/* flow.c: Generic flow cache. * * Copyright (C) 2003 Alexey N. Kuznetsov (kuznet@ms2.inr.ac.ru) * Copyright (C) 2003 David S. Miller (davem@redhat.com) */ #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include struct flow_cache_entry { struct flow_cache_entry *next; u16 family; u8 dir; u32 genid; struct flowi key; void *object; atomic_t *object_ref; }; struct flow_cache_percpu { struct flow_cache_entry ** hash_table; int hash_count; u32 hash_rnd; int hash_rnd_recalc; struct tasklet_struct flush_tasklet; }; struct flow_flush_info { struct flow_cache * cache; atomic_t cpuleft; struct completion completion; }; struct flow_cache { u32 hash_shift; unsigned long order; struct flow_cache_percpu * percpu; struct notifier_block hotcpu_notifier; int low_watermark; int high_watermark; struct timer_list rnd_timer; }; atomic_t flow_cache_genid = ATOMIC_INIT(0); static struct flow_cache flow_cache_global; static struct kmem_cache *flow_cachep; #define flow_cache_hash_size(cache) (1 << (cache)->hash_shift) #define FLOW_HASH_RND_PERIOD (10 * 60 * HZ) static void flow_cache_new_hashrnd(unsigned long arg) { struct flow_cache *fc = (void *) arg; int i; for_each_possible_cpu(i) per_cpu_ptr(fc->percpu, i)->hash_rnd_recalc = 1; fc->rnd_timer.expires = jiffies + FLOW_HASH_RND_PERIOD; add_timer(&fc->rnd_timer); } static void flow_entry_kill(struct flow_cache *fc, struct flow_cache_percpu *fcp, struct flow_cache_entry *fle) { if (fle->object) atomic_dec(fle->object_ref); kmem_cache_free(flow_cachep, fle); fcp->hash_count--; } static void __flow_cache_shrink(struct flow_cache *fc, struct flow_cache_percpu *fcp, int shrink_to) { struct flow_cache_entry *fle, **flp; int i; for (i = 0; i < flow_cache_hash_size(fc); i++) { int k = 0; flp = &fcp->hash_table[i]; while ((fle = *flp) != NULL && k < shrink_to) { k++; flp = &fle->next; } while ((fle = *flp) != NULL) { *flp = fle->next; flow_entry_kill(fc, fcp, fle); } } } static void flow_cache_shrink(struct flow_cache *fc, struct flow_cache_percpu *fcp) { int shrink_to = fc->low_watermark / flow_cache_hash_size(fc); __flow_cache_shrink(fc, fcp, shrink_to); } static void flow_new_hash_rnd(struct flow_cache *fc, struct flow_cache_percpu *fcp) { get_random_bytes(&fcp->hash_rnd, sizeof(u32)); fcp->hash_rnd_recalc = 0; __flow_cache_shrink(fc, fcp, 0); } static u32 flow_hash_code(struct flow_cache *fc, struct flow_cache_percpu *fcp, struct flowi *key) { u32 *k = (u32 *) key; return (jhash2(k, (sizeof(*key) / sizeof(u32)), fcp->hash_rnd) & (flow_cache_hash_size(fc) - 1)); } #if (BITS_PER_LONG == 64) typedef u64 flow_compare_t; #else typedef u32 flow_compare_t; #endif /* I hear what you're saying, use memcmp. But memcmp cannot make * important assumptions that we can here, such as alignment and * constant size. */ static int flow_key_compare(struct flowi *key1, struct flowi *key2) { flow_compare_t *k1, *k1_lim, *k2; const int n_elem = sizeof(struct flowi) / sizeof(flow_compare_t); BUILD_BUG_ON(sizeof(struct flowi) % sizeof(flow_compare_t)); k1 = (flow_compare_t *) key1; k1_lim = k1 + n_elem; k2 = (flow_compare_t *) key2; do { if (*k1++ != *k2++) return 1; } while (k1 < k1_lim); return 0; } void *flow_cache_lookup(struct net *net, struct flowi *key, u16 family, u8 dir, flow_resolve_t resolver) { struct flow_cache *fc = &flow_cache_global; struct flow_cache_percpu *fcp; struct flow_cache_entry *fle, **head; unsigned int hash; local_bh_disable(); fcp = per_cpu_ptr(fc->percpu, smp_processor_id()); fle = NULL; /* Packet really early in init? Making flow_cache_init a * pre-smp initcall would solve this. --RR */ if (!fcp->hash_table) goto nocache; if (fcp->hash_rnd_recalc) flow_new_hash_rnd(fc, fcp); hash = flow_hash_code(fc, fcp, key); head = &fcp->hash_table[hash]; for (fle = *head; fle; fle = fle->next) { if (fle->family == family && fle->dir == dir && flow_key_compare(key, &fle->key) == 0) { if (fle->genid == atomic_read(&flow_cache_genid)) { void *ret = fle->object; if (ret) atomic_inc(fle->object_ref); local_bh_enable(); return ret; } break; } } if (!fle) { if (fcp->hash_count > fc->high_watermark) flow_cache_shrink(fc, fcp); fle = kmem_cache_alloc(flow_cachep, GFP_ATOMIC); if (fle) { fle->next = *head; *head = fle; fle->family = family; fle->dir = dir; memcpy(&fle->key, key, sizeof(*key)); fle->object = NULL; fcp->hash_count++; } } nocache: { int err; void *obj; atomic_t *obj_ref; err = resolver(net, key, family, dir, &obj, &obj_ref); if (fle && !err) { fle->genid = atomic_read(&flow_cache_genid); if (fle->object) atomic_dec(fle->object_ref); fle->object = obj; fle->object_ref = obj_ref; if (obj) atomic_inc(fle->object_ref); } local_bh_enable(); if (err) obj = ERR_PTR(err); return obj; } } static void flow_cache_flush_tasklet(unsigned long data) { struct flow_flush_info *info = (void *)data; struct flow_cache *fc = info->cache; struct flow_cache_percpu *fcp; int i; fcp = per_cpu_ptr(fc->percpu, smp_processor_id()); for (i = 0; i < flow_cache_hash_size(fc); i++) { struct flow_cache_entry *fle; fle = fcp->hash_table[i]; for (; fle; fle = fle->next) { unsigned genid = atomic_read(&flow_cache_genid); if (!fle->object || fle->genid == genid) continue; fle->object = NULL; atomic_dec(fle->object_ref); } } if (atomic_dec_and_test(&info->cpuleft)) complete(&info->completion); } static void flow_cache_flush_per_cpu(void *data) { struct flow_flush_info *info = data; int cpu; struct tasklet_struct *tasklet; cpu = smp_processor_id(); tasklet = &per_cpu_ptr(info->cache->percpu, cpu)->flush_tasklet; tasklet->data = (unsigned long)info; tasklet_schedule(tasklet); } void flow_cache_flush(void) { struct flow_flush_info info; static DEFINE_MUTEX(flow_flush_sem); /* Don't want cpus going down or up during this. */ get_online_cpus(); mutex_lock(&flow_flush_sem); info.cache = &flow_cache_global; atomic_set(&info.cpuleft, num_online_cpus()); init_completion(&info.completion); local_bh_disable(); smp_call_function(flow_cache_flush_per_cpu, &info, 0); flow_cache_flush_tasklet((unsigned long)&info); local_bh_enable(); wait_for_completion(&info.completion); mutex_unlock(&flow_flush_sem); put_online_cpus(); } static void __init flow_cache_cpu_prepare(struct flow_cache *fc, struct flow_cache_percpu *fcp) { fcp->hash_table = (struct flow_cache_entry **) __get_free_pages(GFP_KERNEL|__GFP_ZERO, fc->order); if (!fcp->hash_table) panic("NET: failed to allocate flow cache order %lu\n", fc->order); fcp->hash_rnd_recalc = 1; fcp->hash_count = 0; tasklet_init(&fcp->flush_tasklet, flow_cache_flush_tasklet, 0); } static int flow_cache_cpu(struct notifier_block *nfb, unsigned long action, void *hcpu) { struct flow_cache *fc = container_of(nfb, struct flow_cache, hotcpu_notifier); int cpu = (unsigned long) hcpu; struct flow_cache_percpu *fcp = per_cpu_ptr(fc->percpu, cpu); if (action == CPU_DEAD || action == CPU_DEAD_FROZEN) __flow_cache_shrink(fc, fcp, 0); return NOTIFY_OK; } static int flow_cache_init(struct flow_cache *fc) { unsigned long order; int i; fc->hash_shift = 10; fc->low_watermark = 2 * flow_cache_hash_size(fc); fc->high_watermark = 4 * flow_cache_hash_size(fc); for (order = 0; (PAGE_SIZE << order) < (sizeof(struct flow_cache_entry *)*flow_cache_hash_size(fc)); order++) /* NOTHING */; fc->order = order; fc->percpu = alloc_percpu(struct flow_cache_percpu); setup_timer(&fc->rnd_timer, flow_cache_new_hashrnd, (unsigned long) fc); fc->rnd_timer.expires = jiffies + FLOW_HASH_RND_PERIOD; add_timer(&fc->rnd_timer); for_each_possible_cpu(i) flow_cache_cpu_prepare(fc, per_cpu_ptr(fc->percpu, i)); fc->hotcpu_notifier = (struct notifier_block){ .notifier_call = flow_cache_cpu, }; register_hotcpu_notifier(&fc->hotcpu_notifier); return 0; } static int __init flow_cache_init_global(void) { flow_cachep = kmem_cache_create("flow_cache", sizeof(struct flow_cache_entry), 0, SLAB_PANIC, NULL); return flow_cache_init(&flow_cache_global); } module_init(flow_cache_init_global); EXPORT_SYMBOL(flow_cache_genid); EXPORT_SYMBOL(flow_cache_lookup);