/* * (C) 2001 Clemson University and The University of Chicago * * See COPYING in top-level directory. */ /* * Linux VFS file operations. */ #include "protocol.h" #include "pvfs2-kernel.h" #include "pvfs2-bufmap.h" #include #include #define wake_up_daemon_for_return(op) \ do { \ spin_lock(&op->lock); \ op->io_completed = 1; \ spin_unlock(&op->lock); \ wake_up_interruptible(&op->io_completion_waitq);\ } while (0) /* * Copy to client-core's address space from the buffers specified * by the iovec upto total_size bytes. * NOTE: the iovector can either contain addresses which * can futher be kernel-space or user-space addresses. * or it can pointers to struct page's */ static int precopy_buffers(struct pvfs2_bufmap *bufmap, int buffer_index, struct iov_iter *iter, size_t total_size) { int ret = 0; /* * copy data from application/kernel by pulling it out * of the iovec. */ if (total_size) { ret = pvfs_bufmap_copy_from_iovec(bufmap, iter, buffer_index, total_size); if (ret < 0) gossip_err("%s: Failed to copy-in buffers. Please make sure that the pvfs2-client is running. %ld\n", __func__, (long)ret); } if (ret < 0) gossip_err("%s: Failed to copy-in buffers. Please make sure that the pvfs2-client is running. %ld\n", __func__, (long)ret); return ret; } /* * Copy from client-core's address space to the buffers specified * by the iovec upto total_size bytes. * NOTE: the iovector can either contain addresses which * can futher be kernel-space or user-space addresses. * or it can pointers to struct page's */ static int postcopy_buffers(struct pvfs2_bufmap *bufmap, int buffer_index, struct iov_iter *iter, size_t total_size) { int ret = 0; /* * copy data to application/kernel by pushing it out to * the iovec. NOTE; target buffers can be addresses or * struct page pointers. */ if (total_size) { ret = pvfs_bufmap_copy_to_iovec(bufmap, iter, buffer_index, total_size); if (ret < 0) gossip_err("%s: Failed to copy-out buffers. Please make sure that the pvfs2-client is running (%ld)\n", __func__, (long)ret); } return ret; } /* * Post and wait for the I/O upcall to finish */ static ssize_t wait_for_direct_io(enum PVFS_io_type type, struct inode *inode, loff_t *offset, struct iov_iter *iter, size_t total_size, loff_t readahead_size) { struct pvfs2_inode_s *pvfs2_inode = PVFS2_I(inode); struct pvfs2_khandle *handle = &pvfs2_inode->refn.khandle; struct pvfs2_bufmap *bufmap = NULL; struct pvfs2_kernel_op_s *new_op = NULL; int buffer_index = -1; ssize_t ret; new_op = op_alloc(PVFS2_VFS_OP_FILE_IO); if (!new_op) { ret = -ENOMEM; goto out; } /* synchronous I/O */ new_op->upcall.req.io.async_vfs_io = PVFS_VFS_SYNC_IO; new_op->upcall.req.io.readahead_size = readahead_size; new_op->upcall.req.io.io_type = type; new_op->upcall.req.io.refn = pvfs2_inode->refn; populate_shared_memory: /* get a shared buffer index */ ret = pvfs_bufmap_get(&bufmap, &buffer_index); if (ret < 0) { gossip_debug(GOSSIP_FILE_DEBUG, "%s: pvfs_bufmap_get failure (%ld)\n", __func__, (long)ret); goto out; } gossip_debug(GOSSIP_FILE_DEBUG, "%s(%pU): GET op %p -> buffer_index %d\n", __func__, handle, new_op, buffer_index); new_op->uses_shared_memory = 1; new_op->upcall.req.io.buf_index = buffer_index; new_op->upcall.req.io.count = total_size; new_op->upcall.req.io.offset = *offset; gossip_debug(GOSSIP_FILE_DEBUG, "%s(%pU): offset: %llu total_size: %zd\n", __func__, handle, llu(*offset), total_size); /* * Stage 1: copy the buffers into client-core's address space * precopy_buffers only pertains to writes. */ if (type == PVFS_IO_WRITE) { ret = precopy_buffers(bufmap, buffer_index, iter, total_size); if (ret < 0) goto out; } gossip_debug(GOSSIP_FILE_DEBUG, "%s(%pU): Calling post_io_request with tag (%llu)\n", __func__, handle, llu(new_op->tag)); /* Stage 2: Service the I/O operation */ ret = service_operation(new_op, type == PVFS_IO_WRITE ? "file_write" : "file_read", get_interruptible_flag(inode)); /* * If service_operation() returns -EAGAIN #and# the operation was * purged from pvfs2_request_list or htable_ops_in_progress, then * we know that the client was restarted, causing the shared memory * area to be wiped clean. To restart a write operation in this * case, we must re-copy the data from the user's iovec to a NEW * shared memory location. To restart a read operation, we must get * a new shared memory location. */ if (ret == -EAGAIN && op_state_purged(new_op)) { pvfs_bufmap_put(bufmap, buffer_index); gossip_debug(GOSSIP_FILE_DEBUG, "%s:going to repopulate_shared_memory.\n", __func__); goto populate_shared_memory; } if (ret < 0) { handle_io_error(); /* defined in pvfs2-kernel.h */ /* * don't write an error to syslog on signaled operation * termination unless we've got debugging turned on, as * this can happen regularly (i.e. ctrl-c) */ if (ret == -EINTR) gossip_debug(GOSSIP_FILE_DEBUG, "%s: returning error %ld\n", __func__, (long)ret); else gossip_err("%s: error in %s handle %pU, returning %zd\n", __func__, type == PVFS_IO_READ ? "read from" : "write to", handle, ret); goto out; } /* * Stage 3: Post copy buffers from client-core's address space * postcopy_buffers only pertains to reads. */ if (type == PVFS_IO_READ) { ret = postcopy_buffers(bufmap, buffer_index, iter, new_op->downcall.resp.io.amt_complete); if (ret < 0) { /* * put error codes in downcall so that handle_io_error() * preserves it properly */ new_op->downcall.status = ret; handle_io_error(); goto out; } } gossip_debug(GOSSIP_FILE_DEBUG, "%s(%pU): Amount written as returned by the sys-io call:%d\n", __func__, handle, (int)new_op->downcall.resp.io.amt_complete); ret = new_op->downcall.resp.io.amt_complete; /* * tell the device file owner waiting on I/O that this read has * completed and it can return now. in this exact case, on * wakeup the daemon will free the op, so we *cannot* touch it * after this. */ wake_up_daemon_for_return(new_op); new_op = NULL; out: if (buffer_index >= 0) { pvfs_bufmap_put(bufmap, buffer_index); gossip_debug(GOSSIP_FILE_DEBUG, "%s(%pU): PUT buffer_index %d\n", __func__, handle, buffer_index); buffer_index = -1; } if (new_op) { op_release(new_op); new_op = NULL; } return ret; } /* * The reason we need to do this is to be able to support readv and writev * that are larger than (pvfs_bufmap_size_query()) Default is * PVFS2_BUFMAP_DEFAULT_DESC_SIZE MB. What that means is that we will * create a new io vec descriptor for those memory addresses that * go beyond the limit. Return value for this routine is negative in case * of errors and 0 in case of success. * * Further, the new_nr_segs pointer is updated to hold the new value * of number of iovecs, the new_vec pointer is updated to hold the pointer * to the new split iovec, and the size array is an array of integers holding * the number of iovecs that straddle pvfs_bufmap_size_query(). * The max_new_nr_segs value is computed by the caller and returned. * (It will be (count of all iov_len/ block_size) + 1). */ static int split_iovecs(unsigned long max_new_nr_segs, /* IN */ unsigned long nr_segs, /* IN */ const struct iovec *original_iovec, /* IN */ unsigned long *new_nr_segs, /* OUT */ struct iovec **new_vec, /* OUT */ unsigned long *seg_count, /* OUT */ unsigned long **seg_array) /* OUT */ { unsigned long seg; unsigned long count = 0; unsigned long begin_seg; unsigned long tmpnew_nr_segs = 0; struct iovec *new_iovec = NULL; struct iovec *orig_iovec; unsigned long *sizes = NULL; unsigned long sizes_count = 0; if (nr_segs <= 0 || original_iovec == NULL || new_nr_segs == NULL || new_vec == NULL || seg_count == NULL || seg_array == NULL || max_new_nr_segs <= 0) { gossip_err("Invalid parameters to split_iovecs\n"); return -EINVAL; } *new_nr_segs = 0; *new_vec = NULL; *seg_count = 0; *seg_array = NULL; /* copy the passed in iovec descriptor to a temp structure */ orig_iovec = kmalloc_array(nr_segs, sizeof(*orig_iovec), PVFS2_BUFMAP_GFP_FLAGS); if (orig_iovec == NULL) { gossip_err( "split_iovecs: Could not allocate memory for %lu bytes!\n", (unsigned long)(nr_segs * sizeof(*orig_iovec))); return -ENOMEM; } new_iovec = kcalloc(max_new_nr_segs, sizeof(*new_iovec), PVFS2_BUFMAP_GFP_FLAGS); if (new_iovec == NULL) { kfree(orig_iovec); gossip_err( "split_iovecs: Could not allocate memory for %lu bytes!\n", (unsigned long)(max_new_nr_segs * sizeof(*new_iovec))); return -ENOMEM; } sizes = kcalloc(max_new_nr_segs, sizeof(*sizes), PVFS2_BUFMAP_GFP_FLAGS); if (sizes == NULL) { kfree(new_iovec); kfree(orig_iovec); gossip_err( "split_iovecs: Could not allocate memory for %lu bytes!\n", (unsigned long)(max_new_nr_segs * sizeof(*sizes))); return -ENOMEM; } /* copy the passed in iovec to a temp structure */ memcpy(orig_iovec, original_iovec, nr_segs * sizeof(*orig_iovec)); begin_seg = 0; repeat: for (seg = begin_seg; seg < nr_segs; seg++) { if (tmpnew_nr_segs >= max_new_nr_segs || sizes_count >= max_new_nr_segs) { kfree(sizes); kfree(orig_iovec); kfree(new_iovec); gossip_err ("split_iovecs: exceeded the index limit (%lu)\n", tmpnew_nr_segs); return -EINVAL; } if (count + orig_iovec[seg].iov_len < pvfs_bufmap_size_query()) { count += orig_iovec[seg].iov_len; memcpy(&new_iovec[tmpnew_nr_segs], &orig_iovec[seg], sizeof(*new_iovec)); tmpnew_nr_segs++; sizes[sizes_count]++; } else { new_iovec[tmpnew_nr_segs].iov_base = orig_iovec[seg].iov_base; new_iovec[tmpnew_nr_segs].iov_len = (pvfs_bufmap_size_query() - count); tmpnew_nr_segs++; sizes[sizes_count]++; sizes_count++; begin_seg = seg; orig_iovec[seg].iov_base += (pvfs_bufmap_size_query() - count); orig_iovec[seg].iov_len -= (pvfs_bufmap_size_query() - count); count = 0; break; } } if (seg != nr_segs) goto repeat; else sizes_count++; *new_nr_segs = tmpnew_nr_segs; /* new_iovec is freed by the caller */ *new_vec = new_iovec; *seg_count = sizes_count; /* seg_array is also freed by the caller */ *seg_array = sizes; kfree(orig_iovec); return 0; } static long bound_max_iovecs(const struct iovec *curr, unsigned long nr_segs, ssize_t *total_count) { unsigned long i; long max_nr_iovecs; ssize_t total; ssize_t count; total = 0; count = 0; max_nr_iovecs = 0; for (i = 0; i < nr_segs; i++) { const struct iovec *iv = &curr[i]; count += iv->iov_len; if (unlikely((ssize_t) (count | iv->iov_len) < 0)) return -EINVAL; if (total + iv->iov_len < pvfs_bufmap_size_query()) { total += iv->iov_len; max_nr_iovecs++; } else { total = (total + iv->iov_len - pvfs_bufmap_size_query()); max_nr_iovecs += (total / pvfs_bufmap_size_query() + 2); } } *total_count = count; return max_nr_iovecs; } /* * Common entry point for read/write/readv/writev * This function will dispatch it to either the direct I/O * or buffered I/O path depending on the mount options and/or * augmented/extended metadata attached to the file. * Note: File extended attributes override any mount options. */ static ssize_t do_readv_writev(enum PVFS_io_type type, struct file *file, loff_t *offset, const struct iovec *iov, unsigned long nr_segs) { struct inode *inode = file->f_mapping->host; struct pvfs2_inode_s *pvfs2_inode = PVFS2_I(inode); struct pvfs2_khandle *handle = &pvfs2_inode->refn.khandle; ssize_t ret; ssize_t total_count; unsigned int to_free; size_t count; unsigned long seg; unsigned long new_nr_segs; unsigned long max_new_nr_segs; unsigned long seg_count; unsigned long *seg_array; struct iovec *iovecptr; struct iovec *ptr; total_count = 0; ret = -EINVAL; count = 0; to_free = 0; /* Compute total and max number of segments after split */ max_new_nr_segs = bound_max_iovecs(iov, nr_segs, &count); gossip_debug(GOSSIP_FILE_DEBUG, "%s-BEGIN(%pU): count(%d) after estimate_max_iovecs.\n", __func__, handle, (int)count); if (type == PVFS_IO_WRITE) { gossip_debug(GOSSIP_FILE_DEBUG, "%s(%pU): proceeding with offset : %llu, " "size %d\n", __func__, handle, llu(*offset), (int)count); } if (count == 0) { ret = 0; goto out; } /* * if the total size of data transfer requested is greater than * the kernel-set blocksize of PVFS2, then we split the iovecs * such that no iovec description straddles a block size limit */ gossip_debug(GOSSIP_FILE_DEBUG, "%s: pvfs_bufmap_size:%d\n", __func__, pvfs_bufmap_size_query()); if (count > pvfs_bufmap_size_query()) { /* * Split up the given iovec description such that * no iovec descriptor straddles over the block-size limitation. * This makes us our job easier to stage the I/O. * In addition, this function will also compute an array * with seg_count entries that will store the number of * segments that straddle the block-size boundaries. */ ret = split_iovecs(max_new_nr_segs, /* IN */ nr_segs, /* IN */ iov, /* IN */ &new_nr_segs, /* OUT */ &iovecptr, /* OUT */ &seg_count, /* OUT */ &seg_array); /* OUT */ if (ret < 0) { gossip_err("%s: Failed to split iovecs to satisfy larger than blocksize readv/writev request %zd\n", __func__, ret); goto out; } gossip_debug(GOSSIP_FILE_DEBUG, "%s: Splitting iovecs from %lu to %lu" " [max_new %lu]\n", __func__, nr_segs, new_nr_segs, max_new_nr_segs); /* We must free seg_array and iovecptr */ to_free = 1; } else { new_nr_segs = nr_segs; /* use the given iovec description */ iovecptr = (struct iovec *)iov; /* There is only 1 element in the seg_array */ seg_count = 1; /* and its value is the number of segments passed in */ seg_array = &nr_segs; /* We dont have to free up anything */ to_free = 0; } ptr = iovecptr; gossip_debug(GOSSIP_FILE_DEBUG, "%s(%pU) %zd@%llu\n", __func__, handle, count, llu(*offset)); gossip_debug(GOSSIP_FILE_DEBUG, "%s(%pU): new_nr_segs: %lu, seg_count: %lu\n", __func__, handle, new_nr_segs, seg_count); /* PVFS2_KERNEL_DEBUG is a CFLAGS define. */ #ifdef PVFS2_KERNEL_DEBUG for (seg = 0; seg < new_nr_segs; seg++) gossip_debug(GOSSIP_FILE_DEBUG, "%s: %d) %p to %p [%d bytes]\n", __func__, (int)seg + 1, iovecptr[seg].iov_base, iovecptr[seg].iov_base + iovecptr[seg].iov_len, (int)iovecptr[seg].iov_len); for (seg = 0; seg < seg_count; seg++) gossip_debug(GOSSIP_FILE_DEBUG, "%s: %zd) %lu\n", __func__, seg + 1, seg_array[seg]); #endif seg = 0; while (total_count < count) { struct iov_iter iter; size_t each_count; size_t amt_complete; /* how much to transfer in this loop iteration */ each_count = (((count - total_count) > pvfs_bufmap_size_query()) ? pvfs_bufmap_size_query() : (count - total_count)); gossip_debug(GOSSIP_FILE_DEBUG, "%s(%pU): size of each_count(%d)\n", __func__, handle, (int)each_count); gossip_debug(GOSSIP_FILE_DEBUG, "%s(%pU): BEFORE wait_for_io: offset is %d\n", __func__, handle, (int)*offset); iov_iter_init(&iter, type == PVFS_IO_READ ? READ : WRITE, ptr, seg_array[seg], each_count); ret = wait_for_direct_io(type, inode, offset, &iter, each_count, 0); gossip_debug(GOSSIP_FILE_DEBUG, "%s(%pU): return from wait_for_io:%d\n", __func__, handle, (int)ret); if (ret < 0) goto out; /* advance the iovec pointer */ ptr += seg_array[seg]; seg++; *offset += ret; total_count += ret; amt_complete = ret; gossip_debug(GOSSIP_FILE_DEBUG, "%s(%pU): AFTER wait_for_io: offset is %d\n", __func__, handle, (int)*offset); /* * if we got a short I/O operations, * fall out and return what we got so far */ if (amt_complete < each_count) break; } /*end while */ if (total_count > 0) ret = total_count; out: if (to_free) { kfree(iovecptr); kfree(seg_array); } if (ret > 0) { if (type == PVFS_IO_READ) { file_accessed(file); } else { SetMtimeFlag(pvfs2_inode); inode->i_mtime = CURRENT_TIME; mark_inode_dirty_sync(inode); } } gossip_debug(GOSSIP_FILE_DEBUG, "%s(%pU): Value(%d) returned.\n", __func__, handle, (int)ret); return ret; } /* * Read data from a specified offset in a file (referenced by inode). * Data may be placed either in a user or kernel buffer. */ ssize_t pvfs2_inode_read(struct inode *inode, char __user *buf, size_t count, loff_t *offset, loff_t readahead_size) { struct pvfs2_inode_s *pvfs2_inode = PVFS2_I(inode); size_t bufmap_size; struct iovec vec; struct iov_iter iter; ssize_t ret = -EINVAL; g_pvfs2_stats.reads++; vec.iov_base = buf; vec.iov_len = count; bufmap_size = pvfs_bufmap_size_query(); if (count > bufmap_size) { gossip_debug(GOSSIP_FILE_DEBUG, "%s: count is too large (%zd/%zd)!\n", __func__, count, bufmap_size); return -EINVAL; } gossip_debug(GOSSIP_FILE_DEBUG, "%s(%pU) %zd@%llu\n", __func__, &pvfs2_inode->refn.khandle, count, llu(*offset)); iov_iter_init(&iter, READ, &vec, 1, count); ret = wait_for_direct_io(PVFS_IO_READ, inode, offset, &iter, count, readahead_size); if (ret > 0) *offset += ret; gossip_debug(GOSSIP_FILE_DEBUG, "%s(%pU): Value(%zd) returned.\n", __func__, &pvfs2_inode->refn.khandle, ret); return ret; } static ssize_t pvfs2_file_read_iter(struct kiocb *iocb, struct iov_iter *iter) { struct file *file = iocb->ki_filp; loff_t pos = *(&iocb->ki_pos); ssize_t rc = 0; unsigned long nr_segs = iter->nr_segs; BUG_ON(iocb->private); gossip_debug(GOSSIP_FILE_DEBUG, "pvfs2_file_read_iter\n"); g_pvfs2_stats.reads++; rc = do_readv_writev(PVFS_IO_READ, file, &pos, iter->iov, nr_segs); iocb->ki_pos = pos; return rc; } static ssize_t pvfs2_file_write_iter(struct kiocb *iocb, struct iov_iter *iter) { struct file *file = iocb->ki_filp; loff_t pos = *(&iocb->ki_pos); unsigned long nr_segs = iter->nr_segs; ssize_t rc; BUG_ON(iocb->private); gossip_debug(GOSSIP_FILE_DEBUG, "pvfs2_file_write_iter\n"); mutex_lock(&file->f_mapping->host->i_mutex); /* Make sure generic_write_checks sees an up to date inode size. */ if (file->f_flags & O_APPEND) { rc = pvfs2_inode_getattr(file->f_mapping->host, PVFS_ATTR_SYS_SIZE); if (rc) { gossip_err("%s: pvfs2_inode_getattr failed, rc:%zd:.\n", __func__, rc); goto out; } } if (file->f_pos > i_size_read(file->f_mapping->host)) pvfs2_i_size_write(file->f_mapping->host, file->f_pos); rc = generic_write_checks(iocb, iter); if (rc <= 0) { gossip_err("%s: generic_write_checks failed, rc:%zd:.\n", __func__, rc); goto out; } rc = do_readv_writev(PVFS_IO_WRITE, file, &pos, iter->iov, nr_segs); if (rc < 0) { gossip_err("%s: do_readv_writev failed, rc:%zd:.\n", __func__, rc); goto out; } iocb->ki_pos = pos; g_pvfs2_stats.writes++; out: mutex_unlock(&file->f_mapping->host->i_mutex); return rc; } /* * Perform a miscellaneous operation on a file. */ static long pvfs2_ioctl(struct file *file, unsigned int cmd, unsigned long arg) { int ret = -ENOTTY; __u64 val = 0; unsigned long uval; gossip_debug(GOSSIP_FILE_DEBUG, "pvfs2_ioctl: called with cmd %d\n", cmd); /* * we understand some general ioctls on files, such as the immutable * and append flags */ if (cmd == FS_IOC_GETFLAGS) { val = 0; ret = pvfs2_xattr_get_default(file->f_path.dentry, "user.pvfs2.meta_hint", &val, sizeof(val), 0); if (ret < 0 && ret != -ENODATA) return ret; else if (ret == -ENODATA) val = 0; uval = val; gossip_debug(GOSSIP_FILE_DEBUG, "pvfs2_ioctl: FS_IOC_GETFLAGS: %llu\n", (unsigned long long)uval); return put_user(uval, (int __user *)arg); } else if (cmd == FS_IOC_SETFLAGS) { ret = 0; if (get_user(uval, (int __user *)arg)) return -EFAULT; /* * PVFS_MIRROR_FL is set internally when the mirroring mode * is turned on for a file. The user is not allowed to turn * on this bit, but the bit is present if the user first gets * the flags and then updates the flags with some new * settings. So, we ignore it in the following edit. bligon. */ if ((uval & ~PVFS_MIRROR_FL) & (~(FS_IMMUTABLE_FL | FS_APPEND_FL | FS_NOATIME_FL))) { gossip_err("pvfs2_ioctl: the FS_IOC_SETFLAGS only supports setting one of FS_IMMUTABLE_FL|FS_APPEND_FL|FS_NOATIME_FL\n"); return -EINVAL; } val = uval; gossip_debug(GOSSIP_FILE_DEBUG, "pvfs2_ioctl: FS_IOC_SETFLAGS: %llu\n", (unsigned long long)val); ret = pvfs2_xattr_set_default(file->f_path.dentry, "user.pvfs2.meta_hint", &val, sizeof(val), 0, 0); } return ret; } /* * Memory map a region of a file. */ static int pvfs2_file_mmap(struct file *file, struct vm_area_struct *vma) { gossip_debug(GOSSIP_FILE_DEBUG, "pvfs2_file_mmap: called on %s\n", (file ? (char *)file->f_path.dentry->d_name.name : (char *)"Unknown")); /* set the sequential readahead hint */ vma->vm_flags |= VM_SEQ_READ; vma->vm_flags &= ~VM_RAND_READ; /* Use readonly mmap since we cannot support writable maps. */ return generic_file_readonly_mmap(file, vma); } #define mapping_nrpages(idata) ((idata)->nrpages) /* * Called to notify the module that there are no more references to * this file (i.e. no processes have it open). * * \note Not called when each file is closed. */ static int pvfs2_file_release(struct inode *inode, struct file *file) { gossip_debug(GOSSIP_FILE_DEBUG, "pvfs2_file_release: called on %s\n", file->f_path.dentry->d_name.name); pvfs2_flush_inode(inode); /* * remove all associated inode pages from the page cache and mmap * readahead cache (if any); this forces an expensive refresh of * data for the next caller of mmap (or 'get_block' accesses) */ if (file->f_path.dentry->d_inode && file->f_path.dentry->d_inode->i_mapping && mapping_nrpages(&file->f_path.dentry->d_inode->i_data)) truncate_inode_pages(file->f_path.dentry->d_inode->i_mapping, 0); return 0; } /* * Push all data for a specific file onto permanent storage. */ static int pvfs2_fsync(struct file *file, loff_t start, loff_t end, int datasync) { int ret = -EINVAL; struct pvfs2_inode_s *pvfs2_inode = PVFS2_I(file->f_path.dentry->d_inode); struct pvfs2_kernel_op_s *new_op = NULL; /* required call */ filemap_write_and_wait_range(file->f_mapping, start, end); new_op = op_alloc(PVFS2_VFS_OP_FSYNC); if (!new_op) return -ENOMEM; new_op->upcall.req.fsync.refn = pvfs2_inode->refn; ret = service_operation(new_op, "pvfs2_fsync", get_interruptible_flag(file->f_path.dentry->d_inode)); gossip_debug(GOSSIP_FILE_DEBUG, "pvfs2_fsync got return value of %d\n", ret); op_release(new_op); pvfs2_flush_inode(file->f_path.dentry->d_inode); return ret; } /* * Change the file pointer position for an instance of an open file. * * \note If .llseek is overriden, we must acquire lock as described in * Documentation/filesystems/Locking. * * Future upgrade could support SEEK_DATA and SEEK_HOLE but would * require much changes to the FS */ static loff_t pvfs2_file_llseek(struct file *file, loff_t offset, int origin) { int ret = -EINVAL; struct inode *inode = file->f_path.dentry->d_inode; if (!inode) { gossip_err("pvfs2_file_llseek: invalid inode (NULL)\n"); return ret; } if (origin == PVFS2_SEEK_END) { /* * revalidate the inode's file size. * NOTE: We are only interested in file size here, * so we set mask accordingly. */ ret = pvfs2_inode_getattr(inode, PVFS_ATTR_SYS_SIZE); if (ret) { gossip_debug(GOSSIP_FILE_DEBUG, "%s:%s:%d calling make bad inode\n", __FILE__, __func__, __LINE__); pvfs2_make_bad_inode(inode); return ret; } } gossip_debug(GOSSIP_FILE_DEBUG, "pvfs2_file_llseek: offset is %ld | origin is %d" " | inode size is %lu\n", (long)offset, origin, (unsigned long)file->f_path.dentry->d_inode->i_size); return generic_file_llseek(file, offset, origin); } /* * Support local locks (locks that only this kernel knows about) * if Orangefs was mounted -o local_lock. */ static int pvfs2_lock(struct file *filp, int cmd, struct file_lock *fl) { int rc = -EINVAL; if (PVFS2_SB(filp->f_inode->i_sb)->flags & PVFS2_OPT_LOCAL_LOCK) { if (cmd == F_GETLK) { rc = 0; posix_test_lock(filp, fl); } else { rc = posix_lock_file(filp, fl, NULL); } } return rc; } /** PVFS2 implementation of VFS file operations */ const struct file_operations pvfs2_file_operations = { .llseek = pvfs2_file_llseek, .read_iter = pvfs2_file_read_iter, .write_iter = pvfs2_file_write_iter, .lock = pvfs2_lock, .unlocked_ioctl = pvfs2_ioctl, .mmap = pvfs2_file_mmap, .open = generic_file_open, .release = pvfs2_file_release, .fsync = pvfs2_fsync, };