACTIVATED: *bl += sprintf(b + *bl, "ACTIVATED"); break; case TRANSPORT_DEVICE_DEACTIVATED: *bl += sprintf(b + *bl, "DEACTIVATED"); break; case TRANSPORT_DEVICE_SHUTDOWN: *bl += sprintf(b + *bl, "SHUTDOWN"); break; case TRANSPORT_DEVICE_OFFLINE_ACTIVATED: case TRANSPORT_DEVICE_OFFLINE_DEACTIVATED: *bl += sprintf(b + *bl, "OFFLINE"); break; default: *bl += sprintf(b + *bl, "UNKNOWN=%d", dev->dev_status); break; } *bl += sprintf(b + *bl, " Execute/Max Queue Depth: %d/%d", atomic_read(&dev->execute_tasks), dev->queue_depth); *bl += sprintf(b + *bl, " SectorSize: %u MaxSectors: %u\n", dev->se_sub_dev->se_dev_attrib.block_size, dev->se_sub_dev->se_dev_attrib.max_sectors); *bl += sprintf(b + *bl, " "); } void transport_dump_vpd_proto_id( struct t10_vpd *vpd, unsigned char *p_buf, int p_buf_len) { unsigned char buf[VPD_TMP_BUF_SIZE]; int len; memset(buf, 0, VPD_TMP_BUF_SIZE); len = sprintf(buf, "T10 VPD Protocol Identifier: "); switch (vpd->protocol_identifier) { case 0x00: sprintf(buf+len, "Fibre Channel\n"); break; case 0x10: sprintf(buf+len, "Parallel SCSI\n"); break; case 0x20: sprintf(buf+len, "SSA\n"); break; case 0x30: sprintf(buf+len, "IEEE 1394\n"); break; case 0x40: sprintf(buf+len, "SCSI Remote Direct Memory Access" " Protocol\n"); break; case 0x50: sprintf(buf+len, "Internet SCSI (iSCSI)\n"); break; case 0x60: sprintf(buf+len, "SAS Serial SCSI Protocol\n"); break; case 0x70: sprintf(buf+len, "Automation/Drive Interface Transport" " Protocol\n"); break; case 0x80: sprintf(buf+len, "AT Attachment Interface ATA/ATAPI\n"); break; default: sprintf(buf+len, "Unknown 0x%02x\n", vpd->protocol_identifier); break; } if (p_buf) strncpy(p_buf, buf, p_buf_len); else pr_debug("%s", buf); } void transport_set_vpd_proto_id(struct t10_vpd *vpd, unsigned char *page_83) { /* * Check if the Protocol Identifier Valid (PIV) bit is set.. * * from spc3r23.pdf section 7.5.1 */ if (page_83[1] & 0x80) { vpd->protocol_identifier = (page_83[0] & 0xf0); vpd->protocol_identifier_set = 1; transport_dump_vpd_proto_id(vpd, NULL, 0); } } EXPORT_SYMBOL(transport_set_vpd_proto_id); int transport_dump_vpd_assoc( struct t10_vpd *vpd, unsigned char *p_buf, int p_buf_len) { unsigned char buf[VPD_TMP_BUF_SIZE]; int ret = 0; int len; memset(buf, 0, VPD_TMP_BUF_SIZE); len = sprintf(buf, "T10 VPD Identifier Association: "); switch (vpd->association) { case 0x00: sprintf(buf+len, "addressed logical unit\n"); break; case 0x10: sprintf(buf+len, "target port\n"); break; case 0x20: sprintf(buf+len, "SCSI target device\n"); break; default: sprintf(buf+len, "Unknown 0x%02x\n", vpd->association); ret = -EINVAL; break; } if (p_buf) strncpy(p_buf, buf, p_buf_len); else pr_debug("%s", buf); return ret; } int transport_set_vpd_assoc(struct t10_vpd *vpd, unsigned char *page_83) { /* * The VPD identification association.. * * from spc3r23.pdf Section 7.6.3.1 Table 297 */ vpd->association = (page_83[1] & 0x30); return transport_dump_vpd_assoc(vpd, NULL, 0); } EXPORT_SYMBOL(transport_set_vpd_assoc); int transport_dump_vpd_ident_type( struct t10_vpd *vpd, unsigned char *p_buf, int p_buf_len) { unsigned char buf[VPD_TMP_BUF_SIZE]; int ret = 0; int len; memset(buf, 0, VPD_TMP_BUF_SIZE); len = sprintf(buf, "T10 VPD Identifier Type: "); switch (vpd->device_identifier_type) { case 0x00: sprintf(buf+len, "Vendor specific\n"); break; case 0x01: sprintf(buf+len, "T10 Vendor ID based\n"); break; case 0x02: sprintf(buf+len, "EUI-64 based\n"); break; case 0x03: sprintf(buf+len, "NAA\n"); break; case 0x04: sprintf(buf+len, "Relative target port identifier\n"); break; case 0x08: sprintf(buf+len, "SCSI name string\n"); break; default: sprintf(buf+len, "Unsupported: 0x%02x\n", vpd->device_identifier_type); ret = -EINVAL; break; } if (p_buf) { if (p_buf_len < strlen(buf)+1) return -EINVAL; strncpy(p_buf, buf, p_buf_len); } else { pr_debug("%s", buf); } return ret; } int transport_set_vpd_ident_type(struct t10_vpd *vpd, unsigned char *page_83) { /* * The VPD identifier type.. * * from spc3r23.pdf Section 7.6.3.1 Table 298 */ vpd->device_identifier_type = (page_83[1] & 0x0f); return transport_dump_vpd_ident_type(vpd, NULL, 0); } EXPORT_SYMBOL(transport_set_vpd_ident_type); int transport_dump_vpd_ident( struct t10_vpd *vpd, unsigned char *p_buf, int p_buf_len) { unsigned char buf[VPD_TMP_BUF_SIZE]; int ret = 0; memset(buf, 0, VPD_TMP_BUF_SIZE); switch (vpd->device_identifier_code_set) { case 0x01: /* Binary */ sprintf(buf, "T10 VPD Binary Device Identifier: %s\n", &vpd->device_identifier[0]); break; case 0x02: /* ASCII */ sprintf(buf, "T10 VPD ASCII Device Identifier: %s\n", &vpd->device_identifier[0]); break; case 0x03: /* UTF-8 */ sprintf(buf, "T10 VPD UTF-8 Device Identifier: %s\n", &vpd->device_identifier[0]); break; default: sprintf(buf, "T10 VPD Device Identifier encoding unsupported:" " 0x%02x", vpd->device_identifier_code_set); ret = -EINVAL; break; } if (p_buf) strncpy(p_buf, buf, p_buf_len); else pr_debug("%s", buf); return ret; } int transport_set_vpd_ident(struct t10_vpd *vpd, unsigned char *page_83) { static const char hex_str[] = "0123456789abcdef"; int j = 0, i = 4; /* offset to start of the identifer */ /* * The VPD Code Set (encoding) * * from spc3r23.pdf Section 7.6.3.1 Table 296 */ vpd->device_identifier_code_set = (page_83[0] & 0x0f); switch (vpd->device_identifier_code_set) { case 0x01: /* Binary */ vpd->device_identifier[j++] = hex_str[vpd->device_identifier_type]; while (i < (4 + page_83[3])) { vpd->device_identifier[j++] = hex_str[(page_83[i] & 0xf0) >> 4]; vpd->device_identifier[j++] = hex_str[page_83[i] & 0x0f]; i++; } break; case 0x02: /* ASCII */ case 0x03: /* UTF-8 */ while (i < (4 + page_83[3])) vpd->device_identifier[j++] = page_83[i++]; break; default: break; } return transport_dump_vpd_ident(vpd, NULL, 0); } EXPORT_SYMBOL(transport_set_vpd_ident); static void core_setup_task_attr_emulation(struct se_device *dev) { /* * If this device is from Target_Core_Mod/pSCSI, disable the * SAM Task Attribute emulation. * * This is currently not available in upsream Linux/SCSI Target * mode code, and is assumed to be disabled while using TCM/pSCSI. */ if (dev->transport->transport_type == TRANSPORT_PLUGIN_PHBA_PDEV) { dev->dev_task_attr_type = SAM_TASK_ATTR_PASSTHROUGH; return; } dev->dev_task_attr_type = SAM_TASK_ATTR_EMULATED; pr_debug("%s: Using SAM_TASK_ATTR_EMULATED for SPC: 0x%02x" " device\n", dev->transport->name, dev->transport->get_device_rev(dev)); } static void scsi_dump_inquiry(struct se_device *dev) { struct t10_wwn *wwn = &dev->se_sub_dev->t10_wwn; char buf[17]; int i, device_type; /* * Print Linux/SCSI style INQUIRY formatting to the kernel ring buffer */ for (i = 0; i < 8; i++) if (wwn->vendor[i] >= 0x20) buf[i] = wwn->vendor[i]; else buf[i] = ' '; buf[i] = '\0'; pr_debug(" Vendor: %s\n", buf); for (i = 0; i < 16; i++) if (wwn->model[i] >= 0x20) buf[i] = wwn->model[i]; else buf[i] = ' '; buf[i] = '\0'; pr_debug(" Model: %s\n", buf); for (i = 0; i < 4; i++) if (wwn->revision[i] >= 0x20) buf[i] = wwn->revision[i]; else buf[i] = ' '; buf[i] = '\0'; pr_debug(" Revision: %s\n", buf); device_type = dev->transport->get_device_type(dev); pr_debug(" Type: %s ", scsi_device_type(device_type)); pr_debug(" ANSI SCSI revision: %02x\n", dev->transport->get_device_rev(dev)); } struct se_device *transport_add_device_to_core_hba( struct se_hba *hba, struct se_subsystem_api *transport, struct se_subsystem_dev *se_dev, u32 device_flags, void *transport_dev, struct se_dev_limits *dev_limits, const char *inquiry_prod, const char *inquiry_rev) { int force_pt; struct se_device *dev; dev = kzalloc(sizeof(struct se_device), GFP_KERNEL); if (!dev) { pr_err("Unable to allocate memory for se_dev_t\n"); return NULL; } transport_init_queue_obj(&dev->dev_queue_obj); dev->dev_flags = device_flags; dev->dev_status |= TRANSPORT_DEVICE_DEACTIVATED; dev->dev_ptr = transport_dev; dev->se_hba = hba; dev->se_sub_dev = se_dev; dev->transport = transport; INIT_LIST_HEAD(&dev->dev_list); INIT_LIST_HEAD(&dev->dev_sep_list); INIT_LIST_HEAD(&dev->dev_tmr_list); INIT_LIST_HEAD(&dev->execute_task_list); INIT_LIST_HEAD(&dev->delayed_cmd_list); INIT_LIST_HEAD(&dev->state_task_list); INIT_LIST_HEAD(&dev->qf_cmd_list); spin_lock_init(&dev->execute_task_lock); spin_lock_init(&dev->delayed_cmd_lock); spin_lock_init(&dev->dev_reservation_lock); spin_lock_init(&dev->dev_status_lock); spin_lock_init(&dev->se_port_lock); spin_lock_init(&dev->se_tmr_lock); spin_lock_init(&dev->qf_cmd_lock); atomic_set(&dev->dev_ordered_id, 0); se_dev_set_default_attribs(dev, dev_limits); dev->dev_index = scsi_get_new_index(SCSI_DEVICE_INDEX); dev->creation_time = get_jiffies_64(); spin_lock_init(&dev->stats_lock); spin_lock(&hba->device_lock); list_add_tail(&dev->dev_list, &hba->hba_dev_list); hba->dev_count++; spin_unlock(&hba->device_lock); /* * Setup the SAM Task Attribute emulation for struct se_device */ core_setup_task_attr_emulation(dev); /* * Force PR and ALUA passthrough emulation with internal object use. */ force_pt = (hba->hba_flags & HBA_FLAGS_INTERNAL_USE); /* * Setup the Reservations infrastructure for struct se_device */ core_setup_reservations(dev, force_pt); /* * Setup the Asymmetric Logical Unit Assignment for struct se_device */ if (core_setup_alua(dev, force_pt) < 0) goto out; /* * Startup the struct se_device processing thread */ dev->process_thread = kthread_run(transport_processing_thread, dev, "LIO_%s", dev->transport->name); if (IS_ERR(dev->process_thread)) { pr_err("Unable to create kthread: LIO_%s\n", dev->transport->name); goto out; } /* * Setup work_queue for QUEUE_FULL */ INIT_WORK(&dev->qf_work_queue, target_qf_do_work); /* * Preload the initial INQUIRY const values if we are doing * anything virtual (IBLOCK, FILEIO, RAMDISK), but not for TCM/pSCSI * passthrough because this is being provided by the backend LLD. * This is required so that transport_get_inquiry() copies these * originals once back into DEV_T10_WWN(dev) for the virtual device * setup. */ if (dev->transport->transport_type != TRANSPORT_PLUGIN_PHBA_PDEV) { if (!inquiry_prod || !inquiry_rev) { pr_err("All non TCM/pSCSI plugins require" " INQUIRY consts\n"); goto out; } strncpy(&dev->se_sub_dev->t10_wwn.vendor[0], "LIO-ORG", 8); strncpy(&dev->se_sub_dev->t10_wwn.model[0], inquiry_prod, 16); strncpy(&dev->se_sub_dev->t10_wwn.revision[0], inquiry_rev, 4); } scsi_dump_inquiry(dev); return dev; out: kthread_stop(dev->process_thread); spin_lock(&hba->device_lock); list_del(&dev->dev_list); hba->dev_count--; spin_unlock(&hba->device_lock); se_release_vpd_for_dev(dev); kfree(dev); return NULL; } EXPORT_SYMBOL(transport_add_device_to_core_hba); /* transport_generic_prepare_cdb(): * * Since the Initiator sees iSCSI devices as LUNs, the SCSI CDB will * contain the iSCSI LUN in bits 7-5 of byte 1 as per SAM-2. * The point of this is since we are mapping iSCSI LUNs to * SCSI Target IDs having a non-zero LUN in the CDB will throw the * devices and HBAs for a loop. */ static inline void transport_generic_prepare_cdb( unsigned char *cdb) { switch (cdb[0]) { case READ_10: /* SBC - RDProtect */ case READ_12: /* SBC - RDProtect */ case READ_16: /* SBC - RDProtect */ case SEND_DIAGNOSTIC: /* SPC - SELF-TEST Code */ case VERIFY: /* SBC - VRProtect */ case VERIFY_16: /* SBC - VRProtect */ case WRITE_VERIFY: /* SBC - VRProtect */ case WRITE_VERIFY_12: /* SBC - VRProtect */ break; default: cdb[1] &= 0x1f; /* clear logical unit number */ break; } } static struct se_task * transport_generic_get_task(struct se_cmd *cmd, enum dma_data_direction data_direction) { struct se_task *task; struct se_device *dev = cmd->se_dev; task = dev->transport->alloc_task(cmd->t_task_cdb); if (!task) { pr_err("Unable to allocate struct se_task\n"); return NULL; } INIT_LIST_HEAD(&task->t_list); INIT_LIST_HEAD(&task->t_execute_list); INIT_LIST_HEAD(&task->t_state_list); init_completion(&task->task_stop_comp); task->task_se_cmd = cmd; task->task_data_direction = data_direction; return task; } static int transport_generic_cmd_sequencer(struct se_cmd *, unsigned char *); /* * Used by fabric modules containing a local struct se_cmd within their * fabric dependent per I/O descriptor. */ void transport_init_se_cmd( struct se_cmd *cmd, struct target_core_fabric_ops *tfo, struct se_session *se_sess, u32 data_length, int data_direction, int task_attr, unsigned char *sense_buffer) { INIT_LIST_HEAD(&cmd->se_lun_node); INIT_LIST_HEAD(&cmd->se_delayed_node); INIT_LIST_HEAD(&cmd->se_qf_node); INIT_LIST_HEAD(&cmd->se_queue_node); INIT_LIST_HEAD(&cmd->se_cmd_list); INIT_LIST_HEAD(&cmd->t_task_list); init_completion(&cmd->transport_lun_fe_stop_comp); init_completion(&cmd->transport_lun_stop_comp); init_completion(&cmd->t_transport_stop_comp); init_completion(&cmd->cmd_wait_comp); spin_lock_init(&cmd->t_state_lock); atomic_set(&cmd->transport_dev_active, 1); cmd->se_tfo = tfo; cmd->se_sess = se_sess; cmd->data_length = data_length; cmd->data_direction = data_direction; cmd->sam_task_attr = task_attr; cmd->sense_buffer = sense_buffer; } EXPORT_SYMBOL(transport_init_se_cmd); static int transport_check_alloc_task_attr(struct se_cmd *cmd) { /* * Check if SAM Task Attribute emulation is enabled for this * struct se_device storage object */ if (cmd->se_dev->dev_task_attr_type != SAM_TASK_ATTR_EMULATED) return 0; if (cmd->sam_task_attr == MSG_ACA_TAG) { pr_debug("SAM Task Attribute ACA" " emulation is not supported\n"); return -EINVAL; } /* * Used to determine when ORDERED commands should go from * Dormant to Active status. */ cmd->se_ordered_id = atomic_inc_return(&cmd->se_dev->dev_ordered_id); smp_mb__after_atomic_inc(); pr_debug("Allocated se_ordered_id: %u for Task Attr: 0x%02x on %s\n", cmd->se_ordered_id, cmd->sam_task_attr, cmd->se_dev->transport->name); return 0; } /* transport_generic_allocate_tasks(): * * Called from fabric RX Thread. */ int transport_generic_allocate_tasks( struct se_cmd *cmd, unsigned char *cdb) { int ret; transport_generic_prepare_cdb(cdb); /* * Ensure that the received CDB is less than the max (252 + 8) bytes * for VARIABLE_LENGTH_CMD */ if (scsi_command_size(cdb) > SCSI_MAX_VARLEN_CDB_SIZE) { pr_err("Received SCSI CDB with command_size: %d that" " exceeds SCSI_MAX_VARLEN_CDB_SIZE: %d\n", scsi_command_size(cdb), SCSI_MAX_VARLEN_CDB_SIZE); cmd->se_cmd_flags |= SCF_SCSI_CDB_EXCEPTION; cmd->scsi_sense_reason = TCM_INVALID_CDB_FIELD; return -EINVAL; } /* * If the received CDB is larger than TCM_MAX_COMMAND_SIZE, * allocate the additional extended CDB buffer now.. Otherwise * setup the pointer from __t_task_cdb to t_task_cdb. */ if (scsi_command_size(cdb) > sizeof(cmd->__t_task_cdb)) { cmd->t_task_cdb = kzalloc(scsi_command_size(cdb), GFP_KERNEL); if (!cmd->t_task_cdb) { pr_err("Unable to allocate cmd->t_task_cdb" " %u > sizeof(cmd->__t_task_cdb): %lu ops\n", scsi_command_size(cdb), (unsigned long)sizeof(cmd->__t_task_cdb)); cmd->se_cmd_flags |= SCF_SCSI_CDB_EXCEPTION; cmd->scsi_sense_reason = TCM_LOGICAL_UNIT_COMMUNICATION_FAILURE; return -ENOMEM; } } else cmd->t_task_cdb = &cmd->__t_task_cdb[0]; /* * Copy the original CDB into cmd-> */ memcpy(cmd->t_task_cdb, cdb, scsi_command_size(cdb)); /* * Setup the received CDB based on SCSI defined opcodes and * perform unit attention, persistent reservations and ALUA * checks for virtual device backends. The cmd->t_task_cdb * pointer is expected to be setup before we reach this point. */ ret = transport_generic_cmd_sequencer(cmd, cdb); if (ret < 0) return ret; /* * Check for SAM Task Attribute Emulation */ if (transport_check_alloc_task_attr(cmd) < 0) { cmd->se_cmd_flags |= SCF_SCSI_CDB_EXCEPTION; cmd->scsi_sense_reason = TCM_INVALID_CDB_FIELD; return -EINVAL; } spin_lock(&cmd->se_lun->lun_sep_lock); if (cmd->se_lun->lun_sep) cmd->se_lun->lun_sep->sep_stats.cmd_pdus++; spin_unlock(&cmd->se_lun->lun_sep_lock); return 0; } EXPORT_SYMBOL(transport_generic_allocate_tasks); /* * Used by fabric module frontends to queue tasks directly. * Many only be used from process context only */ int transport_handle_cdb_direct( struct se_cmd *cmd) { int ret; if (!cmd->se_lun) { dump_stack(); pr_err("cmd->se_lun is NULL\n"); return -EINVAL; } if (in_interrupt()) { dump_stack(); pr_err("transport_generic_handle_cdb cannot be called" " from interrupt context\n"); return -EINVAL; } /* * Set TRANSPORT_NEW_CMD state and cmd->t_transport_active=1 following * transport_generic_handle_cdb*() -> transport_add_cmd_to_queue() * in existing usage to ensure that outstanding descriptors are handled * correctly during shutdown via transport_wait_for_tasks() * * Also, we don't take cmd->t_state_lock here as we only expect * this to be called for initial descriptor submission. */ cmd->t_state = TRANSPORT_NEW_CMD; atomic_set(&cmd->t_transport_active, 1); /* * transport_generic_new_cmd() is already handling QUEUE_FULL, * so follow TRANSPORT_NEW_CMD processing thread context usage * and call transport_generic_request_failure() if necessary.. */ ret = transport_generic_new_cmd(cmd); if (ret < 0) transport_generic_request_failure(cmd); return 0; } EXPORT_SYMBOL(transport_handle_cdb_direct); /** * target_submit_cmd - lookup unpacked lun and submit uninitialized se_cmd * * @se_cmd: command descriptor to submit * @se_sess: associated se_sess for endpoint * @cdb: pointer to SCSI CDB * @sense: pointer to SCSI sense buffer * @unpacked_lun: unpacked LUN to reference for struct se_lun * @data_length: fabric expected data transfer length * @task_addr: SAM task attribute * @data_dir: DMA data direction * @flags: flags for command submission from target_sc_flags_tables * * This may only be called from process context, and also currently * assumes internal allocation of fabric payload buffer by target-core. **/ void target_submit_cmd(struct se_cmd *se_cmd, struct se_session *se_sess, unsigned char *cdb, unsigned char *sense, u32 unpacked_lun, u32 data_length, int task_attr, int data_dir, int flags) { struct se_portal_group *se_tpg; int rc; se_tpg = se_sess->se_tpg; BUG_ON(!se_tpg); BUG_ON(se_cmd->se_tfo || se_cmd->se_sess); BUG_ON(in_interrupt()); /* * Initialize se_cmd for target operation. From this point * exceptions are handled by sending exception status via * target_core_fabric_ops->queue_status() callback */ transport_init_se_cmd(se_cmd, se_tpg->se_tpg_tfo, se_sess, data_length, data_dir, task_attr, sense); /* * Obtain struct se_cmd->cmd_kref reference and add new cmd to * se_sess->sess_cmd_list. A second kref_get here is necessary * for fabrics using TARGET_SCF_ACK_KREF that expect a second * kref_put() to happen during fabric packet acknowledgement. */ target_get_sess_cmd(se_sess, se_cmd, (flags & TARGET_SCF_ACK_KREF)); /* * Signal bidirectional data payloads to target-core */ if (flags & TARGET_SCF_BIDI_OP) se_cmd->se_cmd_flags |= SCF_BIDI; /* * Locate se_lun pointer and attach it to struct se_cmd */ if (transport_lookup_cmd_lun(se_cmd, unpacked_lun) < 0) { transport_send_check_condition_and_sense(se_cmd, se_cmd->scsi_sense_reason, 0); target_put_sess_cmd(se_sess, se_cmd); return; } /* * Sanitize CDBs via transport_generic_cmd_sequencer() and * allocate the necessary tasks to complete the received CDB+data */ rc = transport_generic_allocate_tasks(se_cmd, cdb); if (rc != 0) { transport_generic_request_failure(se_cmd); return; } /* * Dispatch se_cmd descriptor to se_lun->lun_se_dev backend * for immediate execution of READs, otherwise wait for * transport_generic_handle_data() to be called for WRITEs * when fabric has filled the incoming buffer. */ transport_handle_cdb_direct(se_cmd); return; } EXPORT_SYMBOL(target_submit_cmd); /* * Used by fabric module frontends defining a TFO->new_cmd_map() caller * to queue up a newly setup se_cmd w/ TRANSPORT_NEW_CMD_MAP in order to * complete setup in TCM process context w/ TFO->new_cmd_map(). */ int transport_generic_handle_cdb_map( struct se_cmd *cmd) { if (!cmd->se_lun) { dump_stack(); pr_err("cmd->se_lun is NULL\n"); return -EINVAL; } transport_add_cmd_to_queue(cmd, TRANSPORT_NEW_CMD_MAP, false); return 0; } EXPORT_SYMBOL(transport_generic_handle_cdb_map); /* transport_generic_handle_data(): * * */ int transport_generic_handle_data( struct se_cmd *cmd) { /* * For the software fabric case, then we assume the nexus is being * failed/shutdown when signals are pending from the kthread context * caller, so we return a failure. For the HW target mode case running * in interrupt code, the signal_pending() check is skipped. */ if (!in_interrupt() && signal_pending(current)) return -EPERM; /* * If the received CDB has aleady been ABORTED by the generic * target engine, we now call transport_check_aborted_status() * to queue any delated TASK_ABORTED status for the received CDB to the * fabric module as we are expecting no further incoming DATA OUT * sequences at this point. */ if (transport_check_aborted_status(cmd, 1) != 0) return 0; transport_add_cmd_to_queue(cmd, TRANSPORT_PROCESS_WRITE, false); return 0; } EXPORT_SYMBOL(transport_generic_handle_data); /* transport_generic_handle_tmr(): * * */ int transport_generic_handle_tmr( struct se_cmd *cmd) { transport_add_cmd_to_queue(cmd, TRANSPORT_PROCESS_TMR, false); return 0; } EXPORT_SYMBOL(transport_generic_handle_tmr); /* * If the task is active, request it to be stopped and sleep until it * has completed. */ bool target_stop_task(struct se_task *task, unsigned long *flags) { struct se_cmd *cmd = task->task_se_cmd; bool was_active = false; if (task->task_flags & TF_ACTIVE) { task->task_flags |= TF_REQUEST_STOP; spin_unlock_irqrestore(&cmd->t_state_lock, *flags); pr_debug("Task %p waiting to complete\n", task); wait_for_completion(&task->task_stop_comp); pr_debug("Task %p stopped successfully\n", task); spin_lock_irqsave(&cmd->t_state_lock, *flags); atomic_dec(&cmd->t_task_cdbs_left); task->task_flags &= ~(TF_ACTIVE | TF_REQUEST_STOP); was_active = true; } return was_active; } static int transport_stop_tasks_for_cmd(struct se_cmd *cmd) { struct se_task *task, *task_tmp; unsigned long flags; int ret = 0; pr_debug("ITT[0x%08x] - Stopping tasks\n", cmd->se_tfo->get_task_tag(cmd)); /* * No tasks remain in the execution queue */ spin_lock_irqsave(&cmd->t_state_lock, flags); list_for_each_entry_safe(task, task_tmp, &cmd->t_task_list, t_list) { pr_debug("Processing task %p\n", task); /* * If the struct se_task has not been sent and is not active, * remove the struct se_task from the execution queue. */ if (!(task->task_flags & (TF_ACTIVE | TF_SENT))) { spin_unlock_irqrestore(&cmd->t_state_lock, flags); transport_remove_task_from_execute_queue(task, cmd->se_dev); pr_debug("Task %p removed from execute queue\n", task); spin_lock_irqsave(&cmd->t_state_lock, flags); continue; } if (!target_stop_task(task, &flags)) { pr_debug("Task %p - did nothing\n", task); ret++; } } spin_unlock_irqrestore(&cmd->t_state_lock, flags); return ret; } /* * Handle SAM-esque emulation for generic transport request failures. */ static void transport_generic_request_failure(struct se_cmd *cmd) { int ret = 0; pr_debug("-----[ Storage Engine Exception for cmd: %p ITT: 0x%08x" " CDB: 0x%02x\n", cmd, cmd->se_tfo->get_task_tag(cmd), cmd->t_task_cdb[0]); pr_debug("-----[ i_state: %d t_state: %d scsi_sense_reason: %d\n", cmd->se_tfo->get_cmd_state(cmd), cmd->t_state, cmd->scsi_sense_reason); pr_debug("-----[ t_tasks: %d t_task_cdbs_left: %d" " t_task_cdbs_sent: %d t_task_cdbs_ex_left: %d --" " t_transport_active: %d t_transport_stop: %d" " t_transport_sent: %d\n", cmd->t_task_list_num, atomic_read(&cmd->t_task_cdbs_left), atomic_read(&cmd->t_task_cdbs_sent), atomic_read(&cmd->t_task_cdbs_ex_left), atomic_read(&cmd->t_transport_active), atomic_read(&cmd->t_transport_stop), atomic_read(&cmd->t_transport_sent)); /* * For SAM Task Attribute emulation for failed struct se_cmd */ if (cmd->se_dev->dev_task_attr_type == SAM_TASK_ATTR_EMULATED) transport_complete_task_attr(cmd); switch (cmd->scsi_sense_reason) { case TCM_NON_EXISTENT_LUN: case TCM_UNSUPPORTED_SCSI_OPCODE: case TCM_INVALID_CDB_FIELD: case TCM_INVALID_PARAMETER_LIST: case TCM_LOGICAL_UNIT_COMMUNICATION_FAILURE: case TCM_UNKNOWN_MODE_PAGE: case TCM_WRITE_PROTECTED: case TCM_CHECK_CONDITION_ABORT_CMD: case TCM_CHECK_CONDITION_UNIT_ATTENTION: case TCM_CHECK_CONDITION_NOT_READY: break; case TCM_RESERVATION_CONFLICT: /* * No SENSE Data payload for this case, set SCSI Status * and queue the response to $FABRIC_MOD. * * Uses linux/include/scsi/scsi.h SAM status codes defs */ cmd->scsi_status = SAM_STAT_RESERVATION_CONFLICT; /* * For UA Interlock Code 11b, a RESERVATION CONFLICT will * establish a UNIT ATTENTION with PREVIOUS RESERVATION * CONFLICT STATUS. * * See spc4r17, section 7.4.6 Control Mode Page, Table 349 */ if (cmd->se_sess && cmd->se_dev->se_sub_dev->se_dev_attrib.emulate_ua_intlck_ctrl == 2) core_scsi3_ua_allocate(cmd->se_sess->se_node_acl, cmd->orig_fe_lun, 0x2C, ASCQ_2CH_PREVIOUS_RESERVATION_CONFLICT_STATUS); ret = cmd->se_tfo->queue_status(cmd); if (ret == -EAGAIN || ret == -ENOMEM) goto queue_full; goto check_stop; default: pr_err("Unknown transport error for CDB 0x%02x: %d\n", cmd->t_task_cdb[0], cmd->scsi_sense_reason); cmd->scsi_sense_reason = TCM_UNSUPPORTED_SCSI_OPCODE; break; } /* * If a fabric does not define a cmd->se_tfo->new_cmd_map caller, * make the call to transport_send_check_condition_and_sense() * directly. Otherwise expect the fabric to make the call to * transport_send_check_condition_and_sense() after handling * possible unsoliticied write data payloads. */ ret = transport_send_check_condition_and_sense(cmd, cmd->scsi_sense_reason, 0); if (ret == -EAGAIN || ret == -ENOMEM) goto queue_full; check_stop: transport_lun_remove_cmd(cmd); if (!transport_cmd_check_stop_to_fabric(cmd)) ; return; queue_full: cmd->t_state = TRANSPORT_COMPLETE_QF_OK; transport_handle_queue_full(cmd, cmd->se_dev); } static inline u32 transport_lba_21(unsigned char *cdb) { return ((cdb[1] & 0x1f) << 16) | (cdb[2] << 8) | cdb[3]; } static inline u32 transport_lba_32(unsigned char *cdb) { return (cdb[2] << 24) | (cdb[3] << 16) | (cdb[4] << 8) | cdb[5]; } static inline unsigned long long transport_lba_64(unsigned char *cdb) { unsigned int __v1, __v2; __v1 = (cdb[2] << 24) | (cdb[3] << 16) | (cdb[4] << 8) | cdb[5]; __v2 = (cdb[6] << 24) | (cdb[7] << 16) | (cdb[8] << 8) | cdb[9]; return ((unsigned long long)__v2) | (unsigned long long)__v1 << 32; } /* * For VARIABLE_LENGTH_CDB w/ 32 byte extended CDBs */ static inline unsigned long long transport_lba_64_ext(unsigned char *cdb) { unsigned int __v1, __v2; __v1 = (cdb[12] << 24) | (cdb[13] << 16) | (cdb[14] << 8) | cdb[15]; __v2 = (cdb[16] << 24) | (cdb[17] << 16) | (cdb[18] << 8) | cdb[19]; return ((unsigned long long)__v2) | (unsigned long long)__v1 << 32; } static void transport_set_supported_SAM_opcode(struct se_cmd *se_cmd) { unsigned long flags; spin_lock_irqsave(&se_cmd->t_state_lock, flags); se_cmd->se_cmd_flags |= SCF_SUPPORTED_SAM_OPCODE; spin_unlock_irqrestore(&se_cmd->t_state_lock, flags); } /* * Called from Fabric Module context from transport_execute_tasks() * * The return of this function determins if the tasks from struct se_cmd * get added to the execution queue in transport_execute_tasks(), * or are added to the delayed or ordered lists here. */ static inline int transport_execute_task_attr(struct se_cmd *cmd) { if (cmd->se_dev->dev_task_attr_type != SAM_TASK_ATTR_EMULATED) return 1; /* * Check for the existence of HEAD_OF_QUEUE, and if true return 1 * to allow the passed struct se_cmd list of tasks to the front of the list. */ if (cmd->sam_task_attr == MSG_HEAD_TAG) { pr_debug("Added HEAD_OF_QUEUE for CDB:" " 0x%02x, se_ordered_id: %u\n", cmd->t_task_cdb[0], cmd->se_ordered_id); return 1; } else if (cmd->sam_task_attr == MSG_ORDERED_TAG) { atomic_inc(&cmd->se_dev->dev_ordered_sync); smp_mb__after_atomic_inc(); pr_debug("Added ORDERED for CDB: 0x%02x to ordered" " list, se_ordered_id: %u\n", cmd->t_task_cdb[0], cmd->se_ordered_id); /* * Add ORDERED command to tail of execution queue if * no other older commands exist that need to be * completed first. */ if (!atomic_read(&cmd->se_dev->simple_cmds)) return 1; } else { /* * For SIMPLE and UNTAGGED Task Attribute commands */ atomic_inc(&cmd->se_dev->simple_cmds); smp_mb__after_atomic_inc(); } /* * Otherwise if one or more outstanding ORDERED task attribute exist, * add the dormant task(s) built for the passed struct se_cmd to the * execution queue and become in Active state for this struct se_device. */ if (atomic_read(&cmd->se_dev->dev_ordered_sync) != 0) { /* * Otherwise, add cmd w/ tasks to delayed cmd queue that * will be drained upon completion of HEAD_OF_QUEUE task. */ spin_lock(&cmd->se_dev->delayed_cmd_lock); cmd->se_cmd_flags |= SCF_DELAYED_CMD_FROM_SAM_ATTR; list_add_tail(&cmd->se_delayed_node, &cmd->se_dev->delayed_cmd_list); spin_unlock(&cmd->se_dev->delayed_cmd_lock); pr_debug("Added CDB: 0x%02x Task Attr: 0x%02x to" " delayed CMD list, se_ordered_id: %u\n", cmd->t_task_cdb[0], cmd->sam_task_attr, cmd->se_ordered_id); /* * Return zero to let transport_execute_tasks() know * not to add the delayed tasks to the execution list. */ return 0; } /* * Otherwise, no ORDERED task attributes exist.. */ return 1; } /* * Called from fabric module context in transport_generic_new_cmd() and * transport_generic_process_write() */ static int transport_execute_tasks(struct se_cmd *cmd) { int add_tasks; struct se_device *se_dev = cmd->se_dev; /* * Call transport_cmd_check_stop() to see if a fabric exception * has occurred that prevents execution. */ if (!transport_cmd_check_stop(cmd, 0, TRANSPORT_PROCESSING)) { /* * Check for SAM Task Attribute emulation and HEAD_OF_QUEUE * attribute for the tasks of the received struct se_cmd CDB */ add_tasks = transport_execute_task_attr(cmd); if (!add_tasks) goto execute_tasks; /* * __transport_execute_tasks() -> __transport_add_tasks_from_cmd() * adds associated se_tasks while holding dev->execute_task_lock * before I/O dispath to avoid a double spinlock access. */ __transport_execute_tasks(se_dev, cmd); return 0; } execute_tasks: __transport_execute_tasks(se_dev, NULL); return 0; } /* * Called to check struct se_device tcq depth window, and once open pull struct se_task * from struct se_device->execute_task_list and * * Called from transport_processing_thread() */ static int __transport_execute_tasks(struct se_device *dev, struct se_cmd *new_cmd) { int error; struct se_cmd *cmd = NULL; struct se_task *task = NULL; unsigned long flags; check_depth: spin_lock_irq(&dev->execute_task_lock); if (new_cmd != NULL) __transport_add_tasks_from_cmd(new_cmd); if (list_empty(&dev->execute_task_list)) { spin_unlock_irq(&dev->execute_task_lock); return 0; } task = list_first_entry(&dev->execute_task_list, struct se_task, t_execute_list); __transport_remove_task_from_execute_queue(task, dev); spin_unlock_irq(&dev->execute_task_lock); cmd = task->task_se_cmd; spin_lock_irqsave(&cmd->t_state_lock, flags); task->task_flags |= (TF_ACTIVE | TF_SENT); atomic_inc(&cmd->t_task_cdbs_sent); if (atomic_read(&cmd->t_task_cdbs_sent) == cmd->t_task_list_num) atomic_set(&cmd->t_transport_sent, 1); spin_unlock_irqrestore(&cmd->t_state_lock, flags); if (cmd->execute_task) error = cmd->execute_task(task); else error = dev->transport->do_task(task); if (error != 0) { spin_lock_irqsave(&cmd->t_state_lock, flags); task->task_flags &= ~TF_ACTIVE; spin_unlock_irqrestore(&cmd->t_state_lock, flags); atomic_set(&cmd->t_transport_sent, 0); transport_stop_tasks_for_cmd(cmd); transport_generic_request_failure(cmd); } new_cmd = NULL; goto check_depth; return 0; } static inline u32 transport_get_sectors_6( unsigned char *cdb, struct se_cmd *cmd, int *ret) { struct se_device *dev = cmd->se_dev; /* * Assume TYPE_DISK for non struct se_device objects. * Use 8-bit sector value. */ if (!dev) goto type_disk; /* * Use 24-bit allocation length for TYPE_TAPE. */ if (dev->transport->get_device_type(dev) == TYPE_TAPE) return (u32)(cdb[2] << 16) + (cdb[3] << 8) + cdb[4]; /* * Everything else assume TYPE_DISK Sector CDB location. * Use 8-bit sector value. SBC-3 says: * * A TRANSFER LENGTH field set to zero specifies that 256 * logical blocks shall be written. Any other value * specifies the number of logical blocks that shall be * written. */ type_disk: return cdb[4] ? : 256; } static inline u32 transport_get_sectors_10( unsigned char *cdb, struct se_cmd *cmd, int *ret) { struct se_device *dev = cmd->se_dev; /* * Assume TYPE_DISK for non struct se_device objects. * Use 16-bit sector value. */ if (!dev) goto type_disk; /* * XXX_10 is not defined in SSC, throw an exception */ if (dev->transport->get_device_type(dev) == TYPE_TAPE) { *ret = -EINVAL; return 0; } /* * Everything else assume TYPE_DISK Sector CDB location. * Use 16-bit sector value. */ type_disk: return (u32)(cdb[7] << 8) + cdb[8]; } static inline u32 transport_get_sectors_12( unsigned char *cdb, struct se_cmd *cmd, int *ret) { struct se_device *dev = cmd->se_dev; /* * Assume TYPE_DISK for non struct se_device objects. * Use 32-bit sector value. */ if (!dev) goto type_disk; /* * XXX_12 is not defined in SSC, throw an exception */ if (dev->transport->get_device_type(dev) == TYPE_TAPE) { *ret = -EINVAL; return 0; } /* * Everything else assume TYPE_DISK Sector CDB location. * Use 32-bit sector value. */ type_disk: return (u32)(cdb[6] << 24) + (cdb[7] << 16) + (cdb[8] << 8) + cdb[9]; } static inline u32 transport_get_sectors_16( unsigned char *cdb, struct se_cmd *cmd, int *ret) { struct se_device *dev = cmd->se_dev; /* * Assume TYPE_DISK for non struct se_device objects. * Use 32-bit sector value. */ if (!dev) goto type_disk; /* * Use 24-bit allocation length for TYPE_TAPE. */ if (dev->transport->get_device_type(dev) == TYPE_TAPE) return (u32)(cdb[12] << 16) + (cdb[13] << 8) + cdb[14]; type_disk: return (u32)(cdb[10] << 24) + (cdb[11] << 16) + (cdb[12] << 8) + cdb[13]; } /* * Used for VARIABLE_LENGTH_CDB WRITE_32 and READ_32 variants */ static inline u32 transport_get_sectors_32( unsigned char *cdb, struct se_cmd *cmd, int *ret) { /* * Assume TYPE_DISK for non struct se_device objects. * Use 32-bit sector value. */ return (u32)(cdb[28] << 24) + (cdb[29] << 16) + (cdb[30] << 8) + cdb[31]; } static inline u32 transport_get_size( u32 sectors, unsigned char *cdb, struct se_cmd *cmd) { struct se_device *dev = cmd->se_dev; if (dev->transport->get_device_type(dev) == TYPE_TAPE) { if (cdb[1] & 1) { /* sectors */ return dev->se_sub_dev->se_dev_attrib.block_size * sectors; } else /* bytes */ return sectors; } #if 0 pr_debug("Returning block_size: %u, sectors: %u == %u for" " %s object\n", dev->se_sub_dev->se_dev_attrib.block_size, sectors, dev->se_sub_dev->se_dev_attrib.block_size * sectors, dev->transport->name); #endif return dev->se_sub_dev->se_dev_attrib.block_size * sectors; } static void transport_xor_callback(struct se_cmd *cmd) { unsigned char *buf, *addr; struct scatterlist *sg; unsigned int offset; int i; int count; /* * From sbc3r22.pdf section 5.48 XDWRITEREAD (10) command * * 1) read the specified logical block(s); * 2) transfer logical blocks from the data-out buffer; * 3) XOR the logical blocks transferred from the data-out buffer with * the logical blocks read, storing the resulting XOR data in a buffer; * 4) if the DISABLE WRITE bit is set to zero, then write the logical * blocks transferred from the data-out buffer; and * 5) transfer the resulting XOR data to the data-in buffer. */ buf = kmalloc(cmd->data_length, GFP_KERNEL); if (!buf) { pr_err("Unable to allocate xor_callback buf\n"); return; } /* * Copy the scatterlist WRITE buffer located at cmd->t_data_sg * into the locally allocated *buf */ sg_copy_to_buffer(cmd->t_data_sg, cmd->t_data_nents, buf, cmd->data_length); /* * Now perform the XOR against the BIDI read memory located at * cmd->t_mem_bidi_list */ offset = 0; for_each_sg(cmd->t_bidi_data_sg, sg, cmd->t_bidi_data_nents, count) { addr = kmap_atomic(sg_page(sg), KM_USER0); if (!addr) goto out; for (i = 0; i < sg->length; i++) *(addr + sg->offset + i) ^= *(buf + offset + i); offset += sg->length; kunmap_atomic(addr, KM_USER0); } out: kfree(buf); } /* * Used to obtain Sense Data from underlying Linux/SCSI struct scsi_cmnd */ static int transport_get_sense_data(struct se_cmd *cmd) { unsigned char *buffer = cmd->sense_buffer, *sense_buffer = NULL; struct se_device *dev = cmd->se_dev; struct se_task *task = NULL, *task_tmp; unsigned long flags; u32 offset = 0; WARN_ON(!cmd->se_lun); if (!dev) return 0; spin_lock_irqsave(&cmd->t_state_lock, flags); if (cmd->se_cmd_flags & SCF_SENT_CHECK_CONDITION) { spin_unlock_irqrestore(&cmd->t_state_lock, flags); return 0; } list_for_each_entry_safe(task, task_tmp, &cmd->t_task_list, t_list) { if (!(task->task_flags & TF_HAS_SENSE)) continue; if (!dev->transport->get_sense_buffer) { pr_err("dev->transport->get_sense_buffer" " is NULL\n"); continue; } sense_buffer = dev->transport->get_sense_buffer(task); if (!sense_buffer) { pr_err("ITT[0x%08x]_TASK[%p]: Unable to locate" " sense buffer for task with sense\n", cmd->se_tfo->get_task_tag(cmd), task); continue; } spin_unlock_irqrestore(&cmd->t_state_lock, flags); offset = cmd->se_tfo->set_fabric_sense_len(cmd, TRANSPORT_SENSE_BUFFER); memcpy(&buffer[offset], sense_buffer, TRANSPORT_SENSE_BUFFER); cmd->scsi_status = task->task_scsi_status; /* Automatically padded */ cmd->scsi_sense_length = (TRANSPORT_SENSE_BUFFER + offset); pr_debug("HBA_[%u]_PLUG[%s]: Set SAM STATUS: 0x%02x" " and sense\n", dev->se_hba->hba_id, dev->transport->name, cmd->scsi_status); return 0; } spin_unlock_irqrestore(&cmd->t_state_lock, flags); return -1; } static inline long long transport_dev_end_lba(struct se_device *dev) { return dev->transport->get_blocks(dev) + 1; } static int transport_cmd_get_valid_sectors(struct se_cmd *cmd) { struct se_device *dev = cmd->se_dev; u32 sectors; if (dev->transport->get_device_type(dev) != TYPE_DISK) return 0; sectors = (cmd->data_length / dev->se_sub_dev->se_dev_attrib.block_size); if ((cmd->t_task_lba + sectors) > transport_dev_end_lba(dev)) { pr_err("LBA: %llu Sectors: %u exceeds" " transport_dev_end_lba(): %llu\n", cmd->t_task_lba, sectors, transport_dev_end_lba(dev)); return -EINVAL; } return 0; } static int target_check_write_same_discard(unsigned char *flags, struct se_device *dev) { /* * Determine if the received WRITE_SAME is used to for direct * passthrough into Linux/SCSI with struct request via TCM/pSCSI * or we are signaling the use of internal WRITE_SAME + UNMAP=1 * emulation for -> Linux/BLOCK disbard with TCM/IBLOCK code. */ int passthrough = (dev->transport->transport_type == TRANSPORT_PLUGIN_PHBA_PDEV); if (!passthrough) { if ((flags[0] & 0x04) || (flags[0] & 0x02)) { pr_err("WRITE_SAME PBDATA and LBDATA" " bits not supported for Block Discard" " Emulation\n"); return -ENOSYS; } /* * Currently for the emulated case we only accept * tpws with the UNMAP=1 bit set. */ if (!(flags[0] & 0x08)) { pr_err("WRITE_SAME w/o UNMAP bit not" " supported for Block Discard Emulation\n"); return -ENOSYS; } } return 0; } /* transport_generic_cmd_sequencer(): * * Generic Command Sequencer that should work for most DAS transport * drivers. * * Called from transport_generic_allocate_tasks() in the $FABRIC_MOD * RX Thread. * * FIXME: Need to support other SCSI OPCODES where as well. */ static int transport_generic_cmd_sequencer( struct se_cmd *cmd, unsigned char *cdb) { struct se_device *dev = cmd->se_dev; struct se_subsystem_dev *su_dev = dev->se_sub_dev; int ret = 0, sector_ret = 0, passthrough; u32 sectors = 0, size = 0, pr_reg_type = 0; u16 service_action; u8 alua_ascq = 0; /* * Check for an existing UNIT ATTENTION condition */ if (core_scsi3_ua_check(cmd, cdb) < 0) { cmd->se_cmd_flags |= SCF_SCSI_CDB_EXCEPTION; cmd->scsi_sense_reason = TCM_CHECK_CONDITION_UNIT_ATTENTION; return -EINVAL; } /* * Check status of Asymmetric Logical Unit Assignment port */ ret = su_dev->t10_alua.alua_state_check(cmd, cdb, &alua_ascq); if (ret != 0) { /* * Set SCSI additional sense code (ASC) to 'LUN Not Accessible'; * The ALUA additional sense code qualifier (ASCQ) is determined * by the ALUA primary or secondary access state.. */ if (ret > 0) { #if 0 pr_debug("[%s]: ALUA TG Port not available," " SenseKey: NOT_READY, ASC/ASCQ: 0x04/0x%02x\n", cmd->se_tfo->get_fabric_name(), alua_ascq); #endif transport_set_sense_codes(cmd, 0x04, alua_ascq); cmd->se_cmd_flags |= SCF_SCSI_CDB_EXCEPTION; cmd->scsi_sense_reason = TCM_CHECK_CONDITION_NOT_READY; return -EINVAL; } goto out_invalid_cdb_field; } /* * Check status for SPC-3 Persistent Reservations */ if (su_dev->t10_pr.pr_ops.t10_reservation_check(cmd, &pr_reg_type) != 0) { if (su_dev->t10_pr.pr_ops.t10_seq_non_holder( cmd, cdb, pr_reg_type) != 0) { cmd->se_cmd_flags |= SCF_SCSI_CDB_EXCEPTION; cmd->se_cmd_flags |= SCF_SCSI_RESERVATION_CONFLICT; cmd->scsi_status = SAM_STAT_RESERVATION_CONFLICT; cmd->scsi_sense_reason = TCM_RESERVATION_CONFLICT; return -EBUSY; } /* * This means the CDB is allowed for the SCSI Initiator port * when said port is *NOT* holding the legacy SPC-2 or * SPC-3 Persistent Reservation. */ } /* * If we operate in passthrough mode we skip most CDB emulation and * instead hand the commands down to the physical SCSI device. */ passthrough = (dev->transport->transport_type == TRANSPORT_PLUGIN_PHBA_PDEV); switch (cdb[0]) { case READ_6: sectors = transport_get_sectors_6(cdb, cmd, §or_ret); if (sector_ret) goto out_unsupported_cdb; size = transport_get_size(sectors, cdb, cmd); cmd->t_task_lba = transport_lba_21(cdb); cmd->se_cmd_flags |= SCF_SCSI_DATA_SG_IO_CDB; break; case READ_10: sectors = transport_get_sectors_10(cdb, cmd, §or_ret); if (sector_ret) goto out_unsupported_cdb; size = transport_get_size(sectors, cdb, cmd); cmd->t_task_lba = transport_lba_32(cdb); cmd->se_cmd_flags |= SCF_SCSI_DATA_SG_IO_CDB; break; case READ_12: sectors = transport_get_sectors_12(cdb, cmd, §or_ret); if (sector_ret) goto out_unsupported_cdb; size = transport_get_size(sectors, cdb, cmd); cmd->t_task_lba = transport_lba_32(cdb); cmd->se_cmd_flags |= SCF_SCSI_DATA_SG_IO_CDB; break; case READ_16: sectors = transport_get_sectors_16(cdb, cmd, §or_ret); if (sector_ret) goto out_unsupported_cdb; size = transport_get_size(sectors, cdb, cmd); cmd->t_task_lba = transport_lba_64(cdb); cmd->se_cmd_flags |= SCF_SCSI_DATA_SG_IO_CDB; break; case WRITE_6: sectors = transport_get_sectors_6(cdb, cmd, §or_ret); if (sector_ret) goto out_unsupported_cdb; size = transport_get_size(sectors, cdb, cmd); cmd->t_task_lba = transport_lba_21(cdb); cmd->se_cmd_flags |= SCF_SCSI_DATA_SG_IO_CDB; break; case WRITE_10: sectors = transport_get_sectors_10(cdb, cmd, §or_ret); if (sector_ret) goto out_unsupported_cdb; size = transport_get_size(sectors, cdb, cmd); cmd->t_task_lba = transport_lba_32(cdb); if (cdb[1] & 0x8) cmd->se_cmd_flags |= SCF_FUA; cmd->se_cmd_flags |= SCF_SCSI_DATA_SG_IO_CDB; break; case WRITE_12: sectors = transport_get_sectors_12(cdb, cmd, §or_ret); if (sector_ret) goto out_unsupported_cdb; size = transport_get_size(sectors, cdb, cmd); cmd->t_task_lba = transport_lba_32(cdb); if (cdb[1] & 0x8) cmd->se_cmd_flags |= SCF_FUA; cmd->se_cmd_flags |= SCF_SCSI_DATA_SG_IO_CDB; break; case WRITE_16: sectors = transport_get_sectors_16(cdb, cmd, §or_ret); if (sector_ret) goto out_unsupported_cdb; size = transport_get_size(sectors, cdb, cmd); cmd->t_task_lba = transport_lba_64(cdb); if (cdb[1] & 0x8) cmd->se_cmd_flags |= SCF_FUA; cmd->se_cmd_flags |= SCF_SCSI_DATA_SG_IO_CDB; break; case XDWRITEREAD_10: if ((cmd->data_direction != DMA_TO_DEVICE) || !(cmd->se_cmd_flags & SCF_BIDI)) goto out_invalid_cdb_field; sectors = transport_get_sectors_10(cdb, cmd, §or_ret); if (sector_ret) goto out_unsupported_cdb; size = transport_get_size(sectors, cdb, cmd); cmd->t_task_lba = transport_lba_32(cdb); cmd->se_cmd_flags |= SCF_SCSI_DATA_SG_IO_CDB; /* * Do now allow BIDI commands for passthrough mode. */ if (passthrough) goto out_unsupported_cdb; /* * Setup BIDI XOR callback to be run after I/O completion. */ cmd->transport_complete_callback = &transport_xor_callback; if (cdb[1] & 0x8) cmd->se_cmd_flags |= SCF_FUA; break; case VARIABLE_LENGTH_CMD: service_action = get_unaligned_be16(&cdb[8]); switch (service_action) { case XDWRITEREAD_32: sectors = transport_get_sectors_32(cdb, cmd, §or_ret); if (sector_ret) goto out_unsupported_cdb; size = transport_get_size(sectors, cdb, cmd); /* * Use WRITE_32 and READ_32 opcodes for the emulated * XDWRITE_READ_32 logic. */ cmd->t_task_lba = transport_lba_64_ext(cdb); cmd->se_cmd_flags |= SCF_SCSI_DATA_SG_IO_CDB; /* * Do now allow BIDI commands for passthrough mode. */ if (passthrough) goto out_unsupported_cdb; /* * Setup BIDI XOR callback to be run during after I/O * completion. */ cmd->transport_complete_callback = &transport_xor_callback; if (cdb[1] & 0x8) cmd->se_cmd_flags |= SCF_FUA; break; case WRITE_SAME_32: sectors = transport_get_sectors_32(cdb, cmd, §or_ret); if (sector_ret) goto out_unsupported_cdb; if (sectors) size = transport_get_size(1, cdb, cmd); else { pr_err("WSNZ=1, WRITE_SAME w/sectors=0 not" " supported\n"); goto out_invalid_cdb_field; } cmd->t_task_lba = get_unaligned_be64(&cdb[12]); cmd->se_cmd_flags |= SCF_SCSI_CONTROL_SG_IO_CDB; if (target_check_write_same_discard(&cdb[10], dev) < 0) goto out_unsupported_cdb; if (!passthrough) cmd->execute_task = target_emulate_write_same; break; default: pr_err("VARIABLE_LENGTH_CMD service action" " 0x%04x not supported\n", service_action); goto out_unsupported_cdb; } break; case MAINTENANCE_IN: if (dev->transport->get_device_type(dev) != TYPE_ROM) { /* MAINTENANCE_IN from SCC-2 */ /* * Check for emulated MI_REPORT_TARGET_PGS. */ if (cdb[1] == MI_REPORT_TARGET_PGS && su_dev->t10_alua.alua_type == SPC3_ALUA_EMULATED) { cmd->execute_task = target_emulate_report_target_port_groups; } size = (cdb[6] << 24) | (cdb[7] << 16) | (cdb[8] << 8) | cdb[9]; } else { /* GPCMD_SEND_KEY from multi media commands */ size = (cdb[8] << 8) + cdb[9]; } cmd->se_cmd_flags |= SCF_SCSI_CONTROL_SG_IO_CDB; break; case MODE_SELECT: size = cdb[4]; cmd->se_cmd_flags |= SCF_SCSI_CONTROL_SG_IO_CDB; break; case MODE_SELECT_10: size = (cdb[7] << 8) + cdb[8]; cmd->se_cmd_flags |= SCF_SCSI_CONTROL_SG_IO_CDB; break; case MODE_SENSE: size = cdb[4]; cmd->se_cmd_flags |= SCF_SCSI_CONTROL_SG_IO_CDB; if (!passthrough) cmd->execute_task = target_emulate_modesense; break; case MODE_SENSE_10: size = (cdb[7] << 8) + cdb[8]; cmd->se_cmd_flags |= SCF_SCSI_CONTROL_SG_IO_CDB; if (!passthrough) cmd->execute_task = target_emulate_modesense; break; case GPCMD_READ_BUFFER_CAPACITY: case GPCMD_SEND_OPC: case LOG_SELECT: case LOG_SENSE: size = (cdb[7] << 8) + cdb[8]; cmd->se_cmd_flags |= SCF_SCSI_CONTROL_SG_IO_CDB; break; case READ_BLOCK_LIMITS: size = READ_BLOCK_LEN; cmd->se_cmd_flags |= SCF_SCSI_CONTROL_SG_IO_CDB; break; case GPCMD_GET_CONFIGURATION: case GPCMD_READ_FORMAT_CAPACITIES: case GPCMD_READ_DISC_INFO: case GPCMD_READ_TRACK_RZONE_INFO: size = (cdb[7] << 8) + cdb[8]; cmd->se_cmd_flags |= SCF_SCSI_CONTROL_SG_IO_CDB; break; case PERSISTENT_RESERVE_IN: if (su_dev->t10_pr.res_type == SPC3_PERSISTENT_RESERVATIONS) cmd->execute_task = target_scsi3_emulate_pr_in; size = (cdb[7] << 8) + cdb[8]; cmd->se_cmd_flags |= SCF_SCSI_CONTROL_SG_IO_CDB; break; case PERSISTENT_RESERVE_OUT: if (su_dev->t10_pr.res_type == SPC3_PERSISTENT_RESERVATIONS) cmd->execute_task = target_scsi3_emulate_pr_out; size = (cdb[7] << 8) + cdb[8]; cmd->se_cmd_flags |= SCF_SCSI_CONTROL_SG_IO_CDB; break; case GPCMD_MECHANISM_STATUS: case GPCMD_READ_DVD_STRUCTURE: size = (cdb[8] << 8) + cdb[9]; cmd->se_cmd_flags |= SCF_SCSI_CONTROL_SG_IO_CDB; break; case READ_POSITION: size = READ_POSITION_LEN; cmd->se_cmd_flags |= SCF_SCSI_CONTROL_SG_IO_CDB; break; case MAINTENANCE_OUT: if (dev->transport->get_device_type(dev) != TYPE_ROM) { /* MAINTENANCE_OUT from SCC-2 * * Check for emulated MO_SET_TARGET_PGS. */ if (cdb[1] == MO_SET_TARGET_PGS && su_dev->t10_alua.alua_type == SPC3_ALUA_EMULATED) { cmd->execute_task = target_emulate_set_target_port_groups; } size = (cdb[6] << 24) | (cdb[7] << 16) | (cdb[8] << 8) | cdb[9]; } else { /* GPCMD_REPORT_KEY from multi media commands */ size = (cdb[8] << 8) + cdb[9]; } cmd->se_cmd_flags |= SCF_SCSI_CONTROL_SG_IO_CDB; break; case INQUIRY: size = (cdb[3] << 8) + cdb[4]; /* * Do implict HEAD_OF_QUEUE processing for INQUIRY. * See spc4r17 section 5.3 */ if (cmd->se_dev->dev_task_attr_type == SAM_TASK_ATTR_EMULATED) cmd->sam_task_attr = MSG_HEAD_TAG; cmd->se_cmd_flags |= SCF_SCSI_CONTROL_SG_IO_CDB; if (!passthrough) cmd->execute_task = target_emulate_inquiry; break; case READ_BUFFER: size = (cdb[6] << 16) + (cdb[7] << 8) + cdb[8]; cmd->se_cmd_flags |= SCF_SCSI_CONTROL_SG_IO_CDB; break; case READ_CAPACITY: size = READ_CAP_LEN; cmd->se_cmd_flags |= SCF_SCSI_CONTROL_SG_IO_CDB; if (!passthrough) cmd->execute_task = target_emulate_readcapacity; break; case READ_MEDIA_SERIAL_NUMBER: case SECURITY_PROTOCOL_IN: case SECURITY_PROTOCOL_OUT: size = (cdb[6] << 24) | (cdb[7] << 16) | (cdb[8] << 8) | cdb[9]; cmd->se_cmd_flags |= SCF_SCSI_CONTROL_SG_IO_CDB; break; case SERVICE_ACTION_IN: switch (cmd->t_task_cdb[1] & 0x1f) { case SAI_READ_CAPACITY_16: if (!passthrough) cmd->execute_task = target_emulate_readcapacity_16; break; default: if (passthrough) break; pr_err("Unsupported SA: 0x%02x\n", cmd->t_task_cdb[1] & 0x1f); goto out_unsupported_cdb; } /*FALLTHROUGH*/ case ACCESS_CONTROL_IN: case ACCESS_CONTROL_OUT: case EXTENDED_COPY: case READ_ATTRIBUTE: case RECEIVE_COPY_RESULTS: case WRITE_ATTRIBUTE: size = (cdb[10] << 24) | (cdb[11] << 16) | (cdb[12] << 8) | cdb[13]; cmd->se_cmd_flags |= SCF_SCSI_CONTROL_SG_IO_CDB; break; case RECEIVE_DIAGNOSTIC: case SEND_DIAGNOSTIC: size = (cdb[3] << 8) | cdb[4]; cmd->se_cmd_flags |= SCF_SCSI_CONTROL_SG_IO_CDB; break; /* #warning FIXME: Figure out correct GPCMD_READ_CD blocksize. */ #if 0 case GPCMD_READ_CD: sectors = (cdb[6] << 16) + (cdb[7] << 8) + cdb[8]; size = (2336 * sectors); cmd->se_cmd_flags |= SCF_SCSI_CONTROL_SG_IO_CDB; break; #endif case READ_TOC: size = cdb[8]; cmd->se_cmd_flags |= SCF_SCSI_CONTROL_SG_IO_CDB; break; case REQUEST_SENSE: size = cdb[4]; cmd->se_cmd_flags |= SCF_SCSI_CONTROL_SG_IO_CDB; if (!passthrough) cmd->execute_task = target_emulate_request_sense; break; case READ_ELEMENT_STATUS: size = 65536 * cdb[7] + 256 * cdb[8] + cdb[9]; cmd->se_cmd_flags |= SCF_SCSI_CONTROL_SG_IO_CDB; break; case WRITE_BUFFER: size = (cdb[6] << 16) + (cdb[7] << 8) + cdb[8]; cmd->se_cmd_flags |= SCF_SCSI_CONTROL_SG_IO_CDB; break; case RESERVE: case RESERVE_10: /* * The SPC-2 RESERVE does not contain a size in the SCSI CDB. * Assume the passthrough or $FABRIC_MOD will tell us about it. */ if (cdb[0] == RESERVE_10) size = (cdb[7] << 8) | cdb[8]; else size = cmd->data_length; /* * Setup the legacy emulated handler for SPC-2 and * >= SPC-3 compatible reservation handling (CRH=1) * Otherwise, we assume the underlying SCSI logic is * is running in SPC_PASSTHROUGH, and wants reservations * emulation disabled. */ if (su_dev->t10_pr.res_type != SPC_PASSTHROUGH) cmd->execute_task = target_scsi2_reservation_reserve; cmd->se_cmd_flags |= SCF_SCSI_NON_DATA_CDB; break; case RELEASE: case RELEASE_10: /* * The SPC-2 RELEASE does not contain a size in the SCSI CDB. * Assume the passthrough or $FABRIC_MOD will tell us about it. */ if (cdb[0] == RELEASE_10) size = (cdb[7] << 8) | cdb[8]; else size = cmd->data_length; if (su_dev->t10_pr.res_type != SPC_PASSTHROUGH) cmd->execute_task = target_scsi2_reservation_release; cmd->se_cmd_flags |= SCF_SCSI_NON_DATA_CDB; break; case SYNCHRONIZE_CACHE: case 0x91: /* SYNCHRONIZE_CACHE_16: */ /* * Extract LBA and range to be flushed for emulated SYNCHRONIZE_CACHE */ if (cdb[0] == SYNCHRONIZE_CACHE) { sectors = transport_get_sectors_10(cdb, cmd, §or_ret); cmd->t_task_lba = transport_lba_32(cdb); } else { sectors = transport_get_sectors_16(cdb, cmd, §or_ret); cmd->t_task_lba = transport_lba_64(cdb); } if (sector_ret) goto out_unsupported_cdb; size = transport_get_size(sectors, cdb, cmd); cmd->se_cmd_flags |= SCF_SCSI_NON_DATA_CDB; if (passthrough) break; /* * Check to ensure that LBA + Range does not exceed past end of * device for IBLOCK and FILEIO ->do_sync_cache() backend calls */ if ((cmd->t_task_lba != 0) || (sectors != 0)) { if (transport_cmd_get_valid_sectors(cmd) < 0) goto out_invalid_cdb_field; } cmd->execute_task = target_emulate_synchronize_cache; break; case UNMAP: size = get_unaligned_be16(&cdb[7]); cmd->se_cmd_flags |= SCF_SCSI_CONTROL_SG_IO_CDB; if (!passthrough) cmd->execute_task = target_emulate_unmap; break; case WRITE_SAME_16: sectors = transport_get_sectors_16(cdb, cmd, §or_ret); if (sector_ret) goto out_unsupported_cdb; if (sectors) size = transport_get_size(1, cdb, cmd); else { pr_err("WSNZ=1, WRITE_SAME w/sectors=0 not supported\n"); goto out_invalid_cdb_field; } cmd->t_task_lba = get_unaligned_be64(&cdb[2]); cmd->se_cmd_flags |= SCF_SCSI_CONTROL_SG_IO_CDB; if (target_check_write_same_discard(&cdb[1], dev) < 0) goto out_unsupported_cdb; if (!passthrough) cmd->execute_task = target_emulate_write_same; break; case WRITE_SAME: sectors = transport_get_sectors_10(cdb, cmd, §or_ret); if (sector_ret) goto out_unsupported_cdb; if (sectors) size = transport_get_size(1, cdb, cmd); else { pr_err("WSNZ=1, WRITE_SAME w/sectors=0 not supported\n"); goto out_invalid_cdb_field; } cmd->t_task_lba = get_unaligned_be32(&cdb[2]); cmd->se_cmd_flags |= SCF_SCSI_CONTROL_SG_IO_CDB; /* * Follow sbcr26 with WRITE_SAME (10) and check for the existence * of byte 1 bit 3 UNMAP instead of original reserved field */ if (target_check_write_same_discard(&cdb[1], dev) < 0) goto out_unsupported_cdb; if (!passthrough) cmd->execute_task = target_emulate_write_same; break; case ALLOW_MEDIUM_REMOVAL: case ERASE: case REZERO_UNIT: case SEEK_10: case SPACE: case START_STOP: case TEST_UNIT_READY: case VERIFY: case WRITE_FILEMARKS: cmd->se_cmd_flags |= SCF_SCSI_NON_DATA_CDB; if (!passthrough) cmd->execute_task = target_emulate_noop; break; case GPCMD_CLOSE_TRACK: case INITIALIZE_ELEMENT_STATUS: case GPCMD_LOAD_UNLOAD: case GPCMD_SET_SPEED: case MOVE_MEDIUM: cmd->se_cmd_flags |= SCF_SCSI_NON_DATA_CDB; break; case REPORT_LUNS: cmd->execute_task = target_report_luns; size = (cdb[6] << 24) | (cdb[7] << 16) | (cdb[8] << 8) | cdb[9]; /* * Do implict HEAD_OF_QUEUE processing for REPORT_LUNS * See spc4r17 section 5.3 */ if (cmd->se_dev->dev_task_attr_type == SAM_TASK_ATTR_EMULATED) cmd->sam_task_attr = MSG_HEAD_TAG; cmd->se_cmd_flags |= SCF_SCSI_CONTROL_SG_IO_CDB; break; default: pr_warn("TARGET_CORE[%s]: Unsupported SCSI Opcode" " 0x%02x, sending CHECK_CONDITION.\n", cmd->se_tfo->get_fabric_name(), cdb[0]); goto out_unsupported_cdb; } if (size != cmd->data_length) { pr_warn("TARGET_CORE[%s]: Expected Transfer Length:" " %u does not match SCSI CDB Length: %u for SAM Opcode:" " 0x%02x\n", cmd->se_tfo->get_fabric_name(), cmd->data_length, size, cdb[0]); cmd->cmd_spdtl = size; if (cmd->data_direction == DMA_TO_DEVICE) { pr_err("Rejecting underflow/overflow" " WRITE data\n"); goto out_invalid_cdb_field; } /* * Reject READ_* or WRITE_* with overflow/underflow for * type SCF_SCSI_DATA_SG_IO_CDB. */ if (!ret && (dev->se_sub_dev->se_dev_attrib.block_size != 512)) { pr_err("Failing OVERFLOW/UNDERFLOW for LBA op" " CDB on non 512-byte sector setup subsystem" " plugin: %s\n", dev->transport->name); /* Returns CHECK_CONDITION + INVALID_CDB_FIELD */ goto out_invalid_cdb_field; } if (size > cmd->data_length) { cmd->se_cmd_flags |= SCF_OVERFLOW_BIT; cmd->residual_count = (size - cmd->data_length); } else { cmd->se_cmd_flags |= SCF_UNDERFLOW_BIT; cmd->residual_count = (cmd->data_length - size); } cmd->data_length = size; } /* reject any command that we don't have a handler for */ if (!(passthrough || cmd->execute_task || (cmd->se_cmd_flags & SCF_SCSI_DATA_SG_IO_CDB))) goto out_unsupported_cdb; transport_set_supported_SAM_opcode(cmd); return ret; out_unsupported_cdb: cmd->se_cmd_flags |= SCF_SCSI_CDB_EXCEPTION; cmd->scsi_sense_reason = TCM_UNSUPPORTED_SCSI_OPCODE; return -EINVAL; out_invalid_cdb_field: cmd->se_cmd_flags |= SCF_SCSI_CDB_EXCEPTION; cmd->scsi_sense_reason = TCM_INVALID_CDB_FIELD; return -EINVAL; } /* * Called from I/O completion to determine which dormant/delayed * and ordered cmds need to have their tasks added to the execution queue. */ static void transport_complete_task_attr(struct se_cmd *cmd) { struct se_device *dev = cmd->se_dev; struct se_cmd *cmd_p, *cmd_tmp; int new_active_tasks = 0; if (cmd->sam_task_attr == MSG_SIMPLE_TAG) { atomic_dec(&dev->simple_cmds); smp_mb__after_atomic_dec(); dev->dev_cur_ordered_id++; pr_debug("Incremented dev->dev_cur_ordered_id: %u for" " SIMPLE: %u\n", dev->dev_cur_ordered_id, cmd->se_ordered_id); } else if (cmd->sam_task_attr == MSG_HEAD_TAG) { dev->dev_cur_ordered_id++; pr_debug("Incremented dev_cur_ordered_id: %u for" " HEAD_OF_QUEUE: %u\n", dev->dev_cur_ordered_id, cmd->se_ordered_id); } else if (cmd->sam_task_attr == MSG_ORDERED_TAG) { atomic_dec(&dev->dev_ordered_sync); smp_mb__after_atomic_dec(); dev->dev_cur_ordered_id++; pr_debug("Incremented dev_cur_ordered_id: %u for ORDERED:" " %u\n", dev->dev_cur_ordered_id, cmd->se_ordered_id); } /* * Process all commands up to the last received * ORDERED task attribute which requires another blocking * boundary */ spin_lock(&dev->delayed_cmd_lock); list_for_each_entry_safe(cmd_p, cmd_tmp, &dev->delayed_cmd_list, se_delayed_node) { list_del(&cmd_p->se_delayed_node); spin_unlock(&dev->delayed_cmd_lock); pr_debug("Calling add_tasks() for" " cmd_p: 0x%02x Task Attr: 0x%02x" " Dormant -> Active, se_ordered_id: %u\n", cmd_p->t_task_cdb[0], cmd_p->sam_task_attr, cmd_p->se_ordered_id); transport_add_tasks_from_cmd(cmd_p); new_active_tasks++; spin_lock(&dev->delayed_cmd_lock); if (cmd_p->sam_task_attr == MSG_ORDERED_TAG) break; } spin_unlock(&dev->delayed_cmd_lock); /* * If new tasks have become active, wake up the transport thread * to do the processing of the Active tasks. */ if (new_active_tasks != 0) wake_up_interruptible(&dev->dev_queue_obj.thread_wq); } static void transport_complete_qf(struct se_cmd *cmd) { int ret = 0; if (cmd->se_dev->dev_task_attr_type == SAM_TASK_ATTR_EMULATED) transport_complete_task_attr(cmd); if (cmd->se_cmd_flags & SCF_TRANSPORT_TASK_SENSE) { ret = cmd->se_tfo->queue_status(cmd); if (ret) goto out; } switch (cmd->data_direction) { case DMA_FROM_DEVICE: ret = cmd->se_tfo->queue_data_in(cmd); break; case DMA_TO_DEVICE: if (cmd->t_bidi_data_sg) { ret = cmd->se_tfo->queue_data_in(cmd); if (ret < 0) break; } /* Fall through for DMA_TO_DEVICE */ case DMA_NONE: ret = cmd->se_tfo->queue_status(cmd); break; default: break; } out: if (ret < 0) { transport_handle_queue_full(cmd, cmd->se_dev); return; } transport_lun_remove_cmd(cmd); transport_cmd_check_stop_to_fabric(cmd); } static void transport_handle_queue_full( struct se_cmd *cmd, struct se_device *dev) { spin_lock_irq(&dev->qf_cmd_lock); list_add_tail(&cmd->se_qf_node, &cmd->se_dev->qf_cmd_list); atomic_inc(&dev->dev_qf_count); smp_mb__after_atomic_inc(); spin_unlock_irq(&cmd->se_dev->qf_cmd_lock); schedule_work(&cmd->se_dev->qf_work_queue); } static void target_complete_ok_work(struct work_struct *work) { struct se_cmd *cmd = container_of(work, struct se_cmd, work); int reason = 0, ret; /* * Check if we need to move delayed/dormant tasks from cmds on the * delayed execution list after a HEAD_OF_QUEUE or ORDERED Task * Attribute. */ if (cmd->se_dev->dev_task_attr_type == SAM_TASK_ATTR_EMULATED) transport_complete_task_attr(cmd); /* * Check to schedule QUEUE_FULL work, or execute an existing * cmd->transport_qf_callback() */ if (atomic_read(&cmd->se_dev->dev_qf_count) != 0) schedule_work(&cmd->se_dev->qf_work_queue); /* * Check if we need to retrieve a sense buffer from * the struct se_cmd in question. */ if (cmd->se_cmd_flags & SCF_TRANSPORT_TASK_SENSE) { if (transport_get_sense_data(cmd) < 0) reason = TCM_NON_EXISTENT_LUN; /* * Only set when an struct se_task->task_scsi_status returned * a non GOOD status. */ if (cmd->scsi_status) { ret = transport_send_check_condition_and_sense( cmd, reason, 1); if (ret == -EAGAIN || ret == -ENOMEM) goto queue_full; transport_lun_remove_cmd(cmd); transport_cmd_check_stop_to_fabric(cmd); return; } } /* * Check for a callback, used by amongst other things * XDWRITE_READ_10 emulation. */ if (cmd->transport_complete_callback) cmd->transport_complete_callback(cmd); switch (cmd->data_direction) { case DMA_FROM_DEVICE: spin_lock(&cmd->se_lun->lun_sep_lock); if (cmd->se_lun->lun_sep) { cmd->se_lun->lun_sep->sep_stats.tx_data_octets += cmd->data_length; } spin_unlock(&cmd->se_lun->lun_sep_lock); ret = cmd->se_tfo->queue_data_in(cmd); if (ret == -EAGAIN || ret == -ENOMEM) goto queue_full; break; case DMA_TO_DEVICE: spin_lock(&cmd->se_lun->lun_sep_lock); if (cmd->se_lun->lun_sep) { cmd->se_lun->lun_sep->sep_stats.rx_data_octets += cmd->data_length; } spin_unlock(&cmd->se_lun->lun_sep_lock); /* * Check if we need to send READ payload for BIDI-COMMAND */ if (cmd->t_bidi_data_sg) { spin_lock(&cmd->se_lun->lun_sep_lock); if (cmd->se_lun->lun_sep) { cmd->se_lun->lun_sep->sep_stats.tx_data_octets += cmd->data_length; } spin_unlock(&cmd->se_lun->lun_sep_lock); ret = cmd->se_tfo->queue_data_in(cmd); if (ret == -EAGAIN || ret == -ENOMEM) goto queue_full; break; } /* Fall through for DMA_TO_DEVICE */ case DMA_NONE: ret = cmd->se_tfo->queue_status(cmd); if (ret == -EAGAIN || ret == -ENOMEM) goto queue_full; break; default: break; } transport_lun_remove_cmd(cmd); transport_cmd_check_stop_to_fabric(cmd); return; queue_full: pr_debug("Handling complete_ok QUEUE_FULL: se_cmd: %p," " data_direction: %d\n", cmd, cmd->data_direction); cmd->t_state = TRANSPORT_COMPLETE_QF_OK; transport_handle_queue_full(cmd, cmd->se_dev); } static void transport_free_dev_tasks(struct se_cmd *cmd) { struct se_task *task, *task_tmp; unsigned long flags; LIST_HEAD(dispose_list); spin_lock_irqsave(&cmd->t_state_lock, flags); list_for_each_entry_safe(task, task_tmp, &cmd->t_task_list, t_list) { if (!(task->task_flags & TF_ACTIVE)) list_move_tail(&task->t_list, &dispose_list); } spin_unlock_irqrestore(&cmd->t_state_lock, flags); while (!list_empty(&dispose_list)) { task = list_first_entry(&dispose_list, struct se_task, t_list); if (task->task_sg != cmd->t_data_sg && task->task_sg != cmd->t_bidi_data_sg) kfree(task->task_sg); list_del(&task->t_list); cmd->se_dev->transport->free_task(task); } } static inline void transport_free_sgl(struct scatterlist *sgl, int nents) { struct scatterlist *sg; int count; for_each_sg(sgl, sg, nents, count) __free_page(sg_page(sg)); kfree(sgl); } static inline void transport_free_pages(struct se_cmd *cmd) { if (cmd->se_cmd_flags & SCF_PASSTHROUGH_SG_TO_MEM_NOALLOC) return; transport_free_sgl(cmd->t_data_sg, cmd->t_data_nents); cmd->t_data_sg = NULL; cmd->t_data_nents = 0; transport_free_sgl(cmd->t_bidi_data_sg, cmd->t_bidi_data_nents); cmd->t_bidi_data_sg = NULL; cmd->t_bidi_data_nents = 0; } /** * transport_release_cmd - free a command * @cmd: command to free * * This routine unconditionally frees a command, and reference counting * or list removal must be done in the caller. */ static void transport_release_cmd(struct se_cmd *cmd) { BUG_ON(!cmd->se_tfo); if (cmd->se_tmr_req) core_tmr_release_req(cmd->se_tmr_req); if (cmd->t_task_cdb != cmd->__t_task_cdb) kfree(cmd->t_task_cdb); /* * If this cmd has been setup with target_get_sess_cmd(), drop * the kref and call ->release_cmd() in kref callback. */ if (cmd->check_release != 0) { target_put_sess_cmd(cmd->se_sess, cmd); return; } cmd->se_tfo->release_cmd(cmd); } /** * transport_put_cmd - release a reference to a command * @cmd: command to release * * This routine releases our reference to the command and frees it if possible. */ static void transport_put_cmd(struct se_cmd *cmd) { unsigned long flags; int free_tasks = 0; spin_lock_irqsave(&cmd->t_state_lock, flags); if (atomic_read(&cmd->t_fe_count)) { if (!atomic_dec_and_test(&cmd->t_fe_count)) goto out_busy; } if (atomic_read(&cmd->t_se_count)) { if (!atomic_dec_and_test(&cmd->t_se_count)) goto out_busy; } if (atomic_read(&cmd->transport_dev_active)) { atomic_set(&cmd->transport_dev_active, 0); transport_all_task_dev_remove_state(cmd); free_tasks = 1; } spin_unlock_irqrestore(&cmd->t_state_lock, flags); if (free_tasks != 0) transport_free_dev_tasks(cmd); transport_free_pages(cmd); transport_release_cmd(cmd); return; out_busy: spin_unlock_irqrestore(&cmd->t_state_lock, flags); } /* * transport_generic_map_mem_to_cmd - Use fabric-alloced pages instead of * allocating in the core. * @cmd: Associated se_cmd descriptor * @mem: SGL style memory for TCM WRITE / READ * @sg_mem_num: Number of SGL elements * @mem_bidi_in: SGL style memory for TCM BIDI READ * @sg_mem_bidi_num: Number of BIDI READ SGL elements * * Return: nonzero return cmd was rejected for -ENOMEM or inproper usage * of parameters. */ int transport_generic_map_mem_to_cmd( struct se_cmd *cmd, struct scatterlist *sgl, u32 sgl_count, struct scatterlist *sgl_bidi, u32 sgl_bidi_count) { if (!sgl || !sgl_count) return 0; if ((cmd->se_cmd_flags & SCF_SCSI_DATA_SG_IO_CDB) || (cmd->se_cmd_flags & SCF_SCSI_CONTROL_SG_IO_CDB)) { /* * Reject SCSI data overflow with map_mem_to_cmd() as incoming * scatterlists already have been set to follow what the fabric * passes for the original expected data transfer length. */ if (cmd->se_cmd_flags & SCF_OVERFLOW_BIT) { pr_warn("Rejecting SCSI DATA overflow for fabric using" " SCF_PASSTHROUGH_SG_TO_MEM_NOALLOC\n"); cmd->se_cmd_flags |= SCF_SCSI_CDB_EXCEPTION; cmd->scsi_sense_reason = TCM_INVALID_CDB_FIELD; return -EINVAL; } cmd->t_data_sg = sgl; cmd->t_data_nents = sgl_count; if (sgl_bidi && sgl_bidi_count) { cmd->t_bidi_data_sg = sgl_bidi; cmd->t_bidi_data_nents = sgl_bidi_count; } cmd->se_cmd_flags |= SCF_PASSTHROUGH_SG_TO_MEM_NOALLOC; } return 0; } EXPORT_SYMBOL(transport_generic_map_mem_to_cmd); void *transport_kmap_data_sg(struct se_cmd *cmd) { struct scatterlist *sg = cmd->t_data_sg; struct page **pages; int i; BUG_ON(!sg); /* * We need to take into account a possible offset here for fabrics like * tcm_loop who may be using a contig buffer from the SCSI midlayer for * control CDBs passed as SGLs via transport_generic_map_mem_to_cmd() */ if (!cmd->t_data_nents) return NULL; else if (cmd->t_data_nents == 1) return kmap(sg_page(sg)) + sg->offset; /* >1 page. use vmap */ pages = kmalloc(sizeof(*pages) * cmd->t_data_nents, GFP_KERNEL); if (!pages) return NULL; /* convert sg[] to pages[] */ for_each_sg(cmd->t_data_sg, sg, cmd->t_data_nents, i) { pages[i] = sg_page(sg); } cmd->t_data_vmap = vmap(pages, cmd->t_data_nents, VM_MAP, PAGE_KERNEL); kfree(pages); if (!cmd->t_data_vmap) return NULL; return cmd->t_data_vmap + cmd->t_data_sg[0].offset; } EXPORT_SYMBOL(transport_kmap_data_sg); void transport_kunmap_data_sg(struct se_cmd *cmd) { if (!cmd->t_data_nents) return; else if (cmd->t_data_nents == 1) kunmap(sg_page(cmd->t_data_sg)); vunmap(cmd->t_data_vmap); cmd->t_data_vmap = NULL; } EXPORT_SYMBOL(transport_kunmap_data_sg); static int transport_generic_get_mem(struct se_cmd *cmd) { u32 length = cmd->data_length; unsigned int nents; struct page *page; gfp_t zero_flag; int i = 0; nents = DIV_ROUND_UP(length, PAGE_SIZE); cmd->t_data_sg = kmalloc(sizeof(struct scatterlist) * nents, GFP_KERNEL); if (!cmd->t_data_sg) return -ENOMEM; cmd->t_data_nents = nents; sg_init_table(cmd->t_data_sg, nents); zero_flag = cmd->se_cmd_flags & SCF_SCSI_DATA_SG_IO_CDB ? 0 : __GFP_ZERO; while (length) { u32 page_len = min_t(u32, length, PAGE_SIZE); page = alloc_page(GFP_KERNEL | zero_flag); if (!page) goto out; sg_set_page(&cmd->t_data_sg[i], page, page_len, 0); length -= page_len; i++; } return 0; out: while (i >= 0) { __free_page(sg_page(&cmd->t_data_sg[i])); i--; } kfree(cmd->t_data_sg); cmd->t_data_sg = NULL; return -ENOMEM; } /* Reduce sectors if they are too long for the device */ static inline sector_t transport_limit_task_sectors( struct se_device *dev, unsigned long long lba, sector_t sectors) { sectors = min_t(sector_t, sectors, dev->se_sub_dev->se_dev_attrib.max_sectors); if (dev->transport->get_device_type(dev) == TYPE_DISK) if ((lba + sectors) > transport_dev_end_lba(dev)) sectors = ((transport_dev_end_lba(dev) - lba) + 1); return sectors; } /* * This function can be used by HW target mode drivers to create a linked * scatterlist from all contiguously allocated struct se_task->task_sg[]. * This is intended to be called during the completion path by TCM Core * when struct target_core_fabric_ops->check_task_sg_chaining is enabled. */ void transport_do_task_sg_chain(struct se_cmd *cmd) { struct scatterlist *sg_first = NULL; struct scatterlist *sg_prev = NULL; int sg_prev_nents = 0; struct scatterlist *sg; struct se_task *task; u32 chained_nents = 0; int i; BUG_ON(!cmd->se_tfo->task_sg_chaining); /* * Walk the struct se_task list and setup scatterlist chains * for each contiguously allocated struct se_task->task_sg[]. */ list_for_each_entry(task, &cmd->t_task_list, t_list) { if (!task->task_sg) continue; if (!sg_first) { sg_first = task->task_sg; chained_nents = task->task_sg_nents; } else { sg_chain(sg_prev, sg_prev_nents, task->task_sg); chained_nents += task->task_sg_nents; } /* * For the padded tasks, use the extra SGL vector allocated * in transport_allocate_data_tasks() for the sg_prev_nents * offset into sg_chain() above. * * We do not need the padding for the last task (or a single * task), but in that case we will never use the sg_prev_nents * value below which would be incorrect. */ sg_prev_nents = (task->task_sg_nents + 1); sg_prev = task->task_sg; } /* * Setup the starting pointer and total t_tasks_sg_linked_no including * padding SGs for linking and to mark the end. */ cmd->t_tasks_sg_chained = sg_first; cmd->t_tasks_sg_chained_no = chained_nents; pr_debug("Setup cmd: %p cmd->t_tasks_sg_chained: %p and" " t_tasks_sg_chained_no: %u\n", cmd, cmd->t_tasks_sg_chained, cmd->t_tasks_sg_chained_no); for_each_sg(cmd->t_tasks_sg_chained, sg, cmd->t_tasks_sg_chained_no, i) { pr_debug("SG[%d]: %p page: %p length: %d offset: %d\n", i, sg, sg_page(sg), sg->length, sg->offset); if (sg_is_chain(sg)) pr_debug("SG: %p sg_is_chain=1\n", sg); if (sg_is_last(sg)) pr_debug("SG: %p sg_is_last=1\n", sg); } } EXPORT_SYMBOL(transport_do_task_sg_chain); /* * Break up cmd into chunks transport can handle */ static int transport_allocate_data_tasks(struct se_cmd *cmd, enum dma_data_direction data_direction, struct scatterlist *cmd_sg, unsigned int sgl_nents) { struct se_device *dev = cmd->se_dev; int task_count, i; unsigned long long lba; sector_t sectors, dev_max_sectors; u32 sector_size; if (transport_cmd_get_valid_sectors(cmd) < 0) return -EINVAL; dev_max_sectors = dev->se_sub_dev->se_dev_attrib.max_sectors; sector_size = dev->se_sub_dev->se_dev_attrib.block_size; WARN_ON(cmd->data_length % sector_size); lba = cmd->t_task_lba; sectors = DIV_ROUND_UP(cmd->data_length, sector_size); task_count = DIV_ROUND_UP_SECTOR_T(sectors, dev_max_sectors); /* * If we need just a single task reuse the SG list in the command * and avoid a lot of work. */ if (task_count == 1) { struct se_task *task; unsigned long flags; task = transport_generic_get_task(cmd, data_direction); if (!task) return -ENOMEM; task->task_sg = cmd_sg; task->task_sg_nents = sgl_nents; task->task_lba = lba; task->task_sectors = sectors; task->task_size = task->task_sectors * sector_size; spin_lock_irqsave(&cmd->t_state_lock, flags); list_add_tail(&task->t_list, &cmd->t_task_list); spin_unlock_irqrestore(&cmd->t_state_lock, flags); return task_count; } for (i = 0; i < task_count; i++) { struct se_task *task; unsigned int task_size, task_sg_nents_padded; struct scatterlist *sg; unsigned long flags; int count; task = transport_generic_get_task(cmd, data_direction); if (!task) return -ENOMEM; task->task_lba = lba; task->task_sectors = min(sectors, dev_max_sectors); task->task_size = task->task_sectors * sector_size; /* * This now assumes that passed sg_ents are in PAGE_SIZE chunks * in order to calculate the number per task SGL entries */ task->task_sg_nents = DIV_ROUND_UP(task->task_size, PAGE_SIZE); /* * Check if the fabric module driver is requesting that all * struct se_task->task_sg[] be chained together.. If so, * then allocate an extra padding SG entry for linking and * marking the end of the chained SGL for every task except * the last one for (task_count > 1) operation, or skipping * the extra padding for the (task_count == 1) case. */ if (cmd->se_tfo->task_sg_chaining && (i < (task_count - 1))) { task_sg_nents_padded = (task->task_sg_nents + 1); } else task_sg_nents_padded = task->task_sg_nents; task->task_sg = kmalloc(sizeof(struct scatterlist) * task_sg_nents_padded, GFP_KERNEL); if (!task->task_sg) { cmd->se_dev->transport->free_task(task); return -ENOMEM; } sg_init_table(task->task_sg, task_sg_nents_padded); task_size = task->task_size; /* Build new sgl, only up to task_size */ for_each_sg(task->task_sg, sg, task->task_sg_nents, count) { if (cmd_sg->length > task_size) break; *sg = *cmd_sg; task_size -= cmd_sg->length; cmd_sg = sg_next(cmd_sg); } lba += task->task_sectors; sectors -= task->task_sectors; spin_lock_irqsave(&cmd->t_state_lock, flags); list_add_tail(&task->t_list, &cmd->t_task_list); spin_unlock_irqrestore(&cmd->t_state_lock, flags); } return task_count; } static int transport_allocate_control_task(struct se_cmd *cmd) { struct se_task *task; unsigned long flags; /* Workaround for handling zero-length control CDBs */ if ((cmd->se_cmd_flags & SCF_SCSI_CONTROL_SG_IO_CDB) && !cmd->data_length) return 0; task = transport_generic_get_task(cmd, cmd->data_direction); if (!task) return -ENOMEM; task->task_sg = cmd->t_data_sg; task->task_size = cmd->data_length; task->task_sg_nents = cmd->t_data_nents; spin_lock_irqsave(&cmd->t_state_lock, flags); list_add_tail(&task->t_list, &cmd->t_task_list); spin_unlock_irqrestore(&cmd->t_state_lock, flags); /* Success! Return number of tasks allocated */ return 1; } /* * Allocate any required ressources to execute the command, and either place * it on the execution queue if possible. For writes we might not have the * payload yet, thus notify the fabric via a call to ->write_pending instead. */ int transport_generic_new_cmd(struct se_cmd *cmd) { struct se_device *dev = cmd->se_dev; int task_cdbs, task_cdbs_bidi = 0; int set_counts = 1; int ret = 0; /* * Determine is the TCM fabric module has already allocated physical * memory, and is directly calling transport_generic_map_mem_to_cmd() * beforehand. */ if (!(cmd->se_cmd_flags & SCF_PASSTHROUGH_SG_TO_MEM_NOALLOC) && cmd->data_length) { ret = transport_generic_get_mem(cmd); if (ret < 0) goto out_fail; } /* * For BIDI command set up the read tasks first. */ if (cmd->t_bidi_data_sg && dev->transport->transport_type != TRANSPORT_PLUGIN_PHBA_PDEV) { BUG_ON(!(cmd->se_cmd_flags & SCF_SCSI_DATA_SG_IO_CDB)); task_cdbs_bidi = transport_allocate_data_tasks(cmd, DMA_FROM_DEVICE, cmd->t_bidi_data_sg, cmd->t_bidi_data_nents); if (task_cdbs_bidi <= 0) goto out_fail; atomic_inc(&cmd->t_fe_count); atomic_inc(&cmd->t_se_count); set_counts = 0; } if (cmd->se_cmd_flags & SCF_SCSI_DATA_SG_IO_CDB) { task_cdbs = transport_allocate_data_tasks(cmd, cmd->data_direction, cmd->t_data_sg, cmd->t_data_nents); } else { task_cdbs = transport_allocate_control_task(cmd); } if (task_cdbs < 0) goto out_fail; else if (!task_cdbs && (cmd->se_cmd_flags & SCF_SCSI_DATA_SG_IO_CDB)) { cmd->t_state = TRANSPORT_COMPLETE; atomic_set(&cmd->t_transport_active, 1); if (cmd->t_task_cdb[0] == REQUEST_SENSE) { u8 ua_asc = 0, ua_ascq = 0; core_scsi3_ua_clear_for_request_sense(cmd, &ua_asc, &ua_ascq); } INIT_WORK(&cmd->work, target_complete_ok_work); queue_work(target_completion_wq, &cmd->work); return 0; } if (set_counts) { atomic_inc(&cmd->t_fe_count); atomic_inc(&cmd->t_se_count); } cmd->t_task_list_num = (task_cdbs + task_cdbs_bidi); atomic_set(&cmd->t_task_cdbs_left, cmd->t_task_list_num); atomic_set(&cmd->t_task_cdbs_ex_left, cmd->t_task_list_num); /* * For WRITEs, let the fabric know its buffer is ready.. * This WRITE struct se_cmd (and all of its associated struct se_task's) * will be added to the struct se_device execution queue after its WRITE * data has arrived. (ie: It gets handled by the transport processing * thread a second time) */ if (cmd->data_direction == DMA_TO_DEVICE) { transport_add_tasks_to_state_queue(cmd); return transport_generic_write_pending(cmd); } /* * Everything else but a WRITE, add the struct se_cmd's struct se_task's * to the execution queue. */ transport_execute_tasks(cmd); return 0; out_fail: cmd->se_cmd_flags |= SCF_SCSI_CDB_EXCEPTION; cmd->scsi_sense_reason = TCM_LOGICAL_UNIT_COMMUNICATION_FAILURE; return -EINVAL; } EXPORT_SYMBOL(transport_generic_new_cmd); /* transport_generic_process_write(): * * */ void transport_generic_process_write(struct se_cmd *cmd) { transport_execute_tasks(cmd); } EXPORT_SYMBOL(transport_generic_process_write); static void transport_write_pending_qf(struct se_cmd *cmd) { int ret; ret = cmd->se_tfo->write_pending(cmd); if (ret == -EAGAIN || ret == -ENOMEM) { pr_debug("Handling write_pending QUEUE__FULL: se_cmd: %p\n", cmd); transport_handle_queue_full(cmd, cmd->se_dev); } } static int transport_generic_write_pending(struct se_cmd *cmd) { unsigned long flags; int ret; spin_lock_irqsave(&cmd->t_state_lock, flags); cmd->t_state = TRANSPORT_WRITE_PENDING; spin_unlock_irqrestore(&cmd->t_state_lock, flags); /* * Clear the se_cmd for WRITE_PENDING status in order to set * cmd->t_transport_active=0 so that transport_generic_handle_data * can be called from HW target mode interrupt code. This is safe * to be called with transport_off=1 before the cmd->se_tfo->write_pending * because the se_cmd->se_lun pointer is not being cleared. */ transport_cmd_check_stop(cmd, 1, 0); /* * Call the fabric write_pending function here to let the * frontend know that WRITE buffers are ready. */ ret = cmd->se_tfo->write_pending(cmd); if (ret == -EAGAIN || ret == -ENOMEM) goto queue_full; else if (ret < 0) return ret; return 1; queue_full: pr_debug("Handling write_pending QUEUE__FULL: se_cmd: %p\n", cmd); cmd->t_state = TRANSPORT_COMPLETE_QF_WP; transport_handle_queue_full(cmd, cmd->se_dev); return 0; } void transport_generic_free_cmd(struct se_cmd *cmd, int wait_for_tasks) { if (!(cmd->se_cmd_flags & SCF_SE_LUN_CMD)) { if (wait_for_tasks && cmd->se_tmr_req) transport_wait_for_tasks(cmd); transport_release_cmd(cmd); } else { if (wait_for_tasks) transport_wait_for_tasks(cmd); core_dec_lacl_count(cmd->se_sess->se_node_acl, cmd); if (cmd->se_lun) transport_lun_remove_cmd(cmd); transport_free_dev_tasks(cmd); transport_put_cmd(cmd); } } EXPORT_SYMBOL(transport_generic_free_cmd); /* target_get_sess_cmd - Add command to active ->sess_cmd_list * @se_sess: session to reference * @se_cmd: command descriptor to add * @ack_kref: Signal that fabric will perform an ack target_put_sess_cmd() */ void target_get_sess_cmd(struct se_session *se_sess, struct se_cmd *se_cmd, bool ack_kref) { unsigned long flags; kref_init(&se_cmd->cmd_kref); /* * Add a second kref if the fabric caller is expecting to handle * fabric acknowledgement that requires two target_put_sess_cmd() * invocations before se_cmd descriptor release. */ if (ack_kref == true) kref_get(&se_cmd->cmd_kref); spin_lock_irqsave(&se_sess->sess_cmd_lock, flags); list_add_tail(&se_cmd->se_cmd_list, &se_sess->sess_cmd_list); se_cmd->check_release = 1; spin_unlock_irqrestore(&se_sess->sess_cmd_lock, flags); } EXPORT_SYMBOL(target_get_sess_cmd); static void target_release_cmd_kref(struct kref *kref) { struct se_cmd *se_cmd = container_of(kref, struct se_cmd, cmd_kref); struct se_session *se_sess = se_cmd->se_sess; unsigned long flags; spin_lock_irqsave(&se_sess->sess_cmd_lock, flags); if (list_empty(&se_cmd->se_cmd_list)) { spin_unlock_irqrestore(&se_sess->sess_cmd_lock, flags); WARN_ON(1); return; } if (se_sess->sess_tearing_down && se_cmd->cmd_wait_set) { spin_unlock_irqrestore(&se_sess->sess_cmd_lock, flags); complete(&se_cmd->cmd_wait_comp); return; } list_del(&se_cmd->se_cmd_list); spin_unlock_irqrestore(&se_sess->sess_cmd_lock, flags); se_cmd->se_tfo->release_cmd(se_cmd); } /* target_put_sess_cmd - Check for active I/O shutdown via kref_put * @se_sess: session to reference * @se_cmd: command descriptor to drop */ int target_put_sess_cmd(struct se_session *se_sess, struct se_cmd *se_cmd) { return kref_put(&se_cmd->cmd_kref, target_release_cmd_kref); } EXPORT_SYMBOL(target_put_sess_cmd); /* target_splice_sess_cmd_list - Split active cmds into sess_wait_list * @se_sess: session to split */ void target_splice_sess_cmd_list(struct se_session *se_sess) { struct se_cmd *se_cmd; unsigned long flags; WARN_ON(!list_empty(&se_sess->sess_wait_list)); INIT_LIST_HEAD(&se_sess->sess_wait_list); spin_lock_irqsave(&se_sess->sess_cmd_lock, flags); se_sess->sess_tearing_down = 1; list_splice_init(&se_sess->sess_cmd_list, &se_sess->sess_wait_list); list_for_each_entry(se_cmd, &se_sess->sess_wait_list, se_cmd_list) se_cmd->cmd_wait_set = 1; spin_unlock_irqrestore(&se_sess->sess_cmd_lock, flags); } EXPORT_SYMBOL(target_splice_sess_cmd_list); /* target_wait_for_sess_cmds - Wait for outstanding descriptors * @se_sess: session to wait for active I/O * @wait_for_tasks: Make extra transport_wait_for_tasks call */ void target_wait_for_sess_cmds( struct se_session *se_sess, int wait_for_tasks) { struct se_cmd *se_cmd, *tmp_cmd; bool rc = false; list_for_each_entry_safe(se_cmd, tmp_cmd, &se_sess->sess_wait_list, se_cmd_list) { list_del(&se_cmd->se_cmd_list); pr_debug("Waiting for se_cmd: %p t_state: %d, fabric state:" " %d\n", se_cmd, se_cmd->t_state, se_cmd->se_tfo->get_cmd_state(se_cmd)); if (wait_for_tasks) { pr_debug("Calling transport_wait_for_tasks se_cmd: %p t_state: %d," " fabric state: %d\n", se_cmd, se_cmd->t_state, se_cmd->se_tfo->get_cmd_state(se_cmd)); rc = transport_wait_for_tasks(se_cmd); pr_debug("After transport_wait_for_tasks se_cmd: %p t_state: %d," " fabric state: %d\n", se_cmd, se_cmd->t_state, se_cmd->se_tfo->get_cmd_state(se_cmd)); } if (!rc) { wait_for_completion(&se_cmd->cmd_wait_comp); pr_debug("After cmd_wait_comp: se_cmd: %p t_state: %d" " fabric state: %d\n", se_cmd, se_cmd->t_state, se_cmd->se_tfo->get_cmd_state(se_cmd)); } se_cmd->se_tfo->release_cmd(se_cmd); } } EXPORT_SYMBOL(target_wait_for_sess_cmds); /* transport_lun_wait_for_tasks(): * * Called from ConfigFS context to stop the passed struct se_cmd to allow * an struct se_lun to be successfully shutdown. */ static int transport_lun_wait_for_tasks(struct se_cmd *cmd, struct se_lun *lun) { unsigned long flags; int ret; /* * If the frontend has already requested this struct se_cmd to * be stopped, we can safely ignore this struct se_cmd. */ spin_lock_irqsave(&cmd->t_state_lock, flags); if (atomic_read(&cmd->t_transport_stop)) { atomic_set(&cmd->transport_lun_stop, 0); pr_debug("ConfigFS ITT[0x%08x] - t_transport_stop ==" " TRUE, skipping\n", cmd->se_tfo->get_task_tag(cmd)); spin_unlock_irqrestore(&cmd->t_state_lock, flags); transport_cmd_check_stop(cmd, 1, 0); return -EPERM; } atomic_set(&cmd->transport_lun_fe_stop, 1); spin_unlock_irqrestore(&cmd->t_state_lock, flags); wake_up_interruptible(&cmd->se_dev->dev_queue_obj.thread_wq); ret = transport_stop_tasks_for_cmd(cmd); pr_debug("ConfigFS: cmd: %p t_tasks: %d stop tasks ret:" " %d\n", cmd, cmd->t_task_list_num, ret); if (!ret) { pr_debug("ConfigFS: ITT[0x%08x] - stopping cmd....\n", cmd->se_tfo->get_task_tag(cmd)); wait_for_completion(&cmd->transport_lun_stop_comp); pr_debug("ConfigFS: ITT[0x%08x] - stopped cmd....\n", cmd->se_tfo->get_task_tag(cmd)); } transport_remove_cmd_from_queue(cmd); return 0; } static void __transport_clear_lun_from_sessions(struct se_lun *lun) { struct se_cmd *cmd = NULL; unsigned long lun_flags, cmd_flags; /* * Do exception processing and return CHECK_CONDITION status to the * Initiator Port. */ spin_lock_irqsave(&lun->lun_cmd_lock, lun_flags); while (!list_empty(&lun->lun_cmd_list)) { cmd = list_first_entry(&lun->lun_cmd_list, struct se_cmd, se_lun_node); list_del(&cmd->se_lun_node); atomic_set(&cmd->transport_lun_active, 0); /* * This will notify iscsi_target_transport.c: * transport_cmd_check_stop() that a LUN shutdown is in * progress for the iscsi_cmd_t. */ spin_lock(&cmd->t_state_lock); pr_debug("SE_LUN[%d] - Setting cmd->transport" "_lun_stop for ITT: 0x%08x\n", cmd->se_lun->unpacked_lun, cmd->se_tfo->get_task_tag(cmd)); atomic_set(&cmd->transport_lun_stop, 1); spin_unlock(&cmd->t_state_lock); spin_unlock_irqrestore(&lun->lun_cmd_lock, lun_flags); if (!cmd->se_lun) { pr_err("ITT: 0x%08x, [i,t]_state: %u/%u\n", cmd->se_tfo->get_task_tag(cmd), cmd->se_tfo->get_cmd_state(cmd), cmd->t_state); BUG(); } /* * If the Storage engine still owns the iscsi_cmd_t, determine * and/or stop its context. */ pr_debug("SE_LUN[%d] - ITT: 0x%08x before transport" "_lun_wait_for_tasks()\n", cmd->se_lun->unpacked_lun, cmd->se_tfo->get_task_tag(cmd)); if (transport_lun_wait_for_tasks(cmd, cmd->se_lun) < 0) { spin_lock_irqsave(&lun->lun_cmd_lock, lun_flags); continue; } pr_debug("SE_LUN[%d] - ITT: 0x%08x after transport_lun" "_wait_for_tasks(): SUCCESS\n", cmd->se_lun->unpacked_lun, cmd->se_tfo->get_task_tag(cmd)); spin_lock_irqsave(&cmd->t_state_lock, cmd_flags); if (!atomic_read(&cmd->transport_dev_active)) { spin_unlock_irqrestore(&cmd->t_state_lock, cmd_flags); goto check_cond; } atomic_set(&cmd->transport_dev_active, 0); transport_all_task_dev_remove_state(cmd); spin_unlock_irqrestore(&cmd->t_state_lock, cmd_flags); transport_free_dev_tasks(cmd); /* * The Storage engine stopped this struct se_cmd before it was * send to the fabric frontend for delivery back to the * Initiator Node. Return this SCSI CDB back with an * CHECK_CONDITION status. */ check_cond: transport_send_check_condition_and_sense(cmd, TCM_NON_EXISTENT_LUN, 0); /* * If the fabric frontend is waiting for this iscsi_cmd_t to * be released, notify the waiting thread now that LU has * finished accessing it. */ spin_lock_irqsave(&cmd->t_state_lock, cmd_flags); if (atomic_read(&cmd->transport_lun_fe_stop)) { pr_debug("SE_LUN[%d] - Detected FE stop for" " struct se_cmd: %p ITT: 0x%08x\n", lun->unpacked_lun, cmd, cmd->se_tfo->get_task_tag(cmd)); spin_unlock_irqrestore(&cmd->t_state_lock, cmd_flags); transport_cmd_check_stop(cmd, 1, 0); complete(&cmd->transport_lun_fe_stop_comp); spin_lock_irqsave(&lun->lun_cmd_lock, lun_flags); continue; } pr_debug("SE_LUN[%d] - ITT: 0x%08x finished processing\n", lun->unpacked_lun, cmd->se_tfo->get_task_tag(cmd)); spin_unlock_irqrestore(&cmd->t_state_lock, cmd_flags); spin_lock_irqsave(&lun->lun_cmd_lock, lun_flags); } spin_unlock_irqrestore(&lun->lun_cmd_lock, lun_flags); } static int transport_clear_lun_thread(void *p) { struct se_lun *lun = p; __transport_clear_lun_from_sessions(lun); complete(&lun->lun_shutdown_comp); return 0; } int transport_clear_lun_from_sessions(struct se_lun *lun) { struct task_struct *kt; kt = kthread_run(transport_clear_lun_thread, lun, "tcm_cl_%u", lun->unpacked_lun); if (IS_ERR(kt)) { pr_err("Unable to start clear_lun thread\n"); return PTR_ERR(kt); } wait_for_completion(&lun->lun_shutdown_comp); return 0; } /** * transport_wait_for_tasks - wait for completion to occur * @cmd: command to wait * * Called from frontend fabric context to wait for storage engine * to pause and/or release frontend generated struct se_cmd. */ bool transport_wait_for_tasks(struct se_cmd *cmd) { unsigned long flags; spin_lock_irqsave(&cmd->t_state_lock, flags); if (!(cmd->se_cmd_flags & SCF_SE_LUN_CMD) && !(cmd->se_tmr_req)) { spin_unlock_irqrestore(&cmd->t_state_lock, flags); return false; } /* * Only perform a possible wait_for_tasks if SCF_SUPPORTED_SAM_OPCODE * has been set in transport_set_supported_SAM_opcode(). */ if (!(cmd->se_cmd_flags & SCF_SUPPORTED_SAM_OPCODE) && !cmd->se_tmr_req) { spin_unlock_irqrestore(&cmd->t_state_lock, flags); return false; } /* * If we are already stopped due to an external event (ie: LUN shutdown) * sleep until the connection can have the passed struct se_cmd back. * The cmd->transport_lun_stopped_sem will be upped by * transport_clear_lun_from_sessions() once the ConfigFS context caller * has completed its operation on the struct se_cmd. */ if (atomic_read(&cmd->transport_lun_stop)) { pr_debug("wait_for_tasks: Stopping" " wait_for_completion(&cmd->t_tasktransport_lun_fe" "_stop_comp); for ITT: 0x%08x\n", cmd->se_tfo->get_task_tag(cmd)); /* * There is a special case for WRITES where a FE exception + * LUN shutdown means ConfigFS context is still sleeping on * transport_lun_stop_comp in transport_lun_wait_for_tasks(). * We go ahead and up transport_lun_stop_comp just to be sure * here. */ spin_unlock_irqrestore(&cmd->t_state_lock, flags); complete(&cmd->transport_lun_stop_comp); wait_for_completion(&cmd->transport_lun_fe_stop_comp); spin_lock_irqsave(&cmd->t_state_lock, flags); transport_all_task_dev_remove_state(cmd); /* * At this point, the frontend who was the originator of this * struct se_cmd, now owns the structure and can be released through * normal means below. */ pr_debug("wait_for_tasks: Stopped" " wait_for_completion(&cmd->t_tasktransport_lun_fe_" "stop_comp); for ITT: 0x%08x\n", cmd->se_tfo->get_task_tag(cmd)); atomic_set(&cmd->transport_lun_stop, 0); } if (!atomic_read(&cmd->t_transport_active) || atomic_read(&cmd->t_transport_aborted)) { spin_unlock_irqrestore(&cmd->t_state_lock, flags); return false; } atomic_set(&cmd->t_transport_stop, 1); pr_debug("wait_for_tasks: Stopping %p ITT: 0x%08x" " i_state: %d, t_state: %d, t_transport_stop = TRUE\n", cmd, cmd->se_tfo->get_task_tag(cmd), cmd->se_tfo->get_cmd_state(cmd), cmd->t_state); spin_unlock_irqrestore(&cmd->t_state_lock, flags); wake_up_interruptible(&cmd->se_dev->dev_queue_obj.thread_wq); wait_for_completion(&cmd->t_transport_stop_comp); spin_lock_irqsave(&cmd->t_state_lock, flags); atomic_set(&cmd->t_transport_active, 0); atomic_set(&cmd->t_transport_stop, 0); pr_debug("wait_for_tasks: Stopped wait_for_compltion(" "&cmd->t_transport_stop_comp) for ITT: 0x%08x\n", cmd->se_tfo->get_task_tag(cmd)); spin_unlock_irqrestore(&cmd->t_state_lock, flags); return true; } EXPORT_SYMBOL(transport_wait_for_tasks); static int transport_get_sense_codes( struct se_cmd *cmd, u8 *asc, u8 *ascq) { *asc = cmd->scsi_asc; *ascq = cmd->scsi_ascq; return 0; } static int transport_set_sense_codes( struct se_cmd *cmd, u8 asc, u8 ascq) { cmd->scsi_asc = asc; cmd->scsi_ascq = ascq; return 0; } int transport_send_check_condition_and_sense( struct se_cmd *cmd, u8 reason, int from_transport) { unsigned char *buffer = cmd->sense_buffer; unsigned long flags; int offset; u8 asc = 0, ascq = 0; spin_lock_irqsave(&cmd->t_state_lock, flags); if (cmd->se_cmd_flags & SCF_SENT_CHECK_CONDITION) { spin_unlock_irqrestore(&cmd->t_state_lock, flags); return 0; } cmd->se_cmd_flags |= SCF_SENT_CHECK_CONDITION; spin_unlock_irqrestore(&cmd->t_state_lock, flags); if (!reason && from_transport) goto after_reason; if (!from_transport) cmd->se_cmd_flags |= SCF_EMULATED_TASK_SENSE; /* * Data Segment and SenseLength of the fabric response PDU. * * TRANSPORT_SENSE_BUFFER is now set to SCSI_SENSE_BUFFERSIZE * from include/scsi/scsi_cmnd.h */ offset = cmd->se_tfo->set_fabric_sense_len(cmd, TRANSPORT_SENSE_BUFFER); /* * Actual SENSE DATA, see SPC-3 7.23.2 SPC_SENSE_KEY_OFFSET uses * SENSE KEY values from include/scsi/scsi.h */ switch (reason) { case TCM_NON_EXISTENT_LUN: /* CURRENT ERROR */ buffer[offset] = 0x70; buffer[offset+SPC_ADD_SENSE_LEN_OFFSET] = 10; /* ILLEGAL REQUEST */ buffer[offset+SPC_SENSE_KEY_OFFSET] = ILLEGAL_REQUEST; /* LOGICAL UNIT NOT SUPPORTED */ buffer[offset+SPC_ASC_KEY_OFFSET] = 0x25; break; case TCM_UNSUPPORTED_SCSI_OPCODE: case TCM_SECTOR_COUNT_TOO_MANY: /* CURRENT ERROR */ buffer[offset] = 0x70; buffer[offset+SPC_ADD_SENSE_LEN_OFFSET] = 10; /* ILLEGAL REQUEST */ buffer[offset+SPC_SENSE_KEY_OFFSET] = ILLEGAL_REQUEST; /* INVALID COMMAND OPERATION CODE */ buffer[offset+SPC_ASC_KEY_OFFSET] = 0x20; break; case TCM_UNKNOWN_MODE_PAGE: /* CURRENT ERROR */ buffer[offset] = 0x70; buffer[offset+SPC_ADD_SENSE_LEN_OFFSET] = 10; /* ILLEGAL REQUEST */ buffer[offset+SPC_SENSE_KEY_OFFSET] = ILLEGAL_REQUEST; /* INVALID FIELD IN CDB */ buffer[offset+SPC_ASC_KEY_OFFSET] = 0x24; break; case TCM_CHECK_CONDITION_ABORT_CMD: /* CURRENT ERROR */ buffer[offset] = 0x70; buffer[offset+SPC_ADD_SENSE_LEN_OFFSET] = 10; /* ABORTED COMMAND */ buffer[offset+SPC_SENSE_KEY_OFFSET] = ABORTED_COMMAND; /* BUS DEVICE RESET FUNCTION OCCURRED */ buffer[offset+SPC_ASC_KEY_OFFSET] = 0x29; buffer[offset+SPC_ASCQ_KEY_OFFSET] = 0x03; break; case TCM_INCORRECT_AMOUNT_OF_DATA: /* CURRENT ERROR */ buffer[offset] = 0x70; buffer[offset+SPC_ADD_SENSE_LEN_OFFSET] = 10; /* ABORTED COMMAND */ buffer[offset+SPC_SENSE_KEY_OFFSET] = ABORTED_COMMAND; /* WRITE ERROR */ buffer[offset+SPC_ASC_KEY_OFFSET] = 0x0c; /* NOT ENOUGH UNSOLICITED DATA */ buffer[offset+SPC_ASCQ_KEY_OFFSET] = 0x0d; break; case TCM_INVALID_CDB_FIELD: /* CURRENT ERROR */ buffer[offset] = 0x70; buffer[offset+SPC_ADD_SENSE_LEN_OFFSET] = 10; /* ILLEGAL REQUEST */ buffer[offset+SPC_SENSE_KEY_OFFSET] = ILLEGAL_REQUEST; /* INVALID FIELD IN CDB */ buffer[offset+SPC_ASC_KEY_OFFSET] = 0x24; break; case TCM_INVALID_PARAMETER_LIST: /* CURRENT ERROR */ buffer[offset] = 0x70; buffer[offset+SPC_ADD_SENSE_LEN_OFFSET] = 10; /* ILLEGAL REQUEST */ buffer[offset+SPC_SENSE_KEY_OFFSET] = ILLEGAL_REQUEST; /* INVALID FIELD IN PARAMETER LIST */ buffer[offset+SPC_ASC_KEY_OFFSET] = 0x26; break; case TCM_UNEXPECTED_UNSOLICITED_DATA: /* CURRENT ERROR */ buffer[offset] = 0x70; buffer[offset+SPC_ADD_SENSE_LEN_OFFSET] = 10; /* ABORTED COMMAND */ buffer[offset+SPC_SENSE_KEY_OFFSET] = ABORTED_COMMAND; /* WRITE ERROR */ buffer[offset+SPC_ASC_KEY_OFFSET] = 0x0c; /* UNEXPECTED_UNSOLICITED_DATA */ buffer[offset+SPC_ASCQ_KEY_OFFSET] = 0x0c; break; case TCM_SERVICE_CRC_ERROR: /* CURRENT ERROR */ buffer[offset] = 0x70; buffer[offset+SPC_ADD_SENSE_LEN_OFFSET] = 10; /* ABORTED COMMAND */ buffer[offset+SPC_SENSE_KEY_OFFSET] = ABORTED_COMMAND; /* PROTOCOL SERVICE CRC ERROR */ buffer[offset+SPC_ASC_KEY_OFFSET] = 0x47; /* N/A */ buffer[offset+SPC_ASCQ_KEY_OFFSET] = 0x05; break; case TCM_SNACK_REJECTED: /* CURRENT ERROR */ buffer[offset] = 0x70; buffer[offset+SPC_ADD_SENSE_LEN_OFFSET] = 10; /* ABORTED COMMAND */ buffer[offset+SPC_SENSE_KEY_OFFSET] = ABORTED_COMMAND; /* READ ERROR */ buffer[offset+SPC_ASC_KEY_OFFSET] = 0x11; /* FAILED RETRANSMISSION REQUEST */ buffer[offset+SPC_ASCQ_KEY_OFFSET] = 0x13; break; case TCM_WRITE_PROTECTED: /* CURRENT ERROR */ buffer[offset] = 0x70; buffer[offset+SPC_ADD_SENSE_LEN_OFFSET] = 10; /* DATA PROTECT */ buffer[offset+SPC_SENSE_KEY_OFFSET] = DATA_PROTECT; /* WRITE PROTECTED */ buffer[offset+SPC_ASC_KEY_OFFSET] = 0x27; break; case TCM_CHECK_CONDITION_UNIT_ATTENTION: /* CURRENT ERROR */ buffer[offset] = 0x70; buffer[offset+SPC_ADD_SENSE_LEN_OFFSET] = 10; /* UNIT ATTENTION */ buffer[offset+SPC_SENSE_KEY_OFFSET] = UNIT_ATTENTION; core_scsi3_ua_for_check_condition(cmd, &asc, &ascq); buffer[offset+SPC_ASC_KEY_OFFSET] = asc; buffer[offset+SPC_ASCQ_KEY_OFFSET] = ascq; break; case TCM_CHECK_CONDITION_NOT_READY: /* CURRENT ERROR */ buffer[offset] = 0x70; buffer[offset+SPC_ADD_SENSE_LEN_OFFSET] = 10; /* Not Ready */ buffer[offset+SPC_SENSE_KEY_OFFSET] = NOT_READY; transport_get_sense_codes(cmd, &asc, &ascq); buffer[offset+SPC_ASC_KEY_OFFSET] = asc; buffer[offset+SPC_ASCQ_KEY_OFFSET] = ascq; break; case TCM_LOGICAL_UNIT_COMMUNICATION_FAILURE: default: /* CURRENT ERROR */ buffer[offset] = 0x70; buffer[offset+SPC_ADD_SENSE_LEN_OFFSET] = 10; /* ILLEGAL REQUEST */ buffer[offset+SPC_SENSE_KEY_OFFSET] = ILLEGAL_REQUEST; /* LOGICAL UNIT COMMUNICATION FAILURE */ buffer[offset+SPC_ASC_KEY_OFFSET] = 0x80; break; } /* * This code uses linux/include/scsi/scsi.h SAM status codes! */ cmd->scsi_status = SAM_STAT_CHECK_CONDITION; /* * Automatically padded, this value is encoded in the fabric's * data_length response PDU containing the SCSI defined sense data. */ cmd->scsi_sense_length = TRANSPORT_SENSE_BUFFER + offset; after_reason: return cmd->se_tfo->queue_status(cmd); } EXPORT_SYMBOL(transport_send_check_condition_and_sense); int transport_check_aborted_status(struct se_cmd *cmd, int send_status) { int ret = 0; if (atomic_read(&cmd->t_transport_aborted) != 0) { if (!send_status || (cmd->se_cmd_flags & SCF_SENT_DELAYED_TAS)) return 1; #if 0 pr_debug("Sending delayed SAM_STAT_TASK_ABORTED" " status for CDB: 0x%02x ITT: 0x%08x\n", cmd->t_task_cdb[0], cmd->se_tfo->get_task_tag(cmd)); #endif cmd->se_cmd_flags |= SCF_SENT_DELAYED_TAS; cmd->se_tfo->queue_status(cmd); ret = 1; } return ret; } EXPORT_SYMBOL(transport_check_aborted_status); void transport_send_task_abort(struct se_cmd *cmd) { unsigned long flags; spin_lock_irqsave(&cmd->t_state_lock, flags); if (cmd->se_cmd_flags & SCF_SENT_CHECK_CONDITION) { spin_unlock_irqrestore(&cmd->t_state_lock, flags); return; } spin_unlock_irqrestore(&cmd->t_state_lock, flags); /* * If there are still expected incoming fabric WRITEs, we wait * until until they have completed before sending a TASK_ABORTED * response. This response with TASK_ABORTED status will be * queued back to fabric module by transport_check_aborted_status(). */ if (cmd->data_direction == DMA_TO_DEVICE) { if (cmd->se_tfo->write_pending_status(cmd) != 0) { atomic_inc(&cmd->t_transport_aborted); smp_mb__after_atomic_inc(); } } cmd->scsi_status = SAM_STAT_TASK_ABORTED; #if 0 pr_debug("Setting SAM_STAT_TASK_ABORTED status for CDB: 0x%02x," " ITT: 0x%08x\n", cmd->t_task_cdb[0], cmd->se_tfo->get_task_tag(cmd)); #endif cmd->se_tfo->queue_status(cmd); } static int transport_generic_do_tmr(struct se_cmd *cmd) { struct se_device *dev = cmd->se_dev; struct se_tmr_req *tmr = cmd->se_tmr_req; int ret; switch (tmr->function) { case TMR_ABORT_TASK: tmr->response = TMR_FUNCTION_REJECTED; break; case TMR_ABORT_TASK_SET: case TMR_CLEAR_ACA: case TMR_CLEAR_TASK_SET: tmr->response = TMR_TASK_MGMT_FUNCTION_NOT_SUPPORTED; break; case TMR_LUN_RESET: ret = core_tmr_lun_reset(dev, tmr, NULL, NULL); tmr->response = (!ret) ? TMR_FUNCTION_COMPLETE : TMR_FUNCTION_REJECTED; break; case TMR_TARGET_WARM_RESET: tmr->response = TMR_FUNCTION_REJECTED; break; case TMR_TARGET_COLD_RESET: tmr->response = TMR_FUNCTION_REJECTED; break; default: pr_err("Uknown TMR function: 0x%02x.\n", tmr->function); tmr->response = TMR_FUNCTION_REJECTED; break; } cmd->t_state = TRANSPORT_ISTATE_PROCESSING; cmd->se_tfo->queue_tm_rsp(cmd); transport_cmd_check_stop_to_fabric(cmd); return 0; } /* transport_processing_thread(): * * */ static int transport_processing_thread(void *param) { int ret; struct se_cmd *cmd; struct se_device *dev = param; while (!kthread_should_stop()) { ret = wait_event_interruptible(dev->dev_queue_obj.thread_wq, atomic_read(&dev->dev_queue_obj.queue_cnt) || kthread_should_stop()); if (ret < 0) goto out; get_cmd: cmd = transport_get_cmd_from_queue(&dev->dev_queue_obj); if (!cmd) continue; switch (cmd->t_state) { case TRANSPORT_NEW_CMD: BUG(); break; case TRANSPORT_NEW_CMD_MAP: if (!cmd->se_tfo->new_cmd_map) { pr_err("cmd->se_tfo->new_cmd_map is" " NULL for TRANSPORT_NEW_CMD_MAP\n"); BUG(); } ret = cmd->se_tfo->new_cmd_map(cmd); if (ret < 0) { transport_generic_request_failure(cmd); break; } ret = transport_generic_new_cmd(cmd); if (ret < 0) { transport_generic_request_failure(cmd); break; } break; case TRANSPORT_PROCESS_WRITE: transport_generic_process_write(cmd); break; case TRANSPORT_PROCESS_TMR: transport_generic_do_tmr(cmd); break; case TRANSPORT_COMPLETE_QF_WP: transport_write_pending_qf(cmd); break; case TRANSPORT_COMPLETE_QF_OK: transport_complete_qf(cmd); break; default: pr_err("Unknown t_state: %d for ITT: 0x%08x " "i_state: %d on SE LUN: %u\n", cmd->t_state, cmd->se_tfo->get_task_tag(cmd), cmd->se_tfo->get_cmd_state(cmd), cmd->se_lun->unpacked_lun); BUG(); } goto get_cmd; } out: WARN_ON(!list_empty(&dev->state_task_list)); WARN_ON(!list_empty(&dev->dev_queue_obj.qobj_list)); dev->process_thread = NULL; return 0; }