1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
|
/* $Id: bitops.h,v 1.39 2002/01/30 01:40:00 davem Exp $
* bitops.h: Bit string operations on the V9.
*
* Copyright 1996, 1997 David S. Miller (davem@caip.rutgers.edu)
*/
#ifndef _SPARC64_BITOPS_H
#define _SPARC64_BITOPS_H
#include <linux/config.h>
#include <linux/compiler.h>
#include <asm/byteorder.h>
extern int test_and_set_bit(unsigned long nr, volatile unsigned long *addr);
extern int test_and_clear_bit(unsigned long nr, volatile unsigned long *addr);
extern int test_and_change_bit(unsigned long nr, volatile unsigned long *addr);
extern void set_bit(unsigned long nr, volatile unsigned long *addr);
extern void clear_bit(unsigned long nr, volatile unsigned long *addr);
extern void change_bit(unsigned long nr, volatile unsigned long *addr);
/* "non-atomic" versions... */
static inline void __set_bit(int nr, volatile unsigned long *addr)
{
unsigned long *m = ((unsigned long *)addr) + (nr >> 6);
*m |= (1UL << (nr & 63));
}
static inline void __clear_bit(int nr, volatile unsigned long *addr)
{
unsigned long *m = ((unsigned long *)addr) + (nr >> 6);
*m &= ~(1UL << (nr & 63));
}
static inline void __change_bit(int nr, volatile unsigned long *addr)
{
unsigned long *m = ((unsigned long *)addr) + (nr >> 6);
*m ^= (1UL << (nr & 63));
}
static inline int __test_and_set_bit(int nr, volatile unsigned long *addr)
{
unsigned long *m = ((unsigned long *)addr) + (nr >> 6);
unsigned long old = *m;
unsigned long mask = (1UL << (nr & 63));
*m = (old | mask);
return ((old & mask) != 0);
}
static inline int __test_and_clear_bit(int nr, volatile unsigned long *addr)
{
unsigned long *m = ((unsigned long *)addr) + (nr >> 6);
unsigned long old = *m;
unsigned long mask = (1UL << (nr & 63));
*m = (old & ~mask);
return ((old & mask) != 0);
}
static inline int __test_and_change_bit(int nr, volatile unsigned long *addr)
{
unsigned long *m = ((unsigned long *)addr) + (nr >> 6);
unsigned long old = *m;
unsigned long mask = (1UL << (nr & 63));
*m = (old ^ mask);
return ((old & mask) != 0);
}
#ifdef CONFIG_SMP
#define smp_mb__before_clear_bit() membar("#StoreLoad | #LoadLoad")
#define smp_mb__after_clear_bit() membar("#StoreLoad | #StoreStore")
#else
#define smp_mb__before_clear_bit() barrier()
#define smp_mb__after_clear_bit() barrier()
#endif
static inline int test_bit(int nr, __const__ volatile unsigned long *addr)
{
return (1UL & (addr[nr >> 6] >> (nr & 63))) != 0UL;
}
/* The easy/cheese version for now. */
static inline unsigned long ffz(unsigned long word)
{
unsigned long result;
result = 0;
while(word & 1) {
result++;
word >>= 1;
}
return result;
}
/**
* __ffs - find first bit in word.
* @word: The word to search
*
* Undefined if no bit exists, so code should check against 0 first.
*/
static inline unsigned long __ffs(unsigned long word)
{
unsigned long result = 0;
while (!(word & 1UL)) {
result++;
word >>= 1;
}
return result;
}
/*
* fls: find last bit set.
*/
#define fls(x) generic_fls(x)
#ifdef __KERNEL__
/*
* Every architecture must define this function. It's the fastest
* way of searching a 140-bit bitmap where the first 100 bits are
* unlikely to be set. It's guaranteed that at least one of the 140
* bits is cleared.
*/
static inline int sched_find_first_bit(unsigned long *b)
{
if (unlikely(b[0]))
return __ffs(b[0]);
if (unlikely(((unsigned int)b[1])))
return __ffs(b[1]) + 64;
if (b[1] >> 32)
return __ffs(b[1] >> 32) + 96;
return __ffs(b[2]) + 128;
}
/*
* ffs: find first bit set. This is defined the same way as
* the libc and compiler builtin ffs routines, therefore
* differs in spirit from the above ffz (man ffs).
*/
static inline int ffs(int x)
{
if (!x)
return 0;
return __ffs((unsigned long)x) + 1;
}
/*
* hweightN: returns the hamming weight (i.e. the number
* of bits set) of a N-bit word
*/
#ifdef ULTRA_HAS_POPULATION_COUNT
static inline unsigned int hweight64(unsigned long w)
{
unsigned int res;
__asm__ ("popc %1,%0" : "=r" (res) : "r" (w));
return res;
}
static inline unsigned int hweight32(unsigned int w)
{
unsigned int res;
__asm__ ("popc %1,%0" : "=r" (res) : "r" (w & 0xffffffff));
return res;
}
static inline unsigned int hweight16(unsigned int w)
{
unsigned int res;
__asm__ ("popc %1,%0" : "=r" (res) : "r" (w & 0xffff));
return res;
}
static inline unsigned int hweight8(unsigned int w)
{
unsigned int res;
__asm__ ("popc %1,%0" : "=r" (res) : "r" (w & 0xff));
return res;
}
#else
#define hweight64(x) generic_hweight64(x)
#define hweight32(x) generic_hweight32(x)
#define hweight16(x) generic_hweight16(x)
#define hweight8(x) generic_hweight8(x)
#endif
#endif /* __KERNEL__ */
/**
* find_next_bit - find the next set bit in a memory region
* @addr: The address to base the search on
* @offset: The bitnumber to start searching at
* @size: The maximum size to search
*/
extern unsigned long find_next_bit(const unsigned long *, unsigned long,
unsigned long);
/**
* find_first_bit - find the first set bit in a memory region
* @addr: The address to start the search at
* @size: The maximum size to search
*
* Returns the bit-number of the first set bit, not the number of the byte
* containing a bit.
*/
#define find_first_bit(addr, size) \
find_next_bit((addr), (size), 0)
/* find_next_zero_bit() finds the first zero bit in a bit string of length
* 'size' bits, starting the search at bit 'offset'. This is largely based
* on Linus's ALPHA routines, which are pretty portable BTW.
*/
extern unsigned long find_next_zero_bit(const unsigned long *,
unsigned long, unsigned long);
#define find_first_zero_bit(addr, size) \
find_next_zero_bit((addr), (size), 0)
#define test_and_set_le_bit(nr,addr) \
test_and_set_bit((nr) ^ 0x38, (addr))
#define test_and_clear_le_bit(nr,addr) \
test_and_clear_bit((nr) ^ 0x38, (addr))
static inline int test_le_bit(int nr, __const__ unsigned long * addr)
{
int mask;
__const__ unsigned char *ADDR = (__const__ unsigned char *) addr;
ADDR += nr >> 3;
mask = 1 << (nr & 0x07);
return ((mask & *ADDR) != 0);
}
#define find_first_zero_le_bit(addr, size) \
find_next_zero_le_bit((addr), (size), 0)
extern unsigned long find_next_zero_le_bit(unsigned long *, unsigned long, unsigned long);
#ifdef __KERNEL__
#define __set_le_bit(nr, addr) \
__set_bit((nr) ^ 0x38, (addr))
#define __clear_le_bit(nr, addr) \
__clear_bit((nr) ^ 0x38, (addr))
#define __test_and_clear_le_bit(nr, addr) \
__test_and_clear_bit((nr) ^ 0x38, (addr))
#define __test_and_set_le_bit(nr, addr) \
__test_and_set_bit((nr) ^ 0x38, (addr))
#define ext2_set_bit(nr,addr) \
__test_and_set_le_bit((nr),(unsigned long *)(addr))
#define ext2_set_bit_atomic(lock,nr,addr) \
test_and_set_le_bit((nr),(unsigned long *)(addr))
#define ext2_clear_bit(nr,addr) \
__test_and_clear_le_bit((nr),(unsigned long *)(addr))
#define ext2_clear_bit_atomic(lock,nr,addr) \
test_and_clear_le_bit((nr),(unsigned long *)(addr))
#define ext2_test_bit(nr,addr) \
test_le_bit((nr),(unsigned long *)(addr))
#define ext2_find_first_zero_bit(addr, size) \
find_first_zero_le_bit((unsigned long *)(addr), (size))
#define ext2_find_next_zero_bit(addr, size, off) \
find_next_zero_le_bit((unsigned long *)(addr), (size), (off))
/* Bitmap functions for the minix filesystem. */
#define minix_test_and_set_bit(nr,addr) \
test_and_set_bit((nr),(unsigned long *)(addr))
#define minix_set_bit(nr,addr) \
set_bit((nr),(unsigned long *)(addr))
#define minix_test_and_clear_bit(nr,addr) \
test_and_clear_bit((nr),(unsigned long *)(addr))
#define minix_test_bit(nr,addr) \
test_bit((nr),(unsigned long *)(addr))
#define minix_find_first_zero_bit(addr,size) \
find_first_zero_bit((unsigned long *)(addr),(size))
#endif /* __KERNEL__ */
#endif /* defined(_SPARC64_BITOPS_H) */
|