blob: 04a20fd051cfa5685ad7a144d027d449a9fce771 (
plain) (
blame)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
|
#ifndef _M68KNOMMU_DELAY_H
#define _M68KNOMMU_DELAY_H
/*
* Copyright (C) 1994 Hamish Macdonald
* Copyright (C) 2004 Greg Ungerer <gerg@snapgear.com>
*/
#include <asm/param.h>
static inline void __delay(unsigned long loops)
{
#if defined(CONFIG_COLDFIRE)
/* The coldfire runs this loop at significantly different speeds
* depending upon long word alignment or not. We'll pad it to
* long word alignment which is the faster version.
* The 0x4a8e is of course a 'tstl %fp' instruction. This is better
* than using a NOP (0x4e71) instruction because it executes in one
* cycle not three and doesn't allow for an arbitary delay waiting
* for bus cycles to finish. Also fp/a6 isn't likely to cause a
* stall waiting for the register to become valid if such is added
* to the coldfire at some stage.
*/
__asm__ __volatile__ ( ".balignw 4, 0x4a8e\n\t"
"1: subql #1, %0\n\t"
"jcc 1b"
: "=d" (loops) : "0" (loops));
#else
__asm__ __volatile__ ( "1: subql #1, %0\n\t"
"jcc 1b"
: "=d" (loops) : "0" (loops));
#endif
}
/*
* Ideally we use a 32*32->64 multiply to calculate the number of
* loop iterations, but the older standard 68k and ColdFire do not
* have this instruction. So for them we have a clsoe approximation
* loop using 32*32->32 multiplies only. This calculation based on
* the ARM version of delay.
*
* We want to implement:
*
* loops = (usecs * 0x10c6 * HZ * loops_per_jiffy) / 2^32
*/
#define HZSCALE (268435456 / (1000000/HZ))
extern unsigned long loops_per_jiffy;
static inline void _udelay(unsigned long usecs)
{
#if defined(CONFIG_M68328) || defined(CONFIG_M68EZ328) || \
defined(CONFIG_M68VZ328) || defined(CONFIG_M68360) || \
defined(CONFIG_COLDFIRE)
__delay((((usecs * HZSCALE) >> 11) * (loops_per_jiffy >> 11)) >> 6);
#else
unsigned long tmp;
usecs *= 4295; /* 2**32 / 1000000 */
__asm__ ("mulul %2,%0:%1"
: "=d" (usecs), "=d" (tmp)
: "d" (usecs), "1" (loops_per_jiffy*HZ));
__delay(usecs);
#endif
}
/*
* Moved the udelay() function into library code, no longer inlined.
* I had to change the algorithm because we are overflowing now on
* the faster ColdFire parts. The code is a little biger, so it makes
* sense to library it.
*/
extern void udelay(unsigned long usecs);
#endif /* defined(_M68KNOMMU_DELAY_H) */
|