/* * Slab allocator functions that are independent of the allocator strategy * * (C) 2012 Christoph Lameter */ #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include "slab.h" enum slab_state slab_state; LIST_HEAD(slab_caches); DEFINE_MUTEX(slab_mutex); struct kmem_cache *kmem_cache; #ifdef CONFIG_DEBUG_VM static int kmem_cache_sanity_check(const char *name, size_t size) { struct kmem_cache *s = NULL; if (!name || in_interrupt() || size < sizeof(void *) || size > KMALLOC_MAX_SIZE) { pr_err("kmem_cache_create(%s) integrity check failed\n", name); return -EINVAL; } list_for_each_entry(s, &slab_caches, list) { char tmp; int res; /* * This happens when the module gets unloaded and doesn't * destroy its slab cache and no-one else reuses the vmalloc * area of the module. Print a warning. */ res = probe_kernel_address(s->name, tmp); if (res) { pr_err("Slab cache with size %d has lost its name\n", s->object_size); continue; } if (!strcmp(s->name, name)) { pr_err("%s (%s): Cache name already exists.\n", __func__, name); dump_stack(); s = NULL; return -EINVAL; } } WARN_ON(strchr(name, ' ')); /* It confuses parsers */ return 0; } #else static inline int kmem_cache_sanity_check(const char *name, size_t size) { return 0; } #endif /* * kmem_cache_create - Create a cache. * @name: A string which is used in /proc/slabinfo to identify this cache. * @size: The size of objects to be created in this cache. * @align: The required alignment for the objects. * @flags: SLAB flags * @ctor: A constructor for the objects. * * Returns a ptr to the cache on success, NULL on failure. * Cannot be called within a interrupt, but can be interrupted. * The @ctor is run when new pages are allocated by the cache. * * The flags are * * %SLAB_POISON - Poison the slab with a known test pattern (a5a5a5a5) * to catch references to uninitialised memory. * * %SLAB_RED_ZONE - Insert `Red' zones around the allocated memory to check * for buffer overruns. * * %SLAB_HWCACHE_ALIGN - Align the objects in this cache to a hardware * cacheline. This can be beneficial if you're counting cycles as closely * as davem. */ struct kmem_cache *kmem_cache_create(const char *name, size_t size, size_t align, unsigned long flags, void (*ctor)(void *)) { struct kmem_cache *s = NULL; int err = 0; get_online_cpus(); mutex_lock(&slab_mutex); if (!kmem_cache_sanity_check(name, size) == 0) goto out_locked; s = __kmem_cache_alias(name, size, align, flags, ctor); if (s) goto out_locked; s = kmem_cache_zalloc(kmem_cache, GFP_KERNEL); if (s) { s->object_size = s->size = size; s->align = align; s->ctor = ctor; s->name = kstrdup(name, GFP_KERNEL); if (!s->name) { kmem_cache_free(kmem_cache, s); err = -ENOMEM; goto out_locked; } err = __kmem_cache_create(s, flags); if (!err) { s->refcount = 1; list_add(&s->list, &slab_caches); } else { kfree(s->name); kmem_cache_free(kmem_cache, s); } } else err = -ENOMEM; out_locked: mutex_unlock(&slab_mutex); put_online_cpus(); if (err) { if (flags & SLAB_PANIC) panic("kmem_cache_create: Failed to create slab '%s'. Error %d\n", name, err); else { printk(KERN_WARNING "kmem_cache_create(%s) failed with error %d", name, err); dump_stack(); } return NULL; } return s; } EXPORT_SYMBOL(kmem_cache_create); void kmem_cache_destroy(struct kmem_cache *s) { get_online_cpus(); mutex_lock(&slab_mutex); s->refcount--; if (!s->refcount) { list_del(&s->list); if (!__kmem_cache_shutdown(s)) { mutex_unlock(&slab_mutex); if (s->flags & SLAB_DESTROY_BY_RCU) rcu_barrier(); kfree(s->name); kmem_cache_free(kmem_cache, s); } else { list_add(&s->list, &slab_caches); mutex_unlock(&slab_mutex); printk(KERN_ERR "kmem_cache_destroy %s: Slab cache still has objects\n", s->name); dump_stack(); } } else { mutex_unlock(&slab_mutex); } put_online_cpus(); } EXPORT_SYMBOL(kmem_cache_destroy); int slab_is_available(void) { return slab_state >= UP; } #ifdef CONFIG_SLABINFO static void print_slabinfo_header(struct seq_file *m) { /* * Output format version, so at least we can change it * without _too_ many complaints. */ #ifdef CONFIG_DEBUG_SLAB seq_puts(m, "slabinfo - version: 2.1 (statistics)\n"); #else seq_puts(m, "slabinfo - version: 2.1\n"); #endif seq_puts(m, "# name " " "); seq_puts(m, " : tunables "); seq_puts(m, " : slabdata "); #ifdef CONFIG_DEBUG_SLAB seq_puts(m, " : globalstat " " "); seq_puts(m, " : cpustat "); #endif seq_putc(m, '\n'); } static void *s_start(struct seq_file *m, loff_t *pos) { loff_t n = *pos; mutex_lock(&slab_mutex); if (!n) print_slabinfo_header(m); return seq_list_start(&slab_caches, *pos); } static void *s_next(struct seq_file *m, void *p, loff_t *pos) { return seq_list_next(p, &slab_caches, pos); } static void s_stop(struct seq_file *m, void *p) { mutex_unlock(&slab_mutex); } static int s_show(struct seq_file *m, void *p) { return slabinfo_show(m, p); } /* * slabinfo_op - iterator that generates /proc/slabinfo * * Output layout: * cache-name * num-active-objs * total-objs * object size * num-active-slabs * total-slabs * num-pages-per-slab * + further values on SMP and with statistics enabled */ static const struct seq_operations slabinfo_op = { .start = s_start, .next = s_next, .stop = s_stop, .show = s_show, }; static int slabinfo_open(struct inode *inode, struct file *file) { return seq_open(file, &slabinfo_op); } static const struct file_operations proc_slabinfo_operations = { .open = slabinfo_open, .read = seq_read, .write = slabinfo_write, .llseek = seq_lseek, .release = seq_release, }; static int __init slab_proc_init(void) { proc_create("slabinfo", S_IRUSR, NULL, &proc_slabinfo_operations); return 0; } module_init(slab_proc_init); #endif /* CONFIG_SLABINFO */