summaryrefslogblamecommitdiffstats
path: root/fdisks/gpt.c
blob: 40cadb1cdc853ca368a5a16a41bcd09b97cb0f6f (plain) (tree)
1
2
3
4
5
6
7
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025
1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079
1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133
1134
1135
1136
1137
1138
1139
1140
1141
1142
1143
1144
1145
1146
1147
1148
1149
1150
1151
1152
1153
1154
1155
1156
1157
1158
1159
1160
1161
1162
1163
1164
1165
1166
1167
1168
1169
1170
1171
1172
1173
1174
1175
1176
1177
1178
1179
1180
1181
1182
1183
1184
1185
1186
1187
1188
1189
1190
1191
1192
1193
1194
1195
1196
1197
1198
1199
1200
1201
1202
1203
1204
1205
1206
1207
1208
1209
1210
1211
1212
1213
1214
1215
1216
1217
1218
1219
1220
1221
1222
1223
1224
1225
  





                                                                      














                                                                            






                     




                        

                  
 




                   
                
                   
                   


















































































































































































































                                                                                             

 

































































































                                                                                    
 

                      

                                           
                                                                   

                         
 
                               




                                                                 
                               
                                                                                      
                                   
         
                 

 

                                                                
 
                                              
 

                                                

 



                                                                                     
 




                                                                 
                            
                                             
                            











































































































                                                                                       
         




































































                                                                                         

 



                                                                    
 

                                                                    
 








































                                                                                 
         

                 

 


                                                      
   
                                                                                    
 
                   
 




                                                                       
         

                 

 



                                                                             
 


































                                                                                   
                         































                                                                                    

 



                                                                                      
 










                                                                       
         

                             
 





























































































































































































































































































































































































































































































                                                                                          
                                                                       

                                                                   
                               



                                                         
                               



                                                 

                 
























































                                                                                                  
                                                 



















































































































                                                                                              
/*
 * Copyright (C) 2007 Karel Zak <kzak@redhat.com>
 * Copyright (C) 2012 Davidlohr Bueso <dave@gnu.org>
 *
 * GUID Partition Table (GPT) support. Based on UEFI Specs 2.3.1
 * Chapter 5: GUID Partition Table (GPT) Disk Layout (Jun 27th, 2012).
 * Some ideas and inspiration from GNU parted and gptfdisk.
 *
 * This program is free software; you can redistribute it and/or modify
 * it under the terms of the GNU General Public License as published by
 * the Free Software Foundation; either version 2 of the License, or
 * (at your option) any later version.
 *
 * This program is distributed in the hope that it will be useful,
 * but WITHOUT ANY WARRANTY; without even the implied warranty of
 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
 * GNU General Public License for more details.
 *
 * You should have received a copy of the GNU General Public License
 * along with this program; if not, write to the Free Software
 * Foundation, Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301, USA
 *
 */

#include <stdio.h>
#include <string.h>
#include <stdlib.h>
#include <inttypes.h>
#include <sys/stat.h>
#include <sys/utsname.h>
#include <sys/types.h>
#include <fcntl.h>
#include <unistd.h>
#include <errno.h>
#include <ctype.h>
#include <uuid.h>

#include "nls.h"
#include "xalloc.h"
#include "common.h"
#include "fdisk.h"
#include "crc32.h"
#include "gpt.h"
#include "blkdev.h"
#include "bitops.h"
#include "strutils.h"

#define GPT_HEADER_SIGNATURE 0x5452415020494645LL /* EFI PART */
#define GPT_HEADER_REVISION_V1_02 0x00010200
#define GPT_HEADER_REVISION_V1_00 0x00010000
#define GPT_HEADER_REVISION_V0_99 0x00009900

#define GPT_PMBR_LBA        0
#define GPT_MBR_PROTECTIVE  1
#define GPT_MBR_HYBRID      2

#define GPT_PRIMARY_PARTITION_TABLE_LBA 0x00000001

#define EFI_PMBR_OSTYPE     0xEE
#define MSDOS_MBR_SIGNATURE 0xAA55
#define GPT_PART_NAME_LEN 72 / sizeof(uint16_t)

/* Globally unique identifier */
struct gpt_guid {
	uint32_t   time_low;
	uint16_t   time_mid;
	uint16_t   time_hi_and_version;
	uint8_t    clock_seq_hi;
	uint8_t    clock_seq_low;
	uint8_t    node[6];
};


/* only checking that the GUID is 0 is enough to verify an empty partition. */
#define GPT_UNUSED_ENTRY_GUID						\
	((struct gpt_guid) { 0x00000000, 0x0000, 0x0000, 0x00, 0x00,	\
			     { 0x00, 0x00, 0x00, 0x00, 0x00, 0x00 }})

/* Linux native partition type */
#define GPT_DEFAULT_ENTRY_GUID						\
	((struct gpt_guid) { 0x0FC63DAF, 0x8483, 0x4772, 0x8E, 0x79,	\
			     { 0x3D, 0x69, 0xD8, 0x47, 0x7D, 0xE4 }})


/*
 * Attribute bits
 */
struct gpt_attr {
	uint64_t            required_to_function:1;
	uint64_t            no_blockio_protocol:1;
	uint64_t            legacy_bios_bootable:1;
	uint64_t            reserved:45;
	uint64_t            guid_secific:16;
}  __attribute__ ((packed));

/* The GPT Partition entry array contains an array of GPT entries. */
struct gpt_entry {
	struct gpt_guid   partition_type_guid; /* purpose and type of the partition */
	struct gpt_guid   unique_partition_guid;
	uint64_t            lba_start;
	uint64_t            lba_end;
	struct gpt_attr     attr;
	uint16_t            partition_name[GPT_PART_NAME_LEN];
}  __attribute__ ((packed));

/* GPT header */
struct gpt_header {
	uint64_t            signature; /* header identification */
	uint32_t            revision; /* header version */
	uint32_t            size; /* in bytes */
	uint32_t            crc32; /* header CRC checksum */
	uint32_t            reserved1; /* must be 0 */
	uint64_t            my_lba; /* LBA that contains this struct (LBA 1) */
	uint64_t            alternative_lba; /* backup GPT header */
	uint64_t            first_usable_lba; /* first usable logical block for partitions */
	uint64_t            last_usable_lba; /* last usable logical block for partitions */
	struct gpt_guid   disk_guid; /* unique disk identifier */
	uint64_t            partition_entry_lba; /* stat LBA of the partition entry array */
	uint32_t            npartition_entries; /* total partition entries - normally 128 */
	uint32_t            sizeof_partition_entry; /* bytes for each GUID pt */
	uint32_t            partition_entry_array_crc32; /* partition CRC checksum */
	uint8_t             reserved2[512 - 92]; /* must be 0 */
} __attribute__ ((packed));

struct gpt_record {
	uint8_t             boot_indicator; /* unused by EFI, set to 0x80 for bootable */
	uint8_t             start_head; /* unused by EFI, pt start in CHS */
	uint8_t             start_sector; /* unused by EFI, pt start in CHS */
	uint8_t             start_track;
	uint8_t             os_type; /* EFI and legacy non-EFI OS types */
	uint8_t             end_head; /* unused by EFI, pt end in CHS */
	uint8_t             end_sector; /* unused by EFI, pt end in CHS */
	uint8_t             end_track; /* unused by EFI, pt end in CHS */
	uint32_t            starting_lba; /* used by EFI - start addr of the on disk pt */
	uint32_t            size_in_lba; /* used by EFI - size of pt in LBA */
} __attribute__ ((packed));

/* Protected MBR and legacy MBR share same structure */
struct gpt_legacy_mbr {
	uint8_t             boot_code[440];
	uint32_t            unique_mbr_signature;
	uint16_t            unknown;
	struct gpt_record   partition_record[4];
	uint16_t            signature;
} __attribute__ ((packed));

/*
 * Here be dragons!
 * See: http://en.wikipedia.org/wiki/GUID_Partition_Table#Partition_type_GUIDs
 */
#define DEF_GUID(_u, _n) \
	{ \
		.typestr = (_u), \
		.name = (_n),    \
	}

static struct fdisk_parttype gpt_parttypes[] =
{
	/* Generic OS */
	DEF_GUID("C12A7328-F81F-11D2-BA4B-00A0C93EC93B", N_("EFI System")),

	DEF_GUID("024DEE41-33E7-11D3-9D69-0008C781F39F", N_("MBR partition scheme")),
	/* Hah!IdontneedEFI */
	DEF_GUID("21686148-6449-6E6F-744E-656564454649", N_("BIOS boot partition")),

	/* Windows */
	DEF_GUID("E3C9E316-0B5C-4DB8-817D-F92DF00215AE", N_("Microsoft reserved")),
	DEF_GUID("EBD0A0A2-B9E5-4433-87C0-68B6B72699C7", N_("Microsoft basic data")),
	DEF_GUID("5808C8AA-7E8F-42E0-85D2-E1E90434CFB3", N_("Microsoft LDM metadata")),
	DEF_GUID("AF9B60A0-1431-4F62-BC68-3311714A69AD", N_("Microsoft LDM data")),
	DEF_GUID("DE94BBA4-06D1-4D40-A16A-BFD50179D6AC", N_("Windows recovery evironmnet")),
	DEF_GUID("37AFFC90-EF7D-4E96-91C3-2D7AE055B174", N_("IBM General Parallel Fs")),

	/* HP-UX */
	DEF_GUID("75894C1E-3AEB-11D3-B7C1-7B03A0000000", N_("HP-UX data partition")),
	DEF_GUID("E2A1E728-32E3-11D6-A682-7B03A0000000", N_("HP-UX service partition")),

	/* Linux */
	DEF_GUID("0FC63DAF-8483-4772-8E79-3D69D8477DE4", N_("Linux filesystem")),
	DEF_GUID("A19D880F-05FC-4D3B-A006-743F0F84911E", N_("Linux RAID")),
	DEF_GUID("0657FD6D-A4AB-43C4-84E5-0933C84B4F4F", N_("Linux swap")),
	DEF_GUID("E6D6D379-F507-44C2-A23C-238F2A3DF928", N_("Linux LVM")),
	DEF_GUID("8DA63339-0007-60C0-C436-083AC8230908", N_("Linux reserved")),

      /* FreeBSD */
	DEF_GUID("516E7CB4-6ECF-11D6-8FF8-00022D09712B", N_("FreeBSD data")),
	DEF_GUID("83BD6B9D-7F41-11DC-BE0B-001560B84F0F", N_("FreeBSD boot")),
	DEF_GUID("516E7CB5-6ECF-11D6-8FF8-00022D09712B", N_("FreeBSD swap")),
	DEF_GUID("516E7CB6-6ECF-11D6-8FF8-00022D09712B", N_("FreeBSD UFS")),
	DEF_GUID("516E7CBA-6ECF-11D6-8FF8-00022D09712B", N_("FreeBSD ZFS")),
	DEF_GUID("516E7CB8-6ECF-11D6-8FF8-00022D09712B", N_("FreeBSD Vinum")),

	/* Apple OSX */
	DEF_GUID("48465300-0000-11AA-AA11-00306543ECAC", N_("Apple HFS/HFS+")),
	DEF_GUID("55465300-0000-11AA-AA11-00306543ECAC", N_("Apple UFS")),
	DEF_GUID("52414944-0000-11AA-AA11-00306543ECAC", N_("Apple RAID")),
	DEF_GUID("52414944-5F4F-11AA-AA11-00306543ECAC", N_("Apple RAID offline")),
	DEF_GUID("426F6F74-0000-11AA-AA11-00306543ECAC", N_("Apple boot")),
	DEF_GUID("4C616265-6C00-11AA-AA11-00306543ECAC", N_("Apple label")),
	DEF_GUID("5265636F-7665-11AA-AA11-00306543ECAC", N_("Apple TV recovery")),
	DEF_GUID("53746F72-6167-11AA-AA11-00306543ECAC", N_("Apple Core storage")),

	/* Solaris */
	DEF_GUID("6A82CB45-1DD2-11B2-99A6-080020736631", N_("Solaris boot")),
	DEF_GUID("6A85CF4D-1DD2-11B2-99A6-080020736631", N_("Solaris root")),
	/* same as Apple ZFS */
	DEF_GUID("6A898CC3-1DD2-11B2-99A6-080020736631", N_("Solaris /usr & Apple ZFS")),
	DEF_GUID("6A87C46F-1DD2-11B2-99A6-080020736631", N_("Solaris swap")),
	DEF_GUID("6A8B642B-1DD2-11B2-99A6-080020736631", N_("Solaris backup")),
	DEF_GUID("6A8EF2E9-1DD2-11B2-99A6-080020736631", N_("Solaris /var")),
	DEF_GUID("6A90BA39-1DD2-11B2-99A6-080020736631", N_("Solaris /home")),
	DEF_GUID("6A9283A5-1DD2-11B2-99A6-080020736631", N_("Solaris alternate sector")),
	DEF_GUID("6A945A3B-1DD2-11B2-99A6-080020736631", N_("Solaris reserved 1")),
	DEF_GUID("6A9630D1-1DD2-11B2-99A6-080020736631", N_("Solaris reserved 2")),
	DEF_GUID("6A980767-1DD2-11B2-99A6-080020736631", N_("Solaris reserved 3")),
	DEF_GUID("6A96237F-1DD2-11B2-99A6-080020736631", N_("Solaris reserved 4")),
	DEF_GUID("6A8D2AC7-1DD2-11B2-99A6-080020736631", N_("Solaris reserved 5")),

	/* NetBSD */
	DEF_GUID("49F48D32-B10E-11DC-B99B-0019D1879648", N_("NetBSD swap")),
	DEF_GUID("49F48D5A-B10E-11DC-B99B-0019D1879648", N_("NetBSD FFS")),
	DEF_GUID("49F48D82-B10E-11DC-B99B-0019D1879648", N_("NetBSD LFS")),
	DEF_GUID("2DB519C4-B10E-11DC-B99B-0019D1879648", N_("NetBSD concatenated")),
	DEF_GUID("2DB519EC-B10E-11DC-B99B-0019D1879648", N_("NetBSD encrypted")),
	DEF_GUID("49F48DAA-B10E-11DC-B99B-0019D1879648", N_("NetBSD RAID")),

	/* ChromeOS */
	DEF_GUID("FE3A2A5D-4F32-41A7-B725-ACCC3285A309", N_("ChromeOS kernel")),
	DEF_GUID("3CB8E202-3B7E-47DD-8A3C-7FF2A13CFCEC", N_("ChromeOS root fs")),
	DEF_GUID("2E0A753D-9E48-43B0-8337-B15192CB1B5E", N_("ChromeOS reserved")),

	/* MidnightBSD */
	DEF_GUID("85D5E45A-237C-11E1-B4B3-E89A8F7FC3A7", N_("MidnightBSD data")),
	DEF_GUID("85D5E45E-237C-11E1-B4B3-E89A8F7FC3A7", N_("MidnightBSD boot")),
	DEF_GUID("85D5E45B-237C-11E1-B4B3-E89A8F7FC3A7", N_("MidnightBSD swap")),
	DEF_GUID("0394Ef8B-237C-11E1-B4B3-E89A8F7FC3A7", N_("MidnightBSD UFS")),
	DEF_GUID("85D5E45D-237C-11E1-B4B3-E89A8F7FC3A7", N_("MidnightBSD ZFS")),
	DEF_GUID("85D5E45C-237C-11E1-B4B3-E89A8F7FC3A7", N_("MidnightBSD Vinum")),
};

/* primary GPT header */
static struct gpt_header *pheader = NULL;
/* backup GPT header */
static struct gpt_header *bheader = NULL;
/* partition entry array */
static struct gpt_entry *ents = NULL;

/*
 * UUID is traditionally 16 byte big-endian array, except Intel EFI
 * specification where the UUID is a structure of little-endian fields.
 */
static void swap_efi_guid(struct gpt_guid *uid)
{
	uid->time_low = swab32(uid->time_low);
	uid->time_mid = swab16(uid->time_mid);
	uid->time_hi_and_version = swab16(uid->time_hi_and_version);
}

static int string_to_uuid(const char *in, struct gpt_guid *uuid)
{
	if (uuid_parse(in, (unsigned char *) uuid))
		return -1;

	swap_efi_guid(uuid);
	return 0;
}

static void uuid_to_string(struct gpt_guid *uuid, char *out)
{
	uuid_unparse_upper((unsigned char *) uuid, out);
}

static const char *gpt_get_header_revstr(struct gpt_header *header)
{
	if (!header)
		goto unknown;

	switch (header->revision) {
	case GPT_HEADER_REVISION_V1_02:
		return "1.2";
	case GPT_HEADER_REVISION_V1_00:
		return "1.0";
	case GPT_HEADER_REVISION_V0_99:
		return "0.99";
	default:
		goto unknown;
	}

unknown:
	return "unknown";
}

static inline int partition_unused(struct gpt_entry e)
{
	return !memcmp(&e.partition_type_guid, &GPT_UNUSED_ENTRY_GUID,
			sizeof(struct gpt_guid));
}

/*
 * Checks if there is a valid protective MBR partition table.
 * Returns 0 if it is invalid or failure. Otherwise, return
 * GPT_MBR_PROTECTIVE or GPT_MBR_HYBRID, depeding on the detection.
 */
static int valid_pmbr(struct fdisk_context *cxt)
{
	int i, ret = 0; /* invalid by default */
	struct gpt_legacy_mbr *pmbr = NULL;

	if (!cxt->firstsector)
		goto done;

	pmbr = (struct gpt_legacy_mbr *) cxt->firstsector;

	if (pmbr->signature != cpu_to_le64(MSDOS_MBR_SIGNATURE))
		goto done;

	/* LBA of the GPT partition header */
	if (pmbr->partition_record[0].starting_lba !=
	    cpu_to_le32(GPT_PRIMARY_PARTITION_TABLE_LBA))
		goto done;

	/* seems like a valid MBR was found, check DOS primary partitions */
	for (i = 0; i < 4; i++)
		if (pmbr->partition_record[i].os_type == EFI_PMBR_OSTYPE) {
			/*
			 * Ok, we at least know that there's a protective MBR,
			 * now check if there are other partition types for
			 * hybrid MBR.
			 */
			ret = GPT_MBR_PROTECTIVE;
			goto check_hybrid;
		}

check_hybrid:
	if (ret != GPT_MBR_PROTECTIVE)
		goto done;
	for (i = 0 ; i < 4; i++)
		if ((pmbr->partition_record[i].os_type != EFI_PMBR_OSTYPE) &&
		    (pmbr->partition_record[i].os_type != 0x00))
			ret = GPT_MBR_HYBRID;

	/*
	 * Protective MBRs take up the lesser of the whole disk
	 * or 2 TiB (32bit LBA), ignoring the rest of the disk.
	 *
	 * Hybrid MBRs do not necessarily comply with this.
	 */
	if (ret == GPT_MBR_PROTECTIVE)
		if (pmbr->partition_record[0].size_in_lba !=
		    cpu_to_le32(min((uint32_t) cxt->total_sectors - 1, 0xFFFFFFFF)))
			ret = 0;
done:
	return ret;
}

static uint64_t last_lba(struct fdisk_context *cxt)
{
	struct stat s;

	memset(&s, 0, sizeof(s));
	if (fstat(cxt->dev_fd, &s) == -1) {
		fprintf(stderr, "last_lba() could not stat: %m\n");
		return 0;
	}

	if (S_ISBLK(s.st_mode))
		return cxt->total_sectors - 1;
	else if (S_ISREG(s.st_mode)) {
		uint64_t sectors = s.st_size >> cxt->sector_size;
		return (sectors / cxt->sector_size) - 1ULL;
	} else {
		fprintf(stderr,
			"last_lba(): I don't know how to handle files with mode %o\n",
			s.st_mode);
	}
	return 0;
}

static ssize_t read_lba(struct fdisk_context *cxt, uint64_t lba,
			void *buffer, const size_t bytes)
{
	off_t offset = lba * cxt->sector_size;

	lseek(cxt->dev_fd, offset, SEEK_SET);
	return read(cxt->dev_fd, buffer, bytes);
}


/* Returns the GPT entry array */
static struct gpt_entry *gpt_get_entries(struct fdisk_context *cxt,
					 struct gpt_header *header, const ssize_t sz)
{
	struct gpt_entry *ret = xcalloc(1, sizeof(*ents) * sz);
	off_t offset = le64_to_cpu(header->partition_entry_lba) *
		       cxt->sector_size;

	if (offset != lseek(cxt->dev_fd, offset, SEEK_SET))
		return NULL;
	if (sz != read(cxt->dev_fd, ret, sz))
		return NULL;

	return ret;
}

static inline uint32_t count_crc32(const unsigned char *buf, size_t len)
{
	return (crc32(~0L, buf, len) ^ ~0L);
}

/*
 * Recompute header and partition array 32bit CRC checksums.
 * This function does not fail - if there's corruption, then it
 * will be reported when checksuming it again (ie: probing or verify).
 */
static void gpt_recompute_crc(struct gpt_header *header, struct gpt_entry *e)
{
	uint32_t crc = 0;
	size_t entry_sz = 0;

	if (!header)
		return;

	/* header CRC */
	header->crc32 = 0;
	crc = count_crc32((unsigned char *) header, le32_to_cpu(header->size));
	header->crc32 = cpu_to_le32(crc);

	/* partition entry array CRC */
	header->partition_entry_array_crc32 = 0;
	entry_sz = le32_to_cpu(header->npartition_entries) *
		le32_to_cpu(header->sizeof_partition_entry);

	crc = count_crc32((unsigned char *) e, entry_sz);
	header->partition_entry_array_crc32 = cpu_to_le32(crc);
}

/*
 * Compute the 32bit CRC checksum of the partition table header.
 * Returns 1 if it is valid, otherwise 0.
 */
static int gpt_check_header_crc(struct gpt_header *header)
{
	uint32_t crc, orgcrc = le32_to_cpu(header->crc32);

	header->crc32 = 0;
	crc = count_crc32((unsigned char *) header, le32_to_cpu(header->size));
	header->crc32 = cpu_to_le32(orgcrc);

	/*
	 * If we have checksum mismatch it may be due to stale data,
	 * like a partition being added or deleted. Recompute the CRC again
	 * and make sure this is not the case.
	 */
	if (crc != le32_to_cpu(header->crc32)) {
		gpt_recompute_crc(header, ents);
		orgcrc = le32_to_cpu(header->crc32);
		header->crc32 = 0;
		crc = count_crc32((unsigned char *) header, le32_to_cpu(header->size));
		header->crc32 = cpu_to_le32(orgcrc);

		return crc == le32_to_cpu(header->crc32);
	} else
		return 1;
}

/*
 * It initializes the partition entry array.
 * Returns 1 if the checksum is valid, otherwise 0.
 */
static int gpt_check_entryarr_crc(struct fdisk_context *cxt, struct gpt_header *header)
{
	int ret = 0;
	ssize_t entry_sz;
	uint32_t crc;

	if (!header)
		goto done;

	entry_sz = le32_to_cpu(header->npartition_entries) *
		   le32_to_cpu(header->sizeof_partition_entry);

	if (!entry_sz)
		goto done;

	/* read header entries */
	if (!ents)
		ents = gpt_get_entries(cxt, header, entry_sz);
	if (!ents)
		goto done;

	crc = count_crc32((unsigned char *) ents, entry_sz);
	ret = (crc == le32_to_cpu(header->partition_entry_array_crc32));
done:
	return ret;
}

static int gpt_check_lba_sanity(struct fdisk_context *cxt, struct gpt_header *header)
{
	int ret = 0;
	uint64_t lu, fu, lastlba = last_lba(cxt);

	fu = le64_to_cpu(header->first_usable_lba);
	lu = le64_to_cpu(header->last_usable_lba);

	/* check if first and last usable LBA make sense */
	if (lu < fu) {
		DBG(LABEL, dbgprint("error: header last LBA is before first LBA"));
		goto done;
	}

	/* check if first and last usable LBAs with the disk's last LBA */
	if (fu > lastlba || lu > lastlba) {
		DBG(LABEL, dbgprint("error: header LBAs are after the disk's last LBA"));
		goto done;
	}

	/* the header has to be outside usable range */
	if (fu < GPT_PRIMARY_PARTITION_TABLE_LBA &&
	    GPT_PRIMARY_PARTITION_TABLE_LBA < lu) {
		DBG(LABEL, dbgprint("error: header outside of usable range"));
		goto done;
	}

	ret = 1; /* sane */
done:
	return ret;
}

/* Check if there is a valid header signature */
static int gpt_check_signature(struct gpt_header *header)
{
	return header->signature == cpu_to_le64(GPT_HEADER_SIGNATURE);
}

/*
 * Return the specified GPT Header, or NULL upon failure/invalid.
 * Note that all tests must pass to ensure a valid header,
 * we do not rely on only testing the signature for a valid probe.
 */
static struct gpt_header *gpt_get_header(struct fdisk_context *cxt, uint64_t lba)
{
	struct gpt_header *header = NULL;

	if (!cxt)
		return NULL;

	header = xcalloc(1, sizeof(*header));

	/* read specified LBA */
	if (!read_lba(cxt, lba, header, sizeof(struct gpt_header)))
		goto invalid;

	if (!gpt_check_signature(header))
		goto invalid;

	if (!gpt_check_header_crc(header) ||
	    !gpt_check_entryarr_crc(cxt, header))
		goto invalid;

	if (!gpt_check_lba_sanity(cxt, header))
		goto invalid;

	/* valid header must be at MyLBA */
	if (le64_to_cpu(header->my_lba) != lba)
		goto invalid;

	return header;
invalid:
	free(header);
	return NULL;
}

/*
 * Return the Backup GPT Header, or NULL upon failure/invalid.
 */
static struct gpt_header *gpt_get_bheader(struct fdisk_context *cxt)
{
	return gpt_get_header(cxt, last_lba(cxt));
}

/*
 * Return the Primary GPT Header, or NULL upon failure/invalid.
 */
static struct gpt_header *gpt_get_pheader(struct fdisk_context *cxt)
{
	return gpt_get_header(cxt, GPT_PRIMARY_PARTITION_TABLE_LBA);
}

/*
 * Returns the number of partitions that are in use.
 */
static uint32_t partitions_in_use(struct gpt_header *header, struct gpt_entry *e)
{
	uint32_t i, used = 0;

	if (!header || ! e)
		return 0;

	for (i = 0; i < le32_to_cpu(header->npartition_entries); i++)
		if (!partition_unused(e[i]))
			used++;
	return used;
}

/*
 * Returns the partition length, or 0 if end is before beginning.
 */
static uint64_t partition_size(struct gpt_entry e)
{
	uint64_t start = le64_to_cpu(e.lba_start);
	uint64_t end = le64_to_cpu(e.lba_end);

	return start > end ? 0 : end - start + 1ULL;
}

/*
 * Check if a partition is too big for the disk (sectors).
 * Returns the faulting partition number, otherwise 0.
 */
static int partition_check_too_big(struct gpt_header *header,
				   struct gpt_entry *e, uint64_t sectors)
{
	uint32_t i;

	for (i = 0; i < le32_to_cpu(header->npartition_entries); i++) {
		if (partition_unused(e[i]))
			continue;
		if (e[i].lba_end >= sectors)
			return i + 1;
	}

	return 0;
}

/*
 * Check if a partition ends before it begins
 * Returns the faulting partition number, otherwise 0.
 */
static int partition_start_after_end(struct gpt_header *header, struct gpt_entry *e)
{
	uint32_t i;

	for (i = 0; i < le32_to_cpu(header->npartition_entries); i++) {
		if (partition_unused(e[i]))
			continue;
		if (e[i].lba_start > e[i].lba_end)
			return i + 1;
	}

	return 0;
}

/*
 * Check if partition e1 overlaps with partition e2
 */
static inline int partition_overlap(struct gpt_entry e1, struct gpt_entry e2)
{
	return (e1.lba_start && e2.lba_start &&
		(e1.lba_start <= e2.lba_end) != (e1.lba_end < e2.lba_start));
}

/*
 * Find any paritions that overlap.
 */
static int partition_check_overlaps(struct gpt_header *header, struct gpt_entry *e)
{
	uint32_t i, j;

	for (i = 0; i < le32_to_cpu(header->npartition_entries); i++)
		for (j = 0; j < i; j++) {
			if (partition_unused(e[i]) ||
			    partition_unused(e[j]))
				continue;
			if (partition_overlap(e[i], e[j]))
				/* two overlaping partitions is enough! */
				return i + 1;
		}

	return 0;
}

/*
 * Find the first available block after the starting point; returns 0 if
 * there are no available blocks left, or error. From gdisk.
 */
static uint64_t find_first_available(struct gpt_header *header,
				     struct gpt_entry *e, uint64_t start)
{
	uint64_t first;
	uint32_t i, first_moved = 0;

	if (!header || !e)
		return 0;

	/*
	 * Begin from the specified starting point or from the first usable
	 * LBA, whichever is greater...
	 */
	first = start < header->first_usable_lba ? header->first_usable_lba : start;

	/*
	 * Now search through all partitions; if first is within an
	 * existing partition, move it to the next sector after that
	 * partition and repeat. If first was moved, set firstMoved
	 * flag; repeat until firstMoved is not set, so as to catch
	 * cases where partitions are out of sequential order....
	 */
	do {
		first_moved = 0;
		for (i = 0; i < le32_to_cpu(header->npartition_entries); i++) {
			if (partition_unused(e[i]))
				continue;
			if (first < e[i].lba_start)
				continue;
			if (first <= e[i].lba_end) {
				first = e[i].lba_end + 1;
				first_moved = 1;
			}
		}
	} while (first_moved == 1);

	if (first > header->last_usable_lba)
		first = 0;

	return first;
}


/* Returns last available sector in the free space pointed to by start. From gdisk. */
static uint64_t find_last_free(struct gpt_header *header,
			       struct gpt_entry *e, uint64_t start)
{
	uint32_t i;
	uint64_t nearest_start;

	if (!header || !e)
		return 0;

	nearest_start = header->last_usable_lba;
	for (i = 0; i < le32_to_cpu(header->npartition_entries); i++) {
		if (nearest_start > e[i].lba_start &&
		    e[i].lba_start > start)
			nearest_start = e[i].lba_start - 1;
	}

	return nearest_start;
}

/* Returns the last free sector on the disk. From gdisk. */
static uint64_t find_last_free_sector(struct gpt_header *header,
				      struct gpt_entry *e)
{
	uint32_t i, last_moved;
	uint64_t last = 0;

	if (!header || !e)
		goto done;

	/* start by assuming the last usable LBA is available */
	last = header->last_usable_lba;
	do {
		last_moved = 0;
		for (i = 0; i < le32_to_cpu(header->npartition_entries); i++) {
			if ((last >= e[i].lba_start) &&
			    (last <= e[i].lba_end)) {
				last = e[i].lba_start - 1;
				last_moved = 1;
			}
		}
	} while (last_moved == 1);
done:
	return last;
}

/*
 * Finds the first available sector in the largest block of unallocated
 * space on the disk. Returns 0 if there are no available blocks left.
 * From gdisk.
 */
static uint64_t find_first_in_largest(struct gpt_header *header, struct gpt_entry *e)
{
	uint64_t start = 0, first_sect, last_sect;
	uint64_t segment_size, selected_size = 0, selected_segment = 0;

	if (!header || !e)
		goto done;

	do {
		first_sect =  find_first_available(header, e, start);
		if (first_sect != 0) {
			last_sect = find_last_free(header, e, first_sect);
			segment_size = last_sect - first_sect + 1;

			if (segment_size > selected_size) {
				selected_size = segment_size;
				selected_segment = first_sect;
			}
			start = last_sect + 1;
		}
	} while (first_sect != 0);

done:
	return selected_segment;
}

/*
 * Find the total number of free sectors, the number of segments in which
 * they reside, and the size of the largest of those segments. From gdisk.
 */
static uint64_t get_free_sectors(struct fdisk_context *cxt, struct gpt_header *header,
				 struct gpt_entry *e, uint32_t *nsegments,
				 uint64_t *largest_segment)
{
	uint32_t num = 0;
	uint64_t first_sect, last_sect;
	uint64_t largest_seg = 0, segment_sz;
	uint64_t totfound = 0, start = 0; /* starting point for each search */

	if (!cxt->total_sectors)
		goto done;

	do {
		first_sect = find_first_available(header, e, start);
		if (first_sect) {
			last_sect = find_last_free(header, e, first_sect);
			segment_sz = last_sect - first_sect + 1;

			if (segment_sz > largest_seg)
				largest_seg = segment_sz;
			totfound += segment_sz;
			num++;
			start = last_sect + 1;
		}
	} while (first_sect);

done:
	*nsegments = num;
	*largest_segment = largest_seg;

	return totfound;
}

/*
 * Initialize fdisk-specific variables - call once probing passes!
 */
static void gpt_init(void)
{
	disklabel = GPT_LABEL;
	partitions = le32_to_cpu(pheader->npartition_entries);
}

static int gpt_probe_label(struct fdisk_context *cxt)
{
	int mbr_type;

	if (!cxt)
		goto failed;

	mbr_type = valid_pmbr(cxt);
	if (!mbr_type)
		goto failed;

	DBG(LABEL, dbgprint("found a %s MBR", mbr_type == GPT_MBR_PROTECTIVE ?
			    "protective" : "hybrid"));

	pheader = gpt_get_pheader(cxt);

	/*
	 * TODO: If the primary GPT is corrupt, we must check the last LBA of the
	 * device to see if it has a valid GPT Header and point to a valid GPT
	 * Partition Entry Array.
	 * If it points to a valid GPT Partition Entry Array, then software should
	 * restore the primary GPT if allowed by platform policy settings.
	 *
	 * For now we just abort GPT probing!
	 */
	if (!pheader)
		goto failed;

	/* OK, probing passed, now initialize backup header and fdisk variables. */
	bheader = gpt_get_bheader(cxt);
	gpt_init();

	printf(_("\nWARNING: fdisk GPT support is currently new, and therefore "
		 "in an experimental phase. Use at your own discretion.\n\n"));

	return 1;
failed:
	return 0;
}

/*
 * Stolen from libblkid - can be removed once partition semantics
 * are added to the fdisk API.
 */
static char *encode_to_utf8(unsigned char *src, size_t count)
{
	uint16_t c;
	char *dest = xmalloc(count * sizeof(char));
	size_t i, j, len = count;
	memset(dest, 0, sizeof(char) * count);

	for (j = i = 0; i + 2 <= count; i += 2) {
		/* always little endian */
		c = (src[i+1] << 8) | src[i];
		if (c == 0) {
			dest[j] = '\0';
			break;
		} else if (c < 0x80) {
			if (j+1 >= len)
				break;
			dest[j++] = (uint8_t) c;
		} else if (c < 0x800) {
			if (j+2 >= len)
				break;
			dest[j++] = (uint8_t) (0xc0 | (c >> 6));
			dest[j++] = (uint8_t) (0x80 | (c & 0x3f));
		} else {
			if (j+3 >= len)
				break;
			dest[j++] = (uint8_t) (0xe0 | (c >> 12));
			dest[j++] = (uint8_t) (0x80 | ((c >> 6) & 0x3f));
			dest[j++] = (uint8_t) (0x80 | (c & 0x3f));
		}
	}
	dest[j] = '\0';

	return dest;
}

/*
 * List label partitions.
 * This function must currently exist to comply with standard fdisk
 * requirements, but once partition semantics are added to the fdisk
 * API it can be removed for custom implementation (see gpt_label struct).
 */
void gpt_list_table(struct fdisk_context *cxt,
		    int xtra  __attribute__ ((__unused__)))
{
	uint32_t i;
	uint64_t fu = le64_to_cpu(pheader->first_usable_lba);
	uint64_t lu = le64_to_cpu(pheader->last_usable_lba);

	printf("\n#         Start          End    Size  Type            Name\n");

	for (i = 0; i < le32_to_cpu(pheader->npartition_entries); i++) {
		char *name = NULL, *sizestr = NULL;
		uint64_t start = le64_to_cpu(ents[i].lba_start);
		uint64_t size = partition_size(ents[i]);
		struct fdisk_parttype *t;

		if (partition_unused(ents[i]) || !size)
			continue;

		/* the partition has to inside usable range */
		if (start < fu || start + size - 1 > lu)
			continue;

		name = encode_to_utf8((unsigned char *)ents[i].partition_name,
				      sizeof(ents[i].partition_name));
		if (!name)
			continue;
		sizestr = size_to_human_string(SIZE_SUFFIX_1LETTER,
					       size * cxt->sector_size);
		if (!sizestr)
			continue;

		t = fdisk_get_partition_type(cxt, i);

		printf("%2d %12ld %12ld  %6s  %-15.15s %s\n",
		       i+1,
		       ents[i].lba_start,
		       ents[i].lba_end,
		       sizestr,
		       t->name,
		       name);

		free(name);
		free(sizestr);
		fdisk_free_parttype(t);
	}
}

/*
 * Write partitions.
 * Returns 0 on success, or corresponding error otherwise.
 */
static int gpt_write_partitions(struct fdisk_context *cxt,
				struct gpt_header *header, struct gpt_entry *e)
{
	off_t offset = le64_to_cpu(header->partition_entry_lba) * cxt->sector_size;
	uint32_t nparts = le32_to_cpu(header->npartition_entries);
	uint32_t totwrite = nparts * le32_to_cpu(header->sizeof_partition_entry);

	if (offset != lseek(cxt->dev_fd, offset, SEEK_SET))
		goto fail;
	if (totwrite == write(cxt->dev_fd, e, totwrite))
		return 0;
fail:
	return -errno;
}

/*
 * Write a GPT header to a specified LBA
 * Returns 0 on success, or corresponding error otherwise.
 */
static int gpt_write_header(struct fdisk_context *cxt,
			    struct gpt_header *header, uint64_t lba)
{
	off_t offset = lba * cxt->sector_size;

	if (offset != lseek(cxt->dev_fd, offset, SEEK_SET))
		goto fail;
	if (cxt->sector_size ==
	    (size_t) write(cxt->dev_fd, header, cxt->sector_size))
		return 0;
fail:
	return -errno;
}

/*
 * Write the protective MBR.
 * Returns 0 on success, or corresponding error otherwise.
 */
static int gpt_write_pmbr(struct fdisk_context *cxt)
{
	off_t offset;
	struct gpt_legacy_mbr *pmbr = NULL;

	if (!cxt || !cxt->firstsector)
		return -EINVAL;

	pmbr = (struct gpt_legacy_mbr *) cxt->firstsector;

	/* zero out the legacy partitions */
	memset(pmbr->partition_record, 0, sizeof(pmbr->partition_record));

	pmbr->signature = cpu_to_le16(MSDOS_MBR_SIGNATURE);
	pmbr->partition_record[0].os_type      = EFI_PMBR_OSTYPE;
	pmbr->partition_record[0].start_sector = 1;
	pmbr->partition_record[0].end_head     = 0xFE;
	pmbr->partition_record[0].end_sector   = 0xFF;
	pmbr->partition_record[0].end_track    = 0xFF;
	pmbr->partition_record[0].starting_lba = cpu_to_le32(1);

	/*
	 * Set size_in_lba to the size of the disk minus one. If the size of the disk
	 * is too large to be represented by a 32bit LBA (2Tb), set it to 0xFFFFFFFF.
	 */
	if (cxt->total_sectors - 1 > 0xFFFFFFFFULL)
		pmbr->partition_record[0].size_in_lba = cpu_to_le32(0xFFFFFFFF);
	else
		pmbr->partition_record[0].size_in_lba =
			cpu_to_le32(cxt->total_sectors - 1UL);

	offset = GPT_PMBR_LBA * cxt->sector_size;
	if (offset != lseek(cxt->dev_fd, offset, SEEK_SET))
		goto fail;

	if (1 == write(cxt->dev_fd, pmbr, 1))
		return 0;
fail:
	return -errno;
}

/*
 * Writes in-memory GPT and pMBR data to disk.
 * Returns 0 if successful write, otherwise, a corresponding error.
 * Any indication of error will abort the operation.
 */
static int gpt_write_disklabel(struct fdisk_context *cxt)
{
	if (!cxt)
		goto err0;

	/* we do not want to mess up hybrid MBRs by creating a valid pmbr */
	if (valid_pmbr(cxt) == GPT_MBR_HYBRID)
		goto err0;

	/* check that disk is big enough to handle the backup header */
	if (pheader->alternative_lba > cxt->total_sectors)
		goto err0;

	/* check that the backup header is properly placed */
	if (pheader->alternative_lba < cxt->total_sectors - 1)
		/* TODO: correct this (with user authorization) and write */
		goto err0;

	if (partition_check_overlaps(pheader, ents))
		goto err0;

	/* recompute CRCs for both headers */
	gpt_recompute_crc(pheader, ents);
	gpt_recompute_crc(bheader, ents);

	/*
	 * UEFI requires writing in this specific order:
	 *   1) backup partition tables
	 *   2) backup GPT header
	 *   3) primary partition tables
	 *   4) primary GPT header
	 *   5) protective MBR
	 *
	 * If any write fails, we abort the rest.
	 */
	if (gpt_write_partitions(cxt, bheader, ents) != 0)
		goto err1;
	if (gpt_write_header(cxt, bheader, pheader->alternative_lba) != 0)
		goto err1;
	if (gpt_write_partitions(cxt, pheader, ents) != 0)
		goto err1;
	if (gpt_write_header(cxt, pheader, GPT_PRIMARY_PARTITION_TABLE_LBA) != 0)
		goto err1;
	if (gpt_write_pmbr(cxt) != 0)
		goto err1;

	return 0;
err0:
	return -EINVAL;
err1:
	return -errno;
}

/*
 * Verify data integrity and report any found problems for:
 *   - primary and backup header validations
 *   - paritition validations
 */
static int gpt_verify_disklabel(struct fdisk_context *cxt)
{
	int nerror = 0;
	uint64_t ptnum;

	if (!bheader) {
		nerror++;
		printf(_("Disk does not contain a valid backup header.\n"));
	}

	if (!gpt_check_header_crc(pheader)) {
		nerror++;
		printf(_("Invalid primary header CRC checksum.\n"));
	}
	if (bheader && !gpt_check_header_crc(bheader)) {
		nerror++;
		printf(_("Invalid backup header CRC checksum.\n"));
	}

	if (!gpt_check_entryarr_crc(cxt, pheader)) {
		nerror++;
		printf(_("Invalid partition entry checksum.\n"));
	}

	if (!gpt_check_lba_sanity(cxt, pheader)) {
		nerror++;
		printf(_("Invalid primary header LBA sanity checks.\n"));
	}
	if (bheader && !gpt_check_lba_sanity(cxt, bheader)) {
		nerror++;
		printf(_("Invalid backup header LBA sanity checks.\n"));
	}

	if (le64_to_cpu(pheader->my_lba) != GPT_PRIMARY_PARTITION_TABLE_LBA) {
		nerror++;
		printf(_("MyLBA mismatch with real position at primary header.\n"));
	}
	if (bheader && le64_to_cpu(bheader->my_lba) != last_lba(cxt)) {
		nerror++;
		printf(_("MyLBA mismatch with real position at backup header.\n"));

	}

	if (pheader->alternative_lba >= cxt->total_sectors) {
		nerror++;
		printf(_("Disk is to small to hold all data.\n"));
	}

	/*
	 * if the GPT is the primary table, check the alternateLBA
	 * to see if it is a valid GPT
	 */
	if (bheader && (pheader->my_lba != bheader->alternative_lba)) {
		nerror++;
		printf(_("Primary and backup header mismatch.\n"));
	}

	ptnum = partition_check_overlaps(pheader, ents);
	if (ptnum) {
		nerror++;
		printf(_("Partition %ld overlaps with partition %ld.\n"), ptnum, ptnum+1);
	}

	ptnum = partition_check_too_big(pheader, ents, cxt->total_sectors);
	if (ptnum) {
		nerror++;
		printf(_("Partition %ld is too big for the disk.\n"), ptnum);
	}

	ptnum = partition_start_after_end(pheader, ents);
	if (ptnum) {
		nerror++;
		printf(_("Partition %ld ends before it starts.\n"), ptnum);
	}

	if (!nerror) { /* yay :-) */
		uint32_t nsegments = 0;
		uint64_t free_sectors = 0, largest_segment = 0;

		printf(_("No errors detected\n"));
		printf(_("Header version: %s\n"), gpt_get_header_revstr(pheader));
		printf(_("Using %d out of %d partitions\n"),
		       partitions_in_use(pheader, ents),
		       le32_to_cpu(pheader->npartition_entries));

		free_sectors = get_free_sectors(cxt, pheader, ents,
						&nsegments, &largest_segment);
		printf(_("A total of %ld free sectors available in %d segment(s) "
			 "(largest %ld).\n"),
		       free_sectors, nsegments, largest_segment);
	} else
		printf(_("Detected %d error(s).\n"), nerror);

	return 0;
}

/* Delete a single GPT partition, specified by partnum. */
static int gpt_delete_partition(struct fdisk_context *cxt, int partnum)
{
	if (!cxt || partition_unused(ents[partnum]) || partnum < 0)
		return -EINVAL;

	/* hasta la vista, baby! */
	memset(&ents[partnum], 0, sizeof(ents[partnum]));
	if (!partition_unused(ents[partnum]))
		return -EINVAL;
	else {
		gpt_recompute_crc(pheader, ents);
		gpt_recompute_crc(bheader, ents);
	}

	return 0;
}

static void gpt_entry_set_type(struct gpt_entry *e, struct gpt_guid *type)
{
	size_t i;

	/*
	 * Copy corresponding partition type GUID. Only the first three blocks
	 * are endian-aware.
	 */
	e->partition_type_guid.time_low = cpu_to_le32(type->time_low);
	e->partition_type_guid.time_mid = cpu_to_le16(type->time_mid);
	e->partition_type_guid.time_hi_and_version = cpu_to_le16(type->time_hi_and_version);
	e->partition_type_guid.clock_seq_hi = type->clock_seq_hi;
	e->partition_type_guid.clock_seq_low = type->clock_seq_low;
	for (i = 0; i < 6; i++)
		e->partition_type_guid.node[i] = type->node[i];

	DBG(LABEL, fprintf(stderr, "new type: %08X-%04X-%04X-%02X%02X-%02X%02X%02X%02X%02X%02X\n",
		type->time_low, type->time_mid, type->time_hi_and_version,
		type->clock_seq_hi, type->clock_seq_low,
		type->node[0], type->node[1], type->node[2],
		type->node[3], type->node[4], type->node[5]));
}

/*
 * Create a new GPT partition entry, specified by partnum, and with a range
 * of fsect to lsenct sectors, of type t.
 * Returns 0 on success, or negative upon failure.
 */
static int gpt_create_new_partition(int partnum, uint64_t fsect, uint64_t lsect,
				    struct gpt_guid *type,
				    struct gpt_entry *entries)
{
	struct gpt_entry *e = NULL;

	if (fsect > lsect || partnum < 0)
		return -EINVAL;

	e = xcalloc(1, sizeof(*e));
	e->lba_end = cpu_to_le64(lsect);
	e->lba_start = cpu_to_le64(fsect);

	gpt_entry_set_type(e, type);

	/* deal with partition name
	for (i = 0; i < GPT_PART_NAME_LEN; i++)
		e->partition_name[i] =
			cpu_to_le16((uint16_t) gpt_sys_types[sys].name[i]);
	*/

	/*
	 * Any time a new partition entry is created a new GUID must be
	 * generated for that partition, and every partition is guaranteed
	 * to have a unique GUID.
	 */
	uuid_generate_random((unsigned char *) &e->unique_partition_guid);
	swap_efi_guid(&e->unique_partition_guid);

	memcpy(&entries[partnum] , e, sizeof(*e));

	gpt_recompute_crc(pheader, entries);
	gpt_recompute_crc(bheader, entries);

	free(e);
	return 0;
}

/* Performs logical checks to add a new partition entry */
static void gpt_add_partition(struct fdisk_context *cxt, int partnum,
			     struct fdisk_parttype *t)
{
	char msg[256];
	uint32_t tmp;
	uint64_t f0, f1; /* user input ranges for first and last sectors */
	uint64_t def_sect, first_sect, last_sect; /* first and last available sector ranges */
	struct gpt_guid uuid = GPT_DEFAULT_ENTRY_GUID;

	/* check basic tests before even considering adding a new partition */
	if (!cxt || partnum < 0)
		return;
	if (!partition_unused(ents[partnum])) {
		printf(_("Partition %d is already defined. "
			 "Delete it before re-adding it.\n"), partnum +1);
		return;
	}
	if (le32_to_cpu(pheader->npartition_entries) == partitions_in_use(pheader, ents)) {
		printf(_("All partitions are already in use.\n"));
		return;
	}

	if (!get_free_sectors(cxt, pheader, ents, &tmp, &f0)) {
		printf(_("No free sectors available.\n"));
		return;
	}

	first_sect = find_first_available(pheader, ents, 0);
	last_sect  = find_last_free_sector(pheader, ents);
	def_sect   = find_first_in_largest(pheader, ents);

	if (t && t->typestr)
		string_to_uuid(t->typestr, &uuid);

	/* get user input for first and last sectors of the new partition */
	snprintf(msg, sizeof(msg), _("First %s"), str_units(SINGULAR));
	for (;;) {
		f0 = read_int(cxt, first_sect, def_sect, last_sect, 0, msg);
		if (f0 >= first_sect && f0 <= last_sect) {
			last_sect  = find_last_free(pheader, ents, f0);
			snprintf(msg, sizeof(msg), _("Last %s"), str_units(SINGULAR));
			f1 = read_int(cxt, f0, last_sect, last_sect, 0, msg);
			if (f1 >= f0 && f1 <= last_sect)
				break;
		}
	}

	if (gpt_create_new_partition(partnum, f0, f1, &uuid, ents) != 0)
		printf(_("Could not create partition %d\n"), partnum + 1);
	else
		printf(_("Created partition %d\n"), partnum + 1);
}

static struct fdisk_parttype *gpt_get_partition_type(struct fdisk_context *cxt,
						     int i)
{
	struct fdisk_parttype *t;
	struct gpt_guid uuid;
	char str[37];

	if (!cxt || i < 0 || (uint32_t) i >= le32_to_cpu(pheader->npartition_entries))
		return NULL;

	uuid = ents[i].partition_type_guid;
	swap_efi_guid(&uuid);

	uuid_to_string(&uuid, str);
	t = fdisk_get_parttype_from_string(cxt, str);
	if (!t)
		t = fdisk_new_unknown_parttype(0, str);

	return t;
}


static int gpt_set_partition_type(struct fdisk_context *cxt, int i,
				  struct fdisk_parttype *t)
{
	struct gpt_guid uuid;

	if (!cxt || i < 0 || (uint32_t) i >= le32_to_cpu(pheader->npartition_entries) ||
	      !t || !t->typestr || string_to_uuid(t->typestr, &uuid) != 0)
		return -EINVAL;

	gpt_entry_set_type(&ents[i], &uuid);
	gpt_recompute_crc(pheader, ents);
	gpt_recompute_crc(bheader, ents);
	return 0;
}

const struct fdisk_label gpt_label =
{
	.name = "gpt",
	.parttypes = gpt_parttypes,
	.nparttypes = ARRAY_SIZE(gpt_parttypes),

	.probe = gpt_probe_label,
	.write = gpt_write_disklabel,
	.verify = gpt_verify_disklabel,
	.create = NULL,
	.part_add = gpt_add_partition,
	.part_delete = gpt_delete_partition,
	.part_get_type = gpt_get_partition_type,
	.part_set_type = gpt_set_partition_type
};