From c47a61894b35c51bb86a69ddfa638b617452b531 Mon Sep 17 00:00:00 2001 From: J William Piggott Date: Sat, 25 Mar 2017 14:29:24 -0400 Subject: hwclock: remove alpha cmos Remove alpha direct I/O access, use RTC instead: http://marc.info/?l=util-linux-ng&m=141682406902804 Resolves the alpha 2020 issue for util-linux: http://marc.info/?l=util-linux-ng&m=148387021519787 Now it is only the kernel's RTC problem. * sys-utils/hwclock.c: remove alpha cmos * sys-utils/hwclock-cmos.c: same * sys-utils/hwclock.h: same * sys-utils/hwclock.8.in: same Signed-off-by: J William Piggott --- sys-utils/hwclock-cmos.c | 316 ++++++----------------------------------------- 1 file changed, 39 insertions(+), 277 deletions(-) (limited to 'sys-utils/hwclock-cmos.c') diff --git a/sys-utils/hwclock-cmos.c b/sys-utils/hwclock-cmos.c index 4915471bd..7a9d595b3 100644 --- a/sys-utils/hwclock-cmos.c +++ b/sys-utils/hwclock-cmos.c @@ -76,17 +76,8 @@ static int inb(int c __attribute__((__unused__))) return 0; } # endif /* __i386__ __x86_64__ */ -#elif defined(__alpha__) -# ifdef HAVE_SYS_IO_H -# include -# else -/* fails to compile, probably because of u8 etc */ -extern unsigned int inb(unsigned long port); -extern void outb(unsigned char b, unsigned long port); -extern int iopl(int level); -# endif -#else /* __alpha__ */ -# warning "disable cmos access - not i386, x86_64, or alpha" +#else +# warning "disable cmos access - not i386 or x86_64" static void outb(int a __attribute__((__unused__)), int b __attribute__((__unused__))) { @@ -106,201 +97,18 @@ static int inb(int c __attribute__((__unused__))) #define IOPL_NOT_IMPLEMENTED -2 /* - * The epoch. - * - * Unix uses 1900 as epoch for a struct tm, and 1970 for a time_t. But what - * was written to CMOS? - * - * Digital DECstations use 1928 - this is on a mips or alpha Digital Unix - * uses 1952, e.g. on AXPpxi33. Windows NT uses 1980. The ARC console - * expects to boot Windows NT and uses 1980. (But a Ruffian uses 1900, just - * like SRM.) It is reported that ALPHA_PRE_V1_2_SRM_CONSOLE uses 1958. + * POSIX uses 1900 as epoch for a struct tm, and 1970 for a time_t. */ #define TM_EPOCH 1900 -static int cmos_epoch = 1900; -/* - * Martin Ostermann writes: - * - * The problem with the Jensen is twofold: First, it has the clock at a - * different address. Secondly, it has a distinction between "local" and - * normal bus addresses. The local ones pertain to the hardware integrated - * into the chipset, like serial/parallel ports and of course, the RTC. - * Those need to be addressed differently. This is handled fine in the - * kernel, and it's not a problem, since this usually gets totally optimized - * by the compile. But the i/o routines of (g)libc lack this support so far. - * The result of this is, that the old clock program worked only on the - * Jensen when USE_DEV_PORT was defined, but not with the normal inb/outb - * functions. - */ -static int use_dev_port = 0; /* 1 for Jensen */ -static int dev_port_fd; -static unsigned short clock_ctl_addr = 0x70; /* 0x170 for Jensen */ -static unsigned short clock_data_addr = 0x71; /* 0x171 for Jensen */ +static unsigned short clock_ctl_addr = 0x70; +static unsigned short clock_data_addr = 0x71; static int century_byte = 0; /* 0: don't access a century byte * 50 (0x32): usual PC value * 55 (0x37): PS/2 */ -#ifdef __alpha__ -static int funkyTOY = 0; /* 1 for PC164/LX164/SX164 type alpha */ -#endif - -#ifdef __alpha - -static int is_in_cpuinfo(char *fmt, char *str) -{ - FILE *cpuinfo; - char field[256]; - char format[sizeof(field)]; - int found = 0; - - sprintf(format, "%s : %s", fmt, "%255s"); - - cpuinfo = fopen(_PATH_PROC_CPUINFO, "r"); - if (cpuinfo) { - do { - if (fscanf(cpuinfo, format, field) == 1) { - if (strncmp(field, str, strlen(str)) == 0) - found = 1; - break; - } - } while (fgets(field, 256, cpuinfo)); - fclose(cpuinfo); - } - return found; -} - -/* - * Set cmos_epoch, either from user options, or by asking the kernel, or by - * looking at /proc/cpu_info - */ -void set_cmos_epoch(const struct hwclock_control *ctl) -{ - unsigned long epoch; - - /* Believe the user */ - if (ctl->epoch_option) { - cmos_epoch = ctl->epoch_option; - return; - } - - if (ctl->ARCconsole) - cmos_epoch = 1980; - - if (ctl->ARCconsole || ctl->SRM) - return; - -#ifdef __linux__ - /* - * If we can ask the kernel, we don't need guessing from - * /proc/cpuinfo - */ - if (get_epoch_rtc(ctl, &epoch, 1) == 0) { - cmos_epoch = epoch; - return; - } -#endif - - /* - * The kernel source today says: read the year. - * - * If it is in 0-19 then the epoch is 2000. - * If it is in 20-47 then the epoch is 1980. - * If it is in 48-69 then the epoch is 1952. - * If it is in 70-99 then the epoch is 1928. - * - * Otherwise the epoch is 1900. - * TODO: Clearly, this must be changed before 2019. - */ - /* - * See whether we are dealing with SRM or MILO, as they have - * different "epoch" ideas. - */ - if (is_in_cpuinfo("system serial number", "MILO")) { - if (ctl->debug) - printf(_("booted from MILO\n")); - /* - * See whether we are dealing with a RUFFIAN aka Alpha PC-164 - * UX (or BX), as they have REALLY different TOY (TimeOfYear) - * format: BCD, and not an ARC-style epoch. BCD is detected - * dynamically, but we must NOT adjust like ARC. - */ - if (is_in_cpuinfo("system type", "Ruffian")) { - if (debug) - printf(_("Ruffian BCD clock\n")); - return; - } - } - - cmos_epoch = 1980; -} - -void set_cmos_access(const struct hwclock_control *ctl) -{ - - /* - * See whether we're dealing with a Jensen---it has a weird I/O - * system. DEC was just learning how to build Alpha PCs. - */ - if (ctl->Jensen || is_in_cpuinfo("system type", "Jensen")) { - use_dev_port = 1; - clock_ctl_addr = 0x170; - clock_data_addr = 0x171; - if (ctl->debug) - printf(_("clockport adjusted to 0x%x\n"), - clock_ctl_addr); - } - - /* - * See whether we are dealing with PC164/LX164/SX164, as they have a - * TOY that must be accessed differently to work correctly. - */ - /* Nautilus stuff reported by Neoklis Kyriazis */ - if (ctl->funky_toy || - is_in_cpuinfo("system variation", "PC164") || - is_in_cpuinfo("system variation", "LX164") || - is_in_cpuinfo("system variation", "SX164") || - is_in_cpuinfo("system type", "Nautilus")) { - funkyTOY = 1; - if (ctl->debug) - printf(_("funky TOY!\n")); - } -} -#endif /* __alpha */ - -#ifdef __alpha__ -/* - * The Alpha doesn't allow user-level code to disable interrupts (for good - * reasons). Instead, we ensure atomic operation by performing the operation - * and checking whether the high 32 bits of the cycle counter changed. If - * they did, a context switch must have occurred and we redo the operation. - * As long as the operation is reasonably short, it will complete - * atomically, eventually. - */ -static unsigned long -atomic(const char *name, - unsigned long (*op) (const struct hwclock_control *ctl, unsigned long), - const struct hwclock_control *ctl, - unsigned long arg) -{ - unsigned long ts1, ts2, n, v; - - for (n = 0; n < 1000; ++n) { - asm volatile ("rpcc %0":"r=" (ts1)); - v = (*op) (ctl, arg); - asm volatile ("rpcc %0":"r=" (ts2)); - - if ((ts1 ^ ts2) >> 32 == 0) { - return v; - } - } - errx(EXIT_FAILURE, _("atomic %s failed for 1000 iterations!"), - name); -} -#else - /* * Hmmh, this isn't very atomic. Maybe we should force an error instead? * @@ -315,68 +123,37 @@ atomic(const char *name __attribute__ ((__unused__)), return (*op) (ctl, arg); } -#endif +/* + * We only want to read CMOS data, but unfortunately writing to bit 7 + * disables (1) or enables (0) NMI; since this bit is read-only we have + * to guess the old status. Various docs suggest that one should disable + * NMI while reading/writing CMOS data, and enable it again afterwards. + * This would yield the sequence + * + * outb (reg | 0x80, 0x70); + * val = inb(0x71); + * outb (0x0d, 0x70); // 0x0d: random read-only location + * + * Other docs state that "any write to 0x70 should be followed by an + * action to 0x71 or the RTC will be left in an unknown state". Most + * docs say that it doesn't matter at all what one does. + * + * bit 0x80: disable NMI while reading - should we? Let us follow the + * kernel and not disable. Called only with 0 <= reg < 128 + */ static inline unsigned long cmos_read(const struct hwclock_control *ctl, unsigned long reg) { - if (use_dev_port) { - unsigned char v = reg | 0x80; - lseek(dev_port_fd, clock_ctl_addr, 0); - if (write(dev_port_fd, &v, 1) == -1 && ctl->debug) - warn(_("cmos_read(): write to control address %X failed"), - clock_ctl_addr); - lseek(dev_port_fd, clock_data_addr, 0); - if (read(dev_port_fd, &v, 1) == -1 && ctl->debug) - warn(_("cmos_read(): read from data address %X failed"), - clock_data_addr); - return v; - } else { - /* - * We only want to read CMOS data, but unfortunately writing - * to bit 7 disables (1) or enables (0) NMI; since this bit - * is read-only we have to guess the old status. Various - * docs suggest that one should disable NMI while - * reading/writing CMOS data, and enable it again - * afterwards. This would yield the sequence - * - * outb (reg | 0x80, 0x70); - * val = inb(0x71); - * outb (0x0d, 0x70); // 0x0d: random read-only location - * - * Other docs state that "any write to 0x70 should be - * followed by an action to 0x71 or the RTC will be left in - * an unknown state". Most docs say that it doesn't matter at - * all what one does. - */ - /* - * bit 0x80: disable NMI while reading - should we? Let us - * follow the kernel and not disable. Called only with 0 <= - * reg < 128 - */ - outb(reg, clock_ctl_addr); - return inb(clock_data_addr); - } + outb(reg, clock_ctl_addr); + return inb(clock_data_addr); } static inline unsigned long cmos_write(const struct hwclock_control *ctl, unsigned long reg, unsigned long val) { - if (use_dev_port) { - unsigned char v = reg | 0x80; - lseek(dev_port_fd, clock_ctl_addr, 0); - if (write(dev_port_fd, &v, 1) == -1 && ctl->debug) - warn(_("cmos_write(): write to control address %X failed"), - clock_ctl_addr); - v = (val & 0xff); - lseek(dev_port_fd, clock_data_addr, 0); - if (write(dev_port_fd, &v, 1) == -1 && ctl->debug) - warn(_("cmos_write(): write to data address %X failed"), - clock_data_addr); - } else { - outb(reg, clock_ctl_addr); - outb(val, clock_data_addr); - } + outb(reg, clock_ctl_addr); + outb(val, clock_data_addr); return 0; } @@ -409,9 +186,7 @@ static unsigned long cmos_set_time(const struct hwclock_control *ctl, save_freq_select = cmos_read(ctl, 10); /* stop and reset prescaler */ cmos_write(ctl, 10, (save_freq_select | 0x70)); - tm.tm_year += TM_EPOCH; - century = tm.tm_year / 100; - tm.tm_year -= cmos_epoch; + century = (tm.tm_year + TM_EPOCH) / 100; tm.tm_year %= 100; tm.tm_mon += 1; tm.tm_wday += 1; @@ -475,10 +250,6 @@ static void hclock_set_time(const struct hwclock_control *ctl, const struct tm * static inline int cmos_clock_busy(const struct hwclock_control *ctl) { return -#ifdef __alpha__ - /* poll bit 4 (UF) of Control Register C */ - funkyTOY ? (hclock_read(ctl, 12) & 0x10) : -#endif /* poll bit 7 (UIP) of Control Register A */ (hclock_read(ctl, 10) & 0x80); } @@ -594,7 +365,6 @@ static int read_hardware_clock_cmos(const struct hwclock_control *ctl */ tm->tm_wday -= 1; tm->tm_mon -= 1; - tm->tm_year += (cmos_epoch - TM_EPOCH); if (tm->tm_year < 69) tm->tm_year += 100; if (pmbit) { @@ -616,7 +386,7 @@ static int set_hardware_clock_cmos(const struct hwclock_control *ctl return 0; } -#if defined(__i386__) || defined(__alpha__) || defined(__x86_64__) +#if defined(__i386__) || defined(__x86_64__) # if defined(HAVE_IOPL) static int i386_iopl(const int level) { @@ -640,23 +410,15 @@ static int get_permissions_cmos(void) { int rc; - if (use_dev_port) { - if ((dev_port_fd = open(_PATH_DEV_PORT, O_RDWR)) < 0) { - warn(_("cannot open %s"), _PATH_DEV_PORT); - rc = 1; - } else - rc = 0; - } else { - rc = i386_iopl(3); - if (rc == IOPL_NOT_IMPLEMENTED) { - warnx(_("I failed to get permission because I didn't try.")); - } else if (rc != 0) { - rc = errno; - warn(_("unable to get I/O port access: " - "the iopl(3) call failed")); - if (rc == EPERM && geteuid()) - warnx(_("Probably you need root privileges.\n")); - } + rc = i386_iopl(3); + if (rc == IOPL_NOT_IMPLEMENTED) { + warnx(_("I failed to get permission because I didn't try.")); + } else if (rc != 0) { + rc = errno; + warn(_("unable to get I/O port access: " + "the iopl(3) call failed")); + if (rc == EPERM && geteuid()) + warnx(_("Probably you need root privileges.\n")); } return rc ? 1 : 0; } @@ -676,7 +438,7 @@ static struct clock_ops cmos_interface = { struct clock_ops *probe_for_cmos_clock(void) { static const int have_cmos = -#if defined(__i386__) || defined(__alpha__) || defined(__x86_64__) +#if defined(__i386__) || defined(__x86_64__) TRUE; #else FALSE; -- cgit v1.2.3-55-g7522