/* * Copyright (C) 2007 Karel Zak * Copyright (C) 2012 Davidlohr Bueso * * GUID Partition Table (GPT) support. Based on UEFI Specs 2.3.1 * Chapter 5: GUID Partition Table (GPT) Disk Layout (Jun 27th, 2012). * Some ideas and inspiration from GNU parted and gptfdisk. */ #include #include #include #include #include #include #include #include #include #include #include #include #include #include "fdiskP.h" #include "nls.h" #include "crc32.h" #include "blkdev.h" #include "bitops.h" #include "strutils.h" #include "all-io.h" #define GPT_HEADER_SIGNATURE 0x5452415020494645LL /* EFI PART */ #define GPT_HEADER_REVISION_V1_02 0x00010200 #define GPT_HEADER_REVISION_V1_00 0x00010000 #define GPT_HEADER_REVISION_V0_99 0x00009900 #define GPT_HEADER_MINSZ 92 /* bytes */ #define GPT_PMBR_LBA 0 #define GPT_MBR_PROTECTIVE 1 #define GPT_MBR_HYBRID 2 #define GPT_PRIMARY_PARTITION_TABLE_LBA 0x00000001 #define EFI_PMBR_OSTYPE 0xEE #define MSDOS_MBR_SIGNATURE 0xAA55 #define GPT_PART_NAME_LEN (72 / sizeof(uint16_t)) #define GPT_NPARTITIONS 128 /* Globally unique identifier */ struct gpt_guid { uint32_t time_low; uint16_t time_mid; uint16_t time_hi_and_version; uint8_t clock_seq_hi; uint8_t clock_seq_low; uint8_t node[6]; }; /* only checking that the GUID is 0 is enough to verify an empty partition. */ #define GPT_UNUSED_ENTRY_GUID \ ((struct gpt_guid) { 0x00000000, 0x0000, 0x0000, 0x00, 0x00, \ { 0x00, 0x00, 0x00, 0x00, 0x00, 0x00 }}) /* Linux native partition type */ #define GPT_DEFAULT_ENTRY_TYPE "0FC63DAF-8483-4772-8E79-3D69D8477DE4" /* * Attribute bits */ enum { /* UEFI specific */ GPT_ATTRBIT_REQ = 0, GPT_ATTRBIT_NOBLOCK = 1, GPT_ATTRBIT_LEGACY = 2, /* GUID specific (range 48..64)*/ GPT_ATTRBIT_GUID_FIRST = 48, GPT_ATTRBIT_GUID_COUNT = 16 }; #define GPT_ATTRSTR_REQ "RequiredPartiton" #define GPT_ATTRSTR_NOBLOCK "NoBlockIOProtocol" #define GPT_ATTRSTR_LEGACY "LegacyBIOSBootable" /* The GPT Partition entry array contains an array of GPT entries. */ struct gpt_entry { struct gpt_guid type; /* purpose and type of the partition */ struct gpt_guid partition_guid; uint64_t lba_start; uint64_t lba_end; uint64_t attrs; uint16_t name[GPT_PART_NAME_LEN]; } __attribute__ ((packed)); /* GPT header */ struct gpt_header { uint64_t signature; /* header identification */ uint32_t revision; /* header version */ uint32_t size; /* in bytes */ uint32_t crc32; /* header CRC checksum */ uint32_t reserved1; /* must be 0 */ uint64_t my_lba; /* LBA that contains this struct (LBA 1) */ uint64_t alternative_lba; /* backup GPT header */ uint64_t first_usable_lba; /* first usable logical block for partitions */ uint64_t last_usable_lba; /* last usable logical block for partitions */ struct gpt_guid disk_guid; /* unique disk identifier */ uint64_t partition_entry_lba; /* stat LBA of the partition entry array */ uint32_t npartition_entries; /* total partition entries - normally 128 */ uint32_t sizeof_partition_entry; /* bytes for each GUID pt */ uint32_t partition_entry_array_crc32; /* partition CRC checksum */ uint8_t reserved2[512 - 92]; /* must be 0 */ } __attribute__ ((packed)); struct gpt_record { uint8_t boot_indicator; /* unused by EFI, set to 0x80 for bootable */ uint8_t start_head; /* unused by EFI, pt start in CHS */ uint8_t start_sector; /* unused by EFI, pt start in CHS */ uint8_t start_track; uint8_t os_type; /* EFI and legacy non-EFI OS types */ uint8_t end_head; /* unused by EFI, pt end in CHS */ uint8_t end_sector; /* unused by EFI, pt end in CHS */ uint8_t end_track; /* unused by EFI, pt end in CHS */ uint32_t starting_lba; /* used by EFI - start addr of the on disk pt */ uint32_t size_in_lba; /* used by EFI - size of pt in LBA */ } __attribute__ ((packed)); /* Protected MBR and legacy MBR share same structure */ struct gpt_legacy_mbr { uint8_t boot_code[440]; uint32_t unique_mbr_signature; uint16_t unknown; struct gpt_record partition_record[4]; uint16_t signature; } __attribute__ ((packed)); /* * Here be dragons! * See: http://en.wikipedia.org/wiki/GUID_Partition_Table#Partition_type_GUIDs */ #define DEF_GUID(_u, _n) \ { \ .typestr = (_u), \ .name = (_n), \ } static struct fdisk_parttype gpt_parttypes[] = { /* Generic OS */ DEF_GUID("C12A7328-F81F-11D2-BA4B-00A0C93EC93B", N_("EFI System")), DEF_GUID("024DEE41-33E7-11D3-9D69-0008C781F39F", N_("MBR partition scheme")), DEF_GUID("D3BFE2DE-3DAF-11DF-BA40-E3A556D89593", N_("Intel Fast Flash")), /* Hah!IdontneedEFI */ DEF_GUID("21686148-6449-6E6F-744E-656564454649", N_("BIOS boot")), /* Windows */ DEF_GUID("E3C9E316-0B5C-4DB8-817D-F92DF00215AE", N_("Microsoft reserved")), DEF_GUID("EBD0A0A2-B9E5-4433-87C0-68B6B72699C7", N_("Microsoft basic data")), DEF_GUID("5808C8AA-7E8F-42E0-85D2-E1E90434CFB3", N_("Microsoft LDM metadata")), DEF_GUID("AF9B60A0-1431-4F62-BC68-3311714A69AD", N_("Microsoft LDM data")), DEF_GUID("DE94BBA4-06D1-4D40-A16A-BFD50179D6AC", N_("Windows recovery environment")), DEF_GUID("37AFFC90-EF7D-4E96-91C3-2D7AE055B174", N_("IBM General Parallel Fs")), /* HP-UX */ DEF_GUID("75894C1E-3AEB-11D3-B7C1-7B03A0000000", N_("HP-UX data")), DEF_GUID("E2A1E728-32E3-11D6-A682-7B03A0000000", N_("HP-UX service")), /* Linux (http://www.freedesktop.org/wiki/Specifications/DiscoverablePartitionsSpec) */ DEF_GUID("0657FD6D-A4AB-43C4-84E5-0933C84B4F4F", N_("Linux swap")), DEF_GUID("0FC63DAF-8483-4772-8E79-3D69D8477DE4", N_("Linux filesystem")), DEF_GUID("3B8F8425-20E0-4F3B-907F-1A25A76F98E8", N_("Linux server data")), DEF_GUID("44479540-F297-41B2-9AF7-D131D5F0458A", N_("Linux root (x86)")), DEF_GUID("4F68BCE3-E8CD-4DB1-96E7-FBCAF984B709", N_("Linux root (x86-64)")), DEF_GUID("8DA63339-0007-60C0-C436-083AC8230908", N_("Linux reserved")), DEF_GUID("933AC7E1-2EB4-4F13-B844-0E14E2AEF915", N_("Linux home")), DEF_GUID("A19D880F-05FC-4D3B-A006-743F0F84911E", N_("Linux RAID")), DEF_GUID("BC13C2FF-59E6-4262-A352-B275FD6F7172", N_("Linux extended boot")), DEF_GUID("E6D6D379-F507-44C2-A23C-238F2A3DF928", N_("Linux LVM")), /* FreeBSD */ DEF_GUID("516E7CB4-6ECF-11D6-8FF8-00022D09712B", N_("FreeBSD data")), DEF_GUID("83BD6B9D-7F41-11DC-BE0B-001560B84F0F", N_("FreeBSD boot")), DEF_GUID("516E7CB5-6ECF-11D6-8FF8-00022D09712B", N_("FreeBSD swap")), DEF_GUID("516E7CB6-6ECF-11D6-8FF8-00022D09712B", N_("FreeBSD UFS")), DEF_GUID("516E7CBA-6ECF-11D6-8FF8-00022D09712B", N_("FreeBSD ZFS")), DEF_GUID("516E7CB8-6ECF-11D6-8FF8-00022D09712B", N_("FreeBSD Vinum")), /* Apple OSX */ DEF_GUID("48465300-0000-11AA-AA11-00306543ECAC", N_("Apple HFS/HFS+")), DEF_GUID("55465300-0000-11AA-AA11-00306543ECAC", N_("Apple UFS")), DEF_GUID("52414944-0000-11AA-AA11-00306543ECAC", N_("Apple RAID")), DEF_GUID("52414944-5F4F-11AA-AA11-00306543ECAC", N_("Apple RAID offline")), DEF_GUID("426F6F74-0000-11AA-AA11-00306543ECAC", N_("Apple boot")), DEF_GUID("4C616265-6C00-11AA-AA11-00306543ECAC", N_("Apple label")), DEF_GUID("5265636F-7665-11AA-AA11-00306543ECAC", N_("Apple TV recovery")), DEF_GUID("53746F72-6167-11AA-AA11-00306543ECAC", N_("Apple Core storage")), /* Solaris */ DEF_GUID("6A82CB45-1DD2-11B2-99A6-080020736631", N_("Solaris boot")), DEF_GUID("6A85CF4D-1DD2-11B2-99A6-080020736631", N_("Solaris root")), /* same as Apple ZFS */ DEF_GUID("6A898CC3-1DD2-11B2-99A6-080020736631", N_("Solaris /usr & Apple ZFS")), DEF_GUID("6A87C46F-1DD2-11B2-99A6-080020736631", N_("Solaris swap")), DEF_GUID("6A8B642B-1DD2-11B2-99A6-080020736631", N_("Solaris backup")), DEF_GUID("6A8EF2E9-1DD2-11B2-99A6-080020736631", N_("Solaris /var")), DEF_GUID("6A90BA39-1DD2-11B2-99A6-080020736631", N_("Solaris /home")), DEF_GUID("6A9283A5-1DD2-11B2-99A6-080020736631", N_("Solaris alternate sector")), DEF_GUID("6A945A3B-1DD2-11B2-99A6-080020736631", N_("Solaris reserved 1")), DEF_GUID("6A9630D1-1DD2-11B2-99A6-080020736631", N_("Solaris reserved 2")), DEF_GUID("6A980767-1DD2-11B2-99A6-080020736631", N_("Solaris reserved 3")), DEF_GUID("6A96237F-1DD2-11B2-99A6-080020736631", N_("Solaris reserved 4")), DEF_GUID("6A8D2AC7-1DD2-11B2-99A6-080020736631", N_("Solaris reserved 5")), /* NetBSD */ DEF_GUID("49F48D32-B10E-11DC-B99B-0019D1879648", N_("NetBSD swap")), DEF_GUID("49F48D5A-B10E-11DC-B99B-0019D1879648", N_("NetBSD FFS")), DEF_GUID("49F48D82-B10E-11DC-B99B-0019D1879648", N_("NetBSD LFS")), DEF_GUID("2DB519C4-B10E-11DC-B99B-0019D1879648", N_("NetBSD concatenated")), DEF_GUID("2DB519EC-B10E-11DC-B99B-0019D1879648", N_("NetBSD encrypted")), DEF_GUID("49F48DAA-B10E-11DC-B99B-0019D1879648", N_("NetBSD RAID")), /* ChromeOS */ DEF_GUID("FE3A2A5D-4F32-41A7-B725-ACCC3285A309", N_("ChromeOS kernel")), DEF_GUID("3CB8E202-3B7E-47DD-8A3C-7FF2A13CFCEC", N_("ChromeOS root fs")), DEF_GUID("2E0A753D-9E48-43B0-8337-B15192CB1B5E", N_("ChromeOS reserved")), /* MidnightBSD */ DEF_GUID("85D5E45A-237C-11E1-B4B3-E89A8F7FC3A7", N_("MidnightBSD data")), DEF_GUID("85D5E45E-237C-11E1-B4B3-E89A8F7FC3A7", N_("MidnightBSD boot")), DEF_GUID("85D5E45B-237C-11E1-B4B3-E89A8F7FC3A7", N_("MidnightBSD swap")), DEF_GUID("0394Ef8B-237C-11E1-B4B3-E89A8F7FC3A7", N_("MidnightBSD UFS")), DEF_GUID("85D5E45D-237C-11E1-B4B3-E89A8F7FC3A7", N_("MidnightBSD ZFS")), DEF_GUID("85D5E45C-237C-11E1-B4B3-E89A8F7FC3A7", N_("MidnightBSD Vinum")), }; /* gpt_entry macros */ #define gpt_partition_start(_e) le64_to_cpu((_e)->lba_start) #define gpt_partition_end(_e) le64_to_cpu((_e)->lba_end) /* * in-memory fdisk GPT stuff */ struct fdisk_gpt_label { struct fdisk_label head; /* generic part */ /* gpt specific part */ struct gpt_header *pheader; /* primary header */ struct gpt_header *bheader; /* backup header */ struct gpt_entry *ents; /* entries (partitions) */ }; static void gpt_deinit(struct fdisk_label *lb); static inline struct fdisk_gpt_label *self_label(struct fdisk_context *cxt) { return (struct fdisk_gpt_label *) cxt->label; } /* * Returns the partition length, or 0 if end is before beginning. */ static uint64_t gpt_partition_size(const struct gpt_entry *e) { uint64_t start = gpt_partition_start(e); uint64_t end = gpt_partition_end(e); return start > end ? 0 : end - start + 1ULL; } /* prints UUID in the real byte order! */ static void gpt_debug_uuid(const char *mesg, struct gpt_guid *guid) { const unsigned char *uuid = (unsigned char *) guid; fprintf(stderr, "%s: " "%02x%02x%02x%02x-%02x%02x-%02x%02x-%02x%02x-%02x%02x%02x%02x%02x%02x\n", mesg, uuid[0], uuid[1], uuid[2], uuid[3], uuid[4], uuid[5], uuid[6], uuid[7], uuid[8], uuid[9], uuid[10], uuid[11], uuid[12], uuid[13], uuid[14],uuid[15]); } /* * UUID is traditionally 16 byte big-endian array, except Intel EFI * specification where the UUID is a structure of little-endian fields. */ static void swap_efi_guid(struct gpt_guid *uid) { uid->time_low = swab32(uid->time_low); uid->time_mid = swab16(uid->time_mid); uid->time_hi_and_version = swab16(uid->time_hi_and_version); } static int string_to_guid(const char *in, struct gpt_guid *guid) { if (uuid_parse(in, (unsigned char *) guid)) /* BE */ return -1; swap_efi_guid(guid); /* LE */ return 0; } static char *guid_to_string(const struct gpt_guid *guid, char *out) { struct gpt_guid u = *guid; /* LE */ swap_efi_guid(&u); /* BE */ uuid_unparse_upper((unsigned char *) &u, out); return out; } static struct fdisk_parttype *gpt_partition_parttype( struct fdisk_context *cxt, const struct gpt_entry *e) { struct fdisk_parttype *t; char str[37]; guid_to_string(&e->type, str); t = fdisk_get_parttype_from_string(cxt, str); return t ? : fdisk_new_unknown_parttype(0, str); } static const char *gpt_get_header_revstr(struct gpt_header *header) { if (!header) goto unknown; switch (header->revision) { case GPT_HEADER_REVISION_V1_02: return "1.2"; case GPT_HEADER_REVISION_V1_00: return "1.0"; case GPT_HEADER_REVISION_V0_99: return "0.99"; default: goto unknown; } unknown: return "unknown"; } static inline int partition_unused(const struct gpt_entry *e) { return !memcmp(&e->type, &GPT_UNUSED_ENTRY_GUID, sizeof(struct gpt_guid)); } /* * Builds a clean new valid protective MBR - will wipe out any existing data. * Returns 0 on success, otherwise < 0 on error. */ static int gpt_mknew_pmbr(struct fdisk_context *cxt) { struct gpt_legacy_mbr *pmbr = NULL; int rc; if (!cxt || !cxt->firstsector) return -ENOSYS; rc = fdisk_init_firstsector_buffer(cxt); if (rc) return rc; pmbr = (struct gpt_legacy_mbr *) cxt->firstsector; pmbr->signature = cpu_to_le16(MSDOS_MBR_SIGNATURE); pmbr->partition_record[0].os_type = EFI_PMBR_OSTYPE; pmbr->partition_record[0].start_sector = 1; pmbr->partition_record[0].end_head = 0xFE; pmbr->partition_record[0].end_sector = 0xFF; pmbr->partition_record[0].end_track = 0xFF; pmbr->partition_record[0].starting_lba = cpu_to_le32(1); pmbr->partition_record[0].size_in_lba = cpu_to_le32(min((uint32_t) cxt->total_sectors - 1, 0xFFFFFFFF)); return 0; } /* some universal differences between the headers */ static void gpt_mknew_header_common(struct fdisk_context *cxt, struct gpt_header *header, uint64_t lba) { if (!cxt || !header) return; header->my_lba = cpu_to_le64(lba); if (lba == GPT_PRIMARY_PARTITION_TABLE_LBA) { /* primary */ header->alternative_lba = cpu_to_le64(cxt->total_sectors - 1); header->partition_entry_lba = cpu_to_le64(2); } else { /* backup */ uint64_t esz = le32_to_cpu(header->npartition_entries) * sizeof(struct gpt_entry); uint64_t esects = (esz + cxt->sector_size - 1) / cxt->sector_size; header->alternative_lba = cpu_to_le64(GPT_PRIMARY_PARTITION_TABLE_LBA); header->partition_entry_lba = cpu_to_le64(cxt->total_sectors - 1 - esects); } } /* * Builds a new GPT header (at sector lba) from a backup header2. * If building a primary header, then backup is the secondary, and vice versa. * * Always pass a new (zeroized) header to build upon as we don't * explicitly zero-set some values such as CRCs and reserved. * * Returns 0 on success, otherwise < 0 on error. */ static int gpt_mknew_header_from_bkp(struct fdisk_context *cxt, struct gpt_header *header, uint64_t lba, struct gpt_header *header2) { if (!cxt || !header || !header2) return -ENOSYS; header->signature = header2->signature; header->revision = header2->revision; header->size = header2->size; header->npartition_entries = header2->npartition_entries; header->sizeof_partition_entry = header2->sizeof_partition_entry; header->first_usable_lba = header2->first_usable_lba; header->last_usable_lba = header2->last_usable_lba; memcpy(&header->disk_guid, &header2->disk_guid, sizeof(header2->disk_guid)); gpt_mknew_header_common(cxt, header, lba); return 0; } static struct gpt_header *gpt_copy_header(struct fdisk_context *cxt, struct gpt_header *src) { struct gpt_header *res; if (!cxt || !src) return NULL; res = calloc(1, sizeof(*res)); if (!res) { fdisk_warn(cxt, _("failed to allocate GPT header")); return NULL; } res->my_lba = src->alternative_lba; res->alternative_lba = src->my_lba; res->signature = src->signature; res->revision = src->revision; res->size = src->size; res->npartition_entries = src->npartition_entries; res->sizeof_partition_entry = src->sizeof_partition_entry; res->first_usable_lba = src->first_usable_lba; res->last_usable_lba = src->last_usable_lba; memcpy(&res->disk_guid, &src->disk_guid, sizeof(src->disk_guid)); if (res->my_lba == GPT_PRIMARY_PARTITION_TABLE_LBA) res->partition_entry_lba = cpu_to_le64(2); else { uint64_t esz = le32_to_cpu(src->npartition_entries) * sizeof(struct gpt_entry); uint64_t esects = (esz + cxt->sector_size - 1) / cxt->sector_size; res->partition_entry_lba = cpu_to_le64(cxt->total_sectors - 1 - esects); } return res; } static void count_first_last_lba(struct fdisk_context *cxt, uint64_t *first, uint64_t *last) { uint64_t esz = 0; assert(cxt); esz = sizeof(struct gpt_entry) * GPT_NPARTITIONS / cxt->sector_size; *last = cxt->total_sectors - 2 - esz; *first = esz + 2; if (*first < cxt->first_lba && cxt->first_lba < *last) /* Align according to topology */ *first = cxt->first_lba; } /* * Builds a clean new GPT header (currently under revision 1.0). * * Always pass a new (zeroized) header to build upon as we don't * explicitly zero-set some values such as CRCs and reserved. * * Returns 0 on success, otherwise < 0 on error. */ static int gpt_mknew_header(struct fdisk_context *cxt, struct gpt_header *header, uint64_t lba) { uint64_t first, last; if (!cxt || !header) return -ENOSYS; header->signature = cpu_to_le64(GPT_HEADER_SIGNATURE); header->revision = cpu_to_le32(GPT_HEADER_REVISION_V1_00); header->size = cpu_to_le32(sizeof(struct gpt_header)); /* * 128 partitions are the default. It can go beyond that, but * we're creating a de facto header here, so no funny business. */ header->npartition_entries = cpu_to_le32(GPT_NPARTITIONS); header->sizeof_partition_entry = cpu_to_le32(sizeof(struct gpt_entry)); count_first_last_lba(cxt, &first, &last); header->first_usable_lba = cpu_to_le64(first); header->last_usable_lba = cpu_to_le64(last); gpt_mknew_header_common(cxt, header, lba); uuid_generate_random((unsigned char *) &header->disk_guid); swap_efi_guid(&header->disk_guid); return 0; } /* * Checks if there is a valid protective MBR partition table. * Returns 0 if it is invalid or failure. Otherwise, return * GPT_MBR_PROTECTIVE or GPT_MBR_HYBRID, depeding on the detection. */ static int valid_pmbr(struct fdisk_context *cxt) { int i, part = 0, ret = 0; /* invalid by default */ struct gpt_legacy_mbr *pmbr = NULL; uint32_t sz_lba = 0; if (!cxt->firstsector) goto done; pmbr = (struct gpt_legacy_mbr *) cxt->firstsector; if (le16_to_cpu(pmbr->signature) != MSDOS_MBR_SIGNATURE) goto done; /* LBA of the GPT partition header */ if (pmbr->partition_record[0].starting_lba != cpu_to_le32(GPT_PRIMARY_PARTITION_TABLE_LBA)) goto done; /* seems like a valid MBR was found, check DOS primary partitions */ for (i = 0; i < 4; i++) { if (pmbr->partition_record[i].os_type == EFI_PMBR_OSTYPE) { /* * Ok, we at least know that there's a protective MBR, * now check if there are other partition types for * hybrid MBR. */ part = i; ret = GPT_MBR_PROTECTIVE; goto check_hybrid; } } if (ret != GPT_MBR_PROTECTIVE) goto done; check_hybrid: for (i = 0 ; i < 4; i++) { if ((pmbr->partition_record[i].os_type != EFI_PMBR_OSTYPE) && (pmbr->partition_record[i].os_type != 0x00)) ret = GPT_MBR_HYBRID; } /* * Protective MBRs take up the lesser of the whole disk * or 2 TiB (32bit LBA), ignoring the rest of the disk. * Some partitioning programs, nonetheless, choose to set * the size to the maximum 32-bit limitation, disregarding * the disk size. * * Hybrid MBRs do not necessarily comply with this. * * Consider a bad value here to be a warning to support dd-ing * an image from a smaller disk to a bigger disk. */ if (ret == GPT_MBR_PROTECTIVE) { sz_lba = le32_to_cpu(pmbr->partition_record[part].size_in_lba); if (sz_lba != (uint32_t) cxt->total_sectors - 1 && sz_lba != 0xFFFFFFFF) { fdisk_warnx(cxt, _("GPT PMBR size mismatch (%u != %u) " "will be corrected by w(rite)."), sz_lba, (uint32_t) cxt->total_sectors - 1); fdisk_label_set_changed(cxt->label, 1); } } done: return ret; } static uint64_t last_lba(struct fdisk_context *cxt) { struct stat s; uint64_t sectors = 0; memset(&s, 0, sizeof(s)); if (fstat(cxt->dev_fd, &s) == -1) { fdisk_warn(cxt, _("gpt: stat() failed")); return 0; } if (S_ISBLK(s.st_mode)) sectors = cxt->total_sectors - 1; else if (S_ISREG(s.st_mode)) sectors = ((uint64_t) s.st_size / (uint64_t) cxt->sector_size) - 1ULL; else fdisk_warnx(cxt, _("gpt: cannot handle files with mode %o"), s.st_mode); DBG(LABEL, ul_debug("GPT last LBA: %ju", sectors)); return sectors; } static ssize_t read_lba(struct fdisk_context *cxt, uint64_t lba, void *buffer, const size_t bytes) { off_t offset = lba * cxt->sector_size; if (lseek(cxt->dev_fd, offset, SEEK_SET) == (off_t) -1) return -1; return read(cxt->dev_fd, buffer, bytes) != bytes; } /* Returns the GPT entry array */ static struct gpt_entry *gpt_read_entries(struct fdisk_context *cxt, struct gpt_header *header) { ssize_t sz; struct gpt_entry *ret = NULL; off_t offset; assert(cxt); assert(header); sz = le32_to_cpu(header->npartition_entries) * le32_to_cpu(header->sizeof_partition_entry); ret = calloc(1, sz); if (!ret) return NULL; offset = le64_to_cpu(header->partition_entry_lba) * cxt->sector_size; if (offset != lseek(cxt->dev_fd, offset, SEEK_SET)) goto fail; if (sz != read(cxt->dev_fd, ret, sz)) goto fail; return ret; fail: free(ret); return NULL; } static inline uint32_t count_crc32(const unsigned char *buf, size_t len) { return (crc32(~0L, buf, len) ^ ~0L); } /* * Recompute header and partition array 32bit CRC checksums. * This function does not fail - if there's corruption, then it * will be reported when checksuming it again (ie: probing or verify). */ static void gpt_recompute_crc(struct gpt_header *header, struct gpt_entry *ents) { uint32_t crc = 0; size_t entry_sz = 0; if (!header) return; /* header CRC */ header->crc32 = 0; crc = count_crc32((unsigned char *) header, le32_to_cpu(header->size)); header->crc32 = cpu_to_le32(crc); /* partition entry array CRC */ header->partition_entry_array_crc32 = 0; entry_sz = le32_to_cpu(header->npartition_entries) * le32_to_cpu(header->sizeof_partition_entry); crc = count_crc32((unsigned char *) ents, entry_sz); header->partition_entry_array_crc32 = cpu_to_le32(crc); } /* * Compute the 32bit CRC checksum of the partition table header. * Returns 1 if it is valid, otherwise 0. */ static int gpt_check_header_crc(struct gpt_header *header, struct gpt_entry *ents) { uint32_t crc, orgcrc = le32_to_cpu(header->crc32); header->crc32 = 0; crc = count_crc32((unsigned char *) header, le32_to_cpu(header->size)); header->crc32 = cpu_to_le32(orgcrc); if (crc == le32_to_cpu(header->crc32)) return 1; /* * If we have checksum mismatch it may be due to stale data, * like a partition being added or deleted. Recompute the CRC again * and make sure this is not the case. */ if (ents) { gpt_recompute_crc(header, ents); orgcrc = le32_to_cpu(header->crc32); header->crc32 = 0; crc = count_crc32((unsigned char *) header, le32_to_cpu(header->size)); header->crc32 = cpu_to_le32(orgcrc); return crc == le32_to_cpu(header->crc32); } return 0; } /* * It initializes the partition entry array. * Returns 1 if the checksum is valid, otherwise 0. */ static int gpt_check_entryarr_crc(struct gpt_header *header, struct gpt_entry *ents) { int ret = 0; ssize_t entry_sz; uint32_t crc; if (!header || !ents) goto done; entry_sz = le32_to_cpu(header->npartition_entries) * le32_to_cpu(header->sizeof_partition_entry); if (!entry_sz) goto done; crc = count_crc32((unsigned char *) ents, entry_sz); ret = (crc == le32_to_cpu(header->partition_entry_array_crc32)); done: return ret; } static int gpt_check_lba_sanity(struct fdisk_context *cxt, struct gpt_header *header) { int ret = 0; uint64_t lu, fu, lastlba = last_lba(cxt); fu = le64_to_cpu(header->first_usable_lba); lu = le64_to_cpu(header->last_usable_lba); /* check if first and last usable LBA make sense */ if (lu < fu) { DBG(LABEL, ul_debug("error: header last LBA is before first LBA")); goto done; } /* check if first and last usable LBAs with the disk's last LBA */ if (fu > lastlba || lu > lastlba) { DBG(LABEL, ul_debug("error: header LBAs are after the disk's last LBA")); goto done; } /* the header has to be outside usable range */ if (fu < GPT_PRIMARY_PARTITION_TABLE_LBA && GPT_PRIMARY_PARTITION_TABLE_LBA < lu) { DBG(LABEL, ul_debug("error: header outside of usable range")); goto done; } ret = 1; /* sane */ done: return ret; } /* Check if there is a valid header signature */ static int gpt_check_signature(struct gpt_header *header) { return header->signature == cpu_to_le64(GPT_HEADER_SIGNATURE); } /* * Return the specified GPT Header, or NULL upon failure/invalid. * Note that all tests must pass to ensure a valid header, * we do not rely on only testing the signature for a valid probe. */ static struct gpt_header *gpt_read_header(struct fdisk_context *cxt, uint64_t lba, struct gpt_entry **_ents) { struct gpt_header *header = NULL; struct gpt_entry *ents = NULL; uint32_t hsz; if (!cxt) return NULL; header = calloc(1, sizeof(*header)); if (!header) return NULL; /* read and verify header */ if (read_lba(cxt, lba, header, sizeof(struct gpt_header)) != 0) goto invalid; if (!gpt_check_signature(header)) goto invalid; if (!gpt_check_header_crc(header, NULL)) goto invalid; /* read and verify entries */ ents = gpt_read_entries(cxt, header); if (!ents) goto invalid; if (!gpt_check_entryarr_crc(header, ents)) goto invalid; if (!gpt_check_lba_sanity(cxt, header)) goto invalid; /* valid header must be at MyLBA */ if (le64_to_cpu(header->my_lba) != lba) goto invalid; /* make sure header size is between 92 and sector size bytes */ hsz = le32_to_cpu(header->size); if (hsz < GPT_HEADER_MINSZ || hsz > cxt->sector_size) goto invalid; if (_ents) *_ents = ents; else free(ents); DBG(LABEL, ul_debug("found valid GPT Header on LBA %ju", lba)); return header; invalid: free(header); free(ents); DBG(LABEL, ul_debug("read GPT Header on LBA %ju failed", lba)); return NULL; } static int gpt_locate_disklabel(struct fdisk_context *cxt, int n, const char **name, off_t *offset, size_t *size) { struct fdisk_gpt_label *gpt; assert(cxt); *name = NULL; *offset = 0; *size = 0; switch (n) { case 0: *name = "PMBR"; *offset = 0; *size = 512; break; case 1: *name = _("GPT Header"); *offset = GPT_PRIMARY_PARTITION_TABLE_LBA * cxt->sector_size; *size = sizeof(struct gpt_header); break; case 2: *name = _("GPT Entries"); gpt = self_label(cxt); *offset = le64_to_cpu(gpt->pheader->partition_entry_lba) * cxt->sector_size; *size = le32_to_cpu(gpt->pheader->npartition_entries) * le32_to_cpu(gpt->pheader->sizeof_partition_entry); break; default: return 1; /* no more chunks */ } return 0; } /* * Returns the number of partitions that are in use. */ static unsigned partitions_in_use(struct gpt_header *header, struct gpt_entry *e) { uint32_t i, used = 0; if (!header || ! e) return 0; for (i = 0; i < le32_to_cpu(header->npartition_entries); i++) if (!partition_unused(&e[i])) used++; return used; } /* * Check if a partition is too big for the disk (sectors). * Returns the faulting partition number, otherwise 0. */ static uint32_t partition_check_too_big(struct gpt_header *header, struct gpt_entry *e, uint64_t sectors) { uint32_t i; for (i = 0; i < le32_to_cpu(header->npartition_entries); i++) { if (partition_unused(&e[i])) continue; if (gpt_partition_end(&e[i]) >= sectors) return i + 1; } return 0; } /* * Check if a partition ends before it begins * Returns the faulting partition number, otherwise 0. */ static uint32_t partition_start_after_end(struct gpt_header *header, struct gpt_entry *e) { uint32_t i; for (i = 0; i < le32_to_cpu(header->npartition_entries); i++) { if (partition_unused(&e[i])) continue; if (gpt_partition_start(&e[i]) > gpt_partition_end(&e[i])) return i + 1; } return 0; } /* * Check if partition e1 overlaps with partition e2. */ static inline int partition_overlap(struct gpt_entry *e1, struct gpt_entry *e2) { uint64_t start1 = gpt_partition_start(e1); uint64_t end1 = gpt_partition_end(e1); uint64_t start2 = gpt_partition_start(e2); uint64_t end2 = gpt_partition_end(e2); return (start1 && start2 && (start1 <= end2) != (end1 < start2)); } /* * Find any partitions that overlap. */ static uint32_t partition_check_overlaps(struct gpt_header *header, struct gpt_entry *e) { uint32_t i, j; for (i = 0; i < le32_to_cpu(header->npartition_entries); i++) for (j = 0; j < i; j++) { if (partition_unused(&e[i]) || partition_unused(&e[j])) continue; if (partition_overlap(&e[i], &e[j])) { DBG(LABEL, ul_debug("GPT partitions overlap detected [%u vs. %u]", i, j)); return i + 1; } } return 0; } /* * Find the first available block after the starting point; returns 0 if * there are no available blocks left, or error. From gdisk. */ static uint64_t find_first_available(struct gpt_header *header, struct gpt_entry *e, uint64_t start) { uint64_t first; uint32_t i, first_moved = 0; uint64_t fu, lu; if (!header || !e) return 0; fu = le64_to_cpu(header->first_usable_lba); lu = le64_to_cpu(header->last_usable_lba); /* * Begin from the specified starting point or from the first usable * LBA, whichever is greater... */ first = start < fu ? fu : start; /* * Now search through all partitions; if first is within an * existing partition, move it to the next sector after that * partition and repeat. If first was moved, set firstMoved * flag; repeat until firstMoved is not set, so as to catch * cases where partitions are out of sequential order.... */ do { first_moved = 0; for (i = 0; i < le32_to_cpu(header->npartition_entries); i++) { if (partition_unused(&e[i])) continue; if (first < gpt_partition_start(&e[i])) continue; if (first <= gpt_partition_end(&e[i])) { first = gpt_partition_end(&e[i]) + 1; first_moved = 1; } } } while (first_moved == 1); if (first > lu) first = 0; return first; } /* Returns last available sector in the free space pointed to by start. From gdisk. */ static uint64_t find_last_free(struct gpt_header *header, struct gpt_entry *e, uint64_t start) { uint32_t i; uint64_t nearest_start; if (!header || !e) return 0; nearest_start = le64_to_cpu(header->last_usable_lba); for (i = 0; i < le32_to_cpu(header->npartition_entries); i++) { uint64_t ps = gpt_partition_start(&e[i]); if (nearest_start > ps && ps > start) nearest_start = ps - 1; } return nearest_start; } /* Returns the last free sector on the disk. From gdisk. */ static uint64_t find_last_free_sector(struct gpt_header *header, struct gpt_entry *e) { uint32_t i, last_moved; uint64_t last = 0; if (!header || !e) goto done; /* start by assuming the last usable LBA is available */ last = le64_to_cpu(header->last_usable_lba); do { last_moved = 0; for (i = 0; i < le32_to_cpu(header->npartition_entries); i++) { if ((last >= gpt_partition_start(&e[i])) && (last <= gpt_partition_end(&e[i]))) { last = gpt_partition_start(&e[i]) - 1; last_moved = 1; } } } while (last_moved == 1); done: return last; } /* * Finds the first available sector in the largest block of unallocated * space on the disk. Returns 0 if there are no available blocks left. * From gdisk. */ static uint64_t find_first_in_largest(struct gpt_header *header, struct gpt_entry *e) { uint64_t start = 0, first_sect, last_sect; uint64_t segment_size, selected_size = 0, selected_segment = 0; if (!header || !e) goto done; do { first_sect = find_first_available(header, e, start); if (first_sect != 0) { last_sect = find_last_free(header, e, first_sect); segment_size = last_sect - first_sect + 1; if (segment_size > selected_size) { selected_size = segment_size; selected_segment = first_sect; } start = last_sect + 1; } } while (first_sect != 0); done: return selected_segment; } /* * Find the total number of free sectors, the number of segments in which * they reside, and the size of the largest of those segments. From gdisk. */ static uint64_t get_free_sectors(struct fdisk_context *cxt, struct gpt_header *header, struct gpt_entry *e, uint32_t *nsegments, uint64_t *largest_segment) { uint32_t num = 0; uint64_t first_sect, last_sect; uint64_t largest_seg = 0, segment_sz; uint64_t totfound = 0, start = 0; /* starting point for each search */ if (!cxt->total_sectors) goto done; do { first_sect = find_first_available(header, e, start); if (first_sect) { last_sect = find_last_free(header, e, first_sect); segment_sz = last_sect - first_sect + 1; if (segment_sz > largest_seg) largest_seg = segment_sz; totfound += segment_sz; num++; start = last_sect + 1; } } while (first_sect); done: if (nsegments) *nsegments = num; if (largest_segment) *largest_segment = largest_seg; return totfound; } static int gpt_probe_label(struct fdisk_context *cxt) { int mbr_type; struct fdisk_gpt_label *gpt; assert(cxt); assert(cxt->label); assert(fdisk_is_disklabel(cxt, GPT)); gpt = self_label(cxt); /* TODO: it would be nice to support scenario when GPT headers are OK, * but PMBR is corrupt */ mbr_type = valid_pmbr(cxt); if (!mbr_type) goto failed; DBG(LABEL, ul_debug("found a %s MBR", mbr_type == GPT_MBR_PROTECTIVE ? "protective" : "hybrid")); /* primary header */ gpt->pheader = gpt_read_header(cxt, GPT_PRIMARY_PARTITION_TABLE_LBA, &gpt->ents); if (gpt->pheader) /* primary OK, try backup from alternative LBA */ gpt->bheader = gpt_read_header(cxt, le64_to_cpu(gpt->pheader->alternative_lba), NULL); else /* primary corrupted -- try last LBA */ gpt->bheader = gpt_read_header(cxt, last_lba(cxt), &gpt->ents); if (!gpt->pheader && !gpt->bheader) goto failed; /* primary OK, backup corrupted -- recovery */ if (gpt->pheader && !gpt->bheader) { fdisk_warnx(cxt, _("The backup GPT table is corrupt, but the " "primary appears OK, so that will be used.")); gpt->bheader = gpt_copy_header(cxt, gpt->pheader); if (!gpt->bheader) goto failed; gpt_recompute_crc(gpt->bheader, gpt->ents); /* primary corrupted, backup OK -- recovery */ } else if (!gpt->pheader && gpt->bheader) { fdisk_warnx(cxt, _("The primary GPT table is corrupt, but the " "backup appears OK, so that will be used.")); gpt->pheader = gpt_copy_header(cxt, gpt->bheader); if (!gpt->pheader) goto failed; gpt_recompute_crc(gpt->pheader, gpt->ents); } cxt->label->nparts_max = le32_to_cpu(gpt->pheader->npartition_entries); cxt->label->nparts_cur = partitions_in_use(gpt->pheader, gpt->ents); return 1; failed: DBG(LABEL, ul_debug("GPT probe failed")); gpt_deinit(cxt->label); return 0; } /* * Stolen from libblkid - can be removed once partition semantics * are added to the fdisk API. */ static char *encode_to_utf8(unsigned char *src, size_t count) { uint16_t c; char *dest; size_t i, j, len = count; dest = calloc(1, count); if (!dest) return NULL; for (j = i = 0; i + 2 <= count; i += 2) { /* always little endian */ c = (src[i+1] << 8) | src[i]; if (c == 0) { dest[j] = '\0'; break; } else if (c < 0x80) { if (j+1 >= len) break; dest[j++] = (uint8_t) c; } else if (c < 0x800) { if (j+2 >= len) break; dest[j++] = (uint8_t) (0xc0 | (c >> 6)); dest[j++] = (uint8_t) (0x80 | (c & 0x3f)); } else { if (j+3 >= len) break; dest[j++] = (uint8_t) (0xe0 | (c >> 12)); dest[j++] = (uint8_t) (0x80 | ((c >> 6) & 0x3f)); dest[j++] = (uint8_t) (0x80 | (c & 0x3f)); } } dest[j] = '\0'; return dest; } static int gpt_entry_attrs_to_string(struct gpt_entry *e, char **res) { unsigned int n, count = 0; size_t l; char *bits, *p; uint64_t attrs; assert(e); assert(res); *res = NULL; attrs = le64_to_cpu(e->attrs); if (!attrs) return 0; /* no attributes at all */ bits = (char *) &attrs; /* Note that sizeof() is correct here, we need separators between * the strings so also count \0 is correct */ *res = calloc(1, sizeof(GPT_ATTRSTR_NOBLOCK) + sizeof(GPT_ATTRSTR_REQ) + sizeof(GPT_ATTRSTR_LEGACY) + sizeof("GUID:") + (GPT_ATTRBIT_GUID_COUNT * 3)); if (!*res) return -errno; p = *res; if (isset(bits, GPT_ATTRBIT_REQ)) { memcpy(p, GPT_ATTRSTR_REQ, (l = sizeof(GPT_ATTRSTR_REQ))); p += l - 1; } if (isset(bits, GPT_ATTRBIT_NOBLOCK)) { if (p > *res) *p++ = ' '; memcpy(p, GPT_ATTRSTR_NOBLOCK, (l = sizeof(GPT_ATTRSTR_NOBLOCK))); p += l - 1; } if (isset(bits, GPT_ATTRBIT_LEGACY)) { if (p > *res) *p++ = ' '; memcpy(p, GPT_ATTRSTR_LEGACY, (l = sizeof(GPT_ATTRSTR_LEGACY))); p += l - 1; } for (n = GPT_ATTRBIT_GUID_FIRST; n < GPT_ATTRBIT_GUID_FIRST + GPT_ATTRBIT_GUID_COUNT; n++) { if (!isset(bits, n)) continue; if (!count) { if (p > *res) *p++ = ' '; p += sprintf(p, "GUID:%u", n); } else p += sprintf(p, ",%u", n); count++; } return 0; } static int gpt_get_partition(struct fdisk_context *cxt, size_t n, struct fdisk_partition *pa) { struct fdisk_gpt_label *gpt; struct gpt_entry *e; char u_str[37]; int rc = 0; assert(cxt); assert(cxt->label); assert(fdisk_is_disklabel(cxt, GPT)); gpt = self_label(cxt); if ((uint32_t) n >= le32_to_cpu(gpt->pheader->npartition_entries)) return -EINVAL; gpt = self_label(cxt); e = &gpt->ents[n]; pa->used = !partition_unused(e) || gpt_partition_start(e); if (!pa->used) return 0; pa->start = gpt_partition_start(e); pa->end = gpt_partition_end(e); pa->size = gpt_partition_size(e); pa->type = gpt_partition_parttype(cxt, e); if (guid_to_string(&e->partition_guid, u_str)) { pa->uuid = strdup(u_str); if (!pa->uuid) { rc = -errno; goto done; } } else pa->uuid = NULL; rc = gpt_entry_attrs_to_string(e, &pa->attrs); if (rc) goto done; pa->name = encode_to_utf8((unsigned char *)e->name, sizeof(e->name)); return 0; done: fdisk_reset_partition(pa); return rc; } /* * List label partitions. */ static int gpt_list_disklabel(struct fdisk_context *cxt) { assert(cxt); assert(cxt->label); assert(fdisk_is_disklabel(cxt, GPT)); if (fdisk_context_display_details(cxt)) { struct gpt_header *h = self_label(cxt)->pheader; fdisk_info(cxt, _("First LBA: %ju"), h->first_usable_lba); fdisk_info(cxt, _("Last LBA: %ju"), h->last_usable_lba); fdisk_info(cxt, _("Alternative LBA: %ju"), h->alternative_lba); fdisk_info(cxt, _("Partitions entries LBA: %ju"), h->partition_entry_lba); fdisk_info(cxt, _("Allocated partition entries: %u"), h->npartition_entries); } return 0; } /* * Write partitions. * Returns 0 on success, or corresponding error otherwise. */ static int gpt_write_partitions(struct fdisk_context *cxt, struct gpt_header *header, struct gpt_entry *ents) { off_t offset = le64_to_cpu(header->partition_entry_lba) * cxt->sector_size; uint32_t nparts = le32_to_cpu(header->npartition_entries); uint32_t totwrite = nparts * le32_to_cpu(header->sizeof_partition_entry); ssize_t rc; if (offset != lseek(cxt->dev_fd, offset, SEEK_SET)) goto fail; rc = write(cxt->dev_fd, ents, totwrite); if (rc > 0 && totwrite == (uint32_t) rc) return 0; fail: return -errno; } /* * Write a GPT header to a specified LBA * Returns 0 on success, or corresponding error otherwise. */ static int gpt_write_header(struct fdisk_context *cxt, struct gpt_header *header, uint64_t lba) { off_t offset = lba * cxt->sector_size; if (offset != lseek(cxt->dev_fd, offset, SEEK_SET)) goto fail; if (cxt->sector_size == (size_t) write(cxt->dev_fd, header, cxt->sector_size)) return 0; fail: return -errno; } /* * Write the protective MBR. * Returns 0 on success, or corresponding error otherwise. */ static int gpt_write_pmbr(struct fdisk_context *cxt) { off_t offset; struct gpt_legacy_mbr *pmbr = NULL; assert(cxt); assert(cxt->firstsector); pmbr = (struct gpt_legacy_mbr *) cxt->firstsector; /* zero out the legacy partitions */ memset(pmbr->partition_record, 0, sizeof(pmbr->partition_record)); pmbr->signature = cpu_to_le16(MSDOS_MBR_SIGNATURE); pmbr->partition_record[0].os_type = EFI_PMBR_OSTYPE; pmbr->partition_record[0].start_sector = 1; pmbr->partition_record[0].end_head = 0xFE; pmbr->partition_record[0].end_sector = 0xFF; pmbr->partition_record[0].end_track = 0xFF; pmbr->partition_record[0].starting_lba = cpu_to_le32(1); /* * Set size_in_lba to the size of the disk minus one. If the size of the disk * is too large to be represented by a 32bit LBA (2Tb), set it to 0xFFFFFFFF. */ if (cxt->total_sectors - 1 > 0xFFFFFFFFULL) pmbr->partition_record[0].size_in_lba = cpu_to_le32(0xFFFFFFFF); else pmbr->partition_record[0].size_in_lba = cpu_to_le32(cxt->total_sectors - 1UL); offset = GPT_PMBR_LBA * cxt->sector_size; if (offset != lseek(cxt->dev_fd, offset, SEEK_SET)) goto fail; /* pMBR covers the first sector (LBA) of the disk */ if (write_all(cxt->dev_fd, pmbr, cxt->sector_size)) goto fail; return 0; fail: return -errno; } /* * Writes in-memory GPT and pMBR data to disk. * Returns 0 if successful write, otherwise, a corresponding error. * Any indication of error will abort the operation. */ static int gpt_write_disklabel(struct fdisk_context *cxt) { struct fdisk_gpt_label *gpt; int mbr_type; assert(cxt); assert(cxt->label); assert(fdisk_is_disklabel(cxt, GPT)); gpt = self_label(cxt); mbr_type = valid_pmbr(cxt); /* check that disk is big enough to handle the backup header */ if (le64_to_cpu(gpt->pheader->alternative_lba) > cxt->total_sectors) goto err0; /* check that the backup header is properly placed */ if (le64_to_cpu(gpt->pheader->alternative_lba) < cxt->total_sectors - 1) /* TODO: correct this (with user authorization) and write */ goto err0; if (partition_check_overlaps(gpt->pheader, gpt->ents)) goto err0; /* recompute CRCs for both headers */ gpt_recompute_crc(gpt->pheader, gpt->ents); gpt_recompute_crc(gpt->bheader, gpt->ents); /* * UEFI requires writing in this specific order: * 1) backup partition tables * 2) backup GPT header * 3) primary partition tables * 4) primary GPT header * 5) protective MBR * * If any write fails, we abort the rest. */ if (gpt_write_partitions(cxt, gpt->bheader, gpt->ents) != 0) goto err1; if (gpt_write_header(cxt, gpt->bheader, le64_to_cpu(gpt->pheader->alternative_lba)) != 0) goto err1; if (gpt_write_partitions(cxt, gpt->pheader, gpt->ents) != 0) goto err1; if (gpt_write_header(cxt, gpt->pheader, GPT_PRIMARY_PARTITION_TABLE_LBA) != 0) goto err1; if (mbr_type == GPT_MBR_HYBRID) fdisk_warnx(cxt, _("The device contains hybrid MBR -- writing GPT only. " "You have to sync the MBR manually.")); else if (gpt_write_pmbr(cxt) != 0) goto err1; DBG(LABEL, ul_debug("GPT write success")); return 0; err0: DBG(LABEL, ul_debug("GPT write failed: incorrect input")); errno = EINVAL; return -EINVAL; err1: DBG(LABEL, ul_debug("GPT write failed: %m")); return -errno; } /* * Verify data integrity and report any found problems for: * - primary and backup header validations * - paritition validations */ static int gpt_verify_disklabel(struct fdisk_context *cxt) { int nerror = 0; unsigned int ptnum; struct fdisk_gpt_label *gpt; assert(cxt); assert(cxt->label); assert(fdisk_is_disklabel(cxt, GPT)); gpt = self_label(cxt); if (!gpt || !gpt->bheader) { nerror++; fdisk_warnx(cxt, _("Disk does not contain a valid backup header.")); } if (!gpt_check_header_crc(gpt->pheader, gpt->ents)) { nerror++; fdisk_warnx(cxt, _("Invalid primary header CRC checksum.")); } if (gpt->bheader && !gpt_check_header_crc(gpt->bheader, gpt->ents)) { nerror++; fdisk_warnx(cxt, _("Invalid backup header CRC checksum.")); } if (!gpt_check_entryarr_crc(gpt->pheader, gpt->ents)) { nerror++; fdisk_warnx(cxt, _("Invalid partition entry checksum.")); } if (!gpt_check_lba_sanity(cxt, gpt->pheader)) { nerror++; fdisk_warnx(cxt, _("Invalid primary header LBA sanity checks.")); } if (gpt->bheader && !gpt_check_lba_sanity(cxt, gpt->bheader)) { nerror++; fdisk_warnx(cxt, _("Invalid backup header LBA sanity checks.")); } if (le64_to_cpu(gpt->pheader->my_lba) != GPT_PRIMARY_PARTITION_TABLE_LBA) { nerror++; fdisk_warnx(cxt, _("MyLBA mismatch with real position at primary header.")); } if (gpt->bheader && le64_to_cpu(gpt->bheader->my_lba) != last_lba(cxt)) { nerror++; fdisk_warnx(cxt, _("MyLBA mismatch with real position at backup header.")); } if (le64_to_cpu(gpt->pheader->alternative_lba) >= cxt->total_sectors) { nerror++; fdisk_warnx(cxt, _("Disk is too small to hold all data.")); } /* * if the GPT is the primary table, check the alternateLBA * to see if it is a valid GPT */ if (gpt->bheader && (le64_to_cpu(gpt->pheader->my_lba) != le64_to_cpu(gpt->bheader->alternative_lba))) { nerror++; fdisk_warnx(cxt, _("Primary and backup header mismatch.")); } ptnum = partition_check_overlaps(gpt->pheader, gpt->ents); if (ptnum) { nerror++; fdisk_warnx(cxt, _("Partition %u overlaps with partition %u."), ptnum, ptnum+1); } ptnum = partition_check_too_big(gpt->pheader, gpt->ents, cxt->total_sectors); if (ptnum) { nerror++; fdisk_warnx(cxt, _("Partition %u is too big for the disk."), ptnum); } ptnum = partition_start_after_end(gpt->pheader, gpt->ents); if (ptnum) { nerror++; fdisk_warnx(cxt, _("Partition %u ends before it starts."), ptnum); } if (!nerror) { /* yay :-) */ uint32_t nsegments = 0; uint64_t free_sectors = 0, largest_segment = 0; char *strsz = NULL; fdisk_info(cxt, _("No errors detected.")); fdisk_info(cxt, _("Header version: %s"), gpt_get_header_revstr(gpt->pheader)); fdisk_info(cxt, _("Using %u out of %d partitions."), partitions_in_use(gpt->pheader, gpt->ents), le32_to_cpu(gpt->pheader->npartition_entries)); free_sectors = get_free_sectors(cxt, gpt->pheader, gpt->ents, &nsegments, &largest_segment); if (largest_segment) strsz = size_to_human_string(SIZE_SUFFIX_SPACE | SIZE_SUFFIX_3LETTER, largest_segment * cxt->sector_size); fdisk_info(cxt, P_("A total of %ju free sectors is available in %u segment.", "A total of %ju free sectors is available in %u segments " "(the largest is %s).", nsegments), free_sectors, nsegments, strsz); free(strsz); } else fdisk_warnx(cxt, P_("%d error detected.", "%d errors detected.", nerror), nerror); return 0; } /* Delete a single GPT partition, specified by partnum. */ static int gpt_delete_partition(struct fdisk_context *cxt, size_t partnum) { struct fdisk_gpt_label *gpt; assert(cxt); assert(cxt->label); assert(fdisk_is_disklabel(cxt, GPT)); gpt = self_label(cxt); if (partnum >= cxt->label->nparts_max || partition_unused(&gpt->ents[partnum])) return -EINVAL; /* hasta la vista, baby! */ memset(&gpt->ents[partnum], 0, sizeof(struct gpt_entry)); if (!partition_unused(&gpt->ents[partnum])) return -EINVAL; else { gpt_recompute_crc(gpt->pheader, gpt->ents); gpt_recompute_crc(gpt->bheader, gpt->ents); cxt->label->nparts_cur--; fdisk_label_set_changed(cxt->label, 1); } return 0; } static void gpt_entry_set_type(struct gpt_entry *e, struct gpt_guid *uuid) { e->type = *uuid; DBG(LABEL, gpt_debug_uuid("new type", &(e->type))); } /* * Create a new GPT partition entry, specified by partnum, and with a range * of fsect to lsenct sectors, of type t. * Returns 0 on success, or negative upon failure. */ static int gpt_create_new_partition(struct fdisk_context *cxt, size_t partnum, uint64_t fsect, uint64_t lsect, struct gpt_guid *type, struct gpt_entry *entries) { struct gpt_entry *e = NULL; struct fdisk_gpt_label *gpt; assert(cxt); assert(cxt->label); assert(fdisk_is_disklabel(cxt, GPT)); DBG(LABEL, ul_debug("GPT new partition: partno=%zu, start=%ju, end=%ju", partnum, fsect, lsect)); gpt = self_label(cxt); if (fsect > lsect || partnum >= cxt->label->nparts_max) return -EINVAL; e = calloc(1, sizeof(*e)); if (!e) return -ENOMEM; e->lba_end = cpu_to_le64(lsect); e->lba_start = cpu_to_le64(fsect); gpt_entry_set_type(e, type); /* * Any time a new partition entry is created a new GUID must be * generated for that partition, and every partition is guaranteed * to have a unique GUID. */ uuid_generate_random((unsigned char *) &e->partition_guid); swap_efi_guid(&e->partition_guid); memcpy(&entries[partnum], e, sizeof(*e)); gpt_recompute_crc(gpt->pheader, entries); gpt_recompute_crc(gpt->bheader, entries); free(e); return 0; } /* Performs logical checks to add a new partition entry */ static int gpt_add_partition( struct fdisk_context *cxt, struct fdisk_partition *pa) { uint64_t user_f, user_l; /* user input ranges for first and last sectors */ uint64_t disk_f, disk_l; /* first and last available sector ranges on device*/ uint64_t dflt_f, dflt_l; /* largest segment (default) */ struct gpt_guid typeid; struct fdisk_gpt_label *gpt; struct gpt_header *pheader; struct gpt_entry *ents; struct fdisk_ask *ask = NULL; size_t partnum; int rc; assert(cxt); assert(cxt->label); assert(fdisk_is_disklabel(cxt, GPT)); gpt = self_label(cxt); pheader = gpt->pheader; ents = gpt->ents; rc = fdisk_partition_next_partno(pa, cxt, &partnum); if (rc) { DBG(LABEL, ul_debug("GPT failed to get next partno")); return rc; } if (!partition_unused(&ents[partnum])) { fdisk_warnx(cxt, _("Partition %zu is already defined. " "Delete it before re-adding it."), partnum +1); return -ERANGE; } if (le32_to_cpu(pheader->npartition_entries) == partitions_in_use(pheader, ents)) { fdisk_warnx(cxt, _("All partitions are already in use.")); return -ENOSPC; } if (!get_free_sectors(cxt, pheader, ents, NULL, NULL)) { fdisk_warnx(cxt, _("No free sectors available.")); return -ENOSPC; } string_to_guid(pa && pa->type && pa->type->typestr ? pa->type->typestr: GPT_DEFAULT_ENTRY_TYPE, &typeid); disk_f = find_first_available(pheader, ents, 0); disk_l = find_last_free_sector(pheader, ents); /* the default is the largest free space */ dflt_f = find_first_in_largest(pheader, ents); dflt_l = find_last_free(pheader, ents, dflt_f); /* align the default in range */ dflt_f = fdisk_align_lba_in_range(cxt, dflt_f, dflt_f, dflt_l); /* first sector */ if (pa && pa->start) { if (pa->start != find_first_available(pheader, ents, pa->start)) { fdisk_warnx(cxt, _("Sector %ju already used."), pa->start); return -ERANGE; } user_f = pa->start; } else if (pa && pa->start_follow_default) { user_f = dflt_f; } else { /* ask by dialog */ for (;;) { if (!ask) ask = fdisk_new_ask(); else fdisk_reset_ask(ask); /* First sector */ fdisk_ask_set_query(ask, _("First sector")); fdisk_ask_set_type(ask, FDISK_ASKTYPE_NUMBER); fdisk_ask_number_set_low(ask, disk_f); /* minimal */ fdisk_ask_number_set_default(ask, dflt_f); /* default */ fdisk_ask_number_set_high(ask, disk_l); /* maximal */ rc = fdisk_do_ask(cxt, ask); if (rc) goto done; user_f = fdisk_ask_number_get_result(ask); if (user_f != find_first_available(pheader, ents, user_f)) { fdisk_warnx(cxt, _("Sector %ju already used."), user_f); continue; } break; } } /* Last sector */ dflt_l = find_last_free(pheader, ents, user_f); if (pa && pa->size) { user_l = user_f + pa->size; user_l = fdisk_align_lba_in_range(cxt, user_l, user_f, dflt_l) - 1; /* no space for anything useful, use all space if (user_l + (cxt->grain / cxt->sector_size) > dflt_l) user_l = dflt_l; */ } else if (pa && pa->end_follow_default) { user_l = dflt_l; } else { for (;;) { if (!ask) ask = fdisk_new_ask(); else fdisk_reset_ask(ask); fdisk_ask_set_query(ask, _("Last sector, +sectors or +size{K,M,G,T,P}")); fdisk_ask_set_type(ask, FDISK_ASKTYPE_OFFSET); fdisk_ask_number_set_low(ask, user_f); /* minimal */ fdisk_ask_number_set_default(ask, dflt_l); /* default */ fdisk_ask_number_set_high(ask, dflt_l); /* maximal */ fdisk_ask_number_set_base(ask, user_f); /* base for relative input */ fdisk_ask_number_set_unit(ask, cxt->sector_size); rc = fdisk_do_ask(cxt, ask); if (rc) goto done; user_l = fdisk_ask_number_get_result(ask); if (fdisk_ask_number_is_relative(ask)) { user_l = fdisk_align_lba_in_range(cxt, user_l, user_f, dflt_l) - 1; /* no space for anything useful, use all space if (user_l + (cxt->grain / cxt->sector_size) > dflt_l) user_l = dflt_l; */ } if (user_l > user_f && user_l <= disk_l) break; } } if ((rc = gpt_create_new_partition(cxt, partnum, user_f, user_l, &typeid, ents) != 0)) { fdisk_warnx(cxt, _("Could not create partition %zu"), partnum + 1); goto done; } else { struct fdisk_parttype *t; cxt->label->nparts_cur++; fdisk_label_set_changed(cxt->label, 1); t = gpt_partition_parttype(cxt, &ents[partnum]); fdisk_info_new_partition(cxt, partnum + 1, user_f, user_l, t); fdisk_free_parttype(t); } rc = 0; done: fdisk_free_ask(ask); return rc; } /* * Create a new GPT disklabel - destroys any previous data. */ static int gpt_create_disklabel(struct fdisk_context *cxt) { int rc = 0; ssize_t esz = 0; char str[37]; struct fdisk_gpt_label *gpt; assert(cxt); assert(cxt->label); assert(fdisk_is_disklabel(cxt, GPT)); gpt = self_label(cxt); /* label private stuff has to be empty, see gpt_deinit() */ assert(gpt->pheader == NULL); assert(gpt->bheader == NULL); /* * When no header, entries or pmbr is set, we're probably * dealing with a new, empty disk - so always allocate memory * to deal with the data structures whatever the case is. */ rc = gpt_mknew_pmbr(cxt); if (rc < 0) goto done; /* primary */ gpt->pheader = calloc(1, sizeof(*gpt->pheader)); if (!gpt->pheader) { rc = -ENOMEM; goto done; } rc = gpt_mknew_header(cxt, gpt->pheader, GPT_PRIMARY_PARTITION_TABLE_LBA); if (rc < 0) goto done; /* backup ("copy" primary) */ gpt->bheader = calloc(1, sizeof(*gpt->bheader)); if (!gpt->bheader) { rc = -ENOMEM; goto done; } rc = gpt_mknew_header_from_bkp(cxt, gpt->bheader, last_lba(cxt), gpt->pheader); if (rc < 0) goto done; esz = le32_to_cpu(gpt->pheader->npartition_entries) * le32_to_cpu(gpt->pheader->sizeof_partition_entry); gpt->ents = calloc(1, esz); if (!gpt->ents) { rc = -ENOMEM; goto done; } gpt_recompute_crc(gpt->pheader, gpt->ents); gpt_recompute_crc(gpt->bheader, gpt->ents); cxt->label->nparts_max = le32_to_cpu(gpt->pheader->npartition_entries); cxt->label->nparts_cur = 0; guid_to_string(&gpt->pheader->disk_guid, str); fdisk_label_set_changed(cxt->label, 1); fdisk_sinfo(cxt, FDISK_INFO_SUCCESS, _("Created a new GPT disklabel (GUID: %s)."), str); done: return rc; } static int gpt_get_disklabel_id(struct fdisk_context *cxt, char **id) { struct fdisk_gpt_label *gpt; char str[37]; assert(cxt); assert(id); assert(cxt->label); assert(fdisk_is_disklabel(cxt, GPT)); gpt = self_label(cxt); guid_to_string(&gpt->pheader->disk_guid, str); *id = strdup(str); if (!*id) return -ENOMEM; return 0; } static int gpt_set_disklabel_id(struct fdisk_context *cxt) { struct fdisk_gpt_label *gpt; struct gpt_guid uuid; char *str, *old, *new; int rc; assert(cxt); assert(cxt->label); assert(fdisk_is_disklabel(cxt, GPT)); gpt = self_label(cxt); if (fdisk_ask_string(cxt, _("Enter new disk UUID (in 8-4-4-4-12 format)"), &str)) return -EINVAL; rc = string_to_guid(str, &uuid); free(str); if (rc) { fdisk_warnx(cxt, _("Failed to parse your UUID.")); return rc; } gpt_get_disklabel_id(cxt, &old); gpt->pheader->disk_guid = uuid; gpt->bheader->disk_guid = uuid; gpt_recompute_crc(gpt->pheader, gpt->ents); gpt_recompute_crc(gpt->bheader, gpt->ents); gpt_get_disklabel_id(cxt, &new); fdisk_sinfo(cxt, FDISK_INFO_SUCCESS, _("Disk identifier changed from %s to %s."), old, new); free(old); free(new); fdisk_label_set_changed(cxt->label, 1); return 0; } static int gpt_set_partition_type( struct fdisk_context *cxt, size_t i, struct fdisk_parttype *t) { struct gpt_guid uuid; struct fdisk_gpt_label *gpt; assert(cxt); assert(cxt->label); assert(fdisk_is_disklabel(cxt, GPT)); gpt = self_label(cxt); if ((uint32_t) i >= le32_to_cpu(gpt->pheader->npartition_entries) || !t || !t->typestr || string_to_guid(t->typestr, &uuid) != 0) return -EINVAL; gpt_entry_set_type(&gpt->ents[i], &uuid); gpt_recompute_crc(gpt->pheader, gpt->ents); gpt_recompute_crc(gpt->bheader, gpt->ents); fdisk_label_set_changed(cxt->label, 1); return 0; } static int gpt_part_is_used(struct fdisk_context *cxt, size_t i) { struct fdisk_gpt_label *gpt; struct gpt_entry *e; assert(cxt); assert(cxt->label); assert(fdisk_is_disklabel(cxt, GPT)); gpt = self_label(cxt); if ((uint32_t) i >= le32_to_cpu(gpt->pheader->npartition_entries)) return 0; e = &gpt->ents[i]; return !partition_unused(e) || gpt_partition_start(e); } int fdisk_gpt_partition_set_uuid(struct fdisk_context *cxt, size_t i) { struct fdisk_gpt_label *gpt; struct gpt_entry *e; struct gpt_guid uuid; char *str, new_u[37], old_u[37]; int rc; assert(cxt); assert(cxt->label); assert(fdisk_is_disklabel(cxt, GPT)); DBG(LABEL, ul_debug("UUID change requested partno=%zu", i)); gpt = self_label(cxt); if ((uint32_t) i >= le32_to_cpu(gpt->pheader->npartition_entries)) return -EINVAL; if (fdisk_ask_string(cxt, _("New UUID (in 8-4-4-4-12 format)"), &str)) return -EINVAL; rc = string_to_guid(str, &uuid); free(str); if (rc) { fdisk_warnx(cxt, _("Failed to parse your UUID.")); return rc; } e = &gpt->ents[i]; guid_to_string(&e->partition_guid, old_u); guid_to_string(&uuid, new_u); e->partition_guid = uuid; gpt_recompute_crc(gpt->pheader, gpt->ents); gpt_recompute_crc(gpt->bheader, gpt->ents); fdisk_label_set_changed(cxt->label, 1); fdisk_sinfo(cxt, FDISK_INFO_SUCCESS, _("Partition UUID changed from %s to %s."), old_u, new_u); return 0; } int fdisk_gpt_partition_set_name(struct fdisk_context *cxt, size_t i) { struct fdisk_gpt_label *gpt; struct gpt_entry *e; char *str, *old, name[GPT_PART_NAME_LEN] = { 0 }; size_t sz; assert(cxt); assert(cxt->label); assert(fdisk_is_disklabel(cxt, GPT)); DBG(LABEL, ul_debug("NAME change requested partno=%zu", i)); gpt = self_label(cxt); if ((uint32_t) i >= le32_to_cpu(gpt->pheader->npartition_entries)) return -EINVAL; if (fdisk_ask_string(cxt, _("New name"), &str)) return -EINVAL; e = &gpt->ents[i]; old = encode_to_utf8((unsigned char *)e->name, sizeof(e->name)); sz = strlen(str); if (sz) { if (sz > GPT_PART_NAME_LEN) sz = GPT_PART_NAME_LEN; memcpy(name, str, sz); } for (i = 0; i < GPT_PART_NAME_LEN; i++) e->name[i] = cpu_to_le16((uint16_t) name[i]); gpt_recompute_crc(gpt->pheader, gpt->ents); gpt_recompute_crc(gpt->bheader, gpt->ents); fdisk_label_set_changed(cxt->label, 1); fdisk_sinfo(cxt, FDISK_INFO_SUCCESS, _("Partition name changed from '%s' to '%.*s'."), old, (int) GPT_PART_NAME_LEN, str); free(str); free(old); return 0; } int fdisk_gpt_is_hybrid(struct fdisk_context *cxt) { assert(cxt); return valid_pmbr(cxt) == GPT_MBR_HYBRID; } static int gpt_toggle_partition_flag( struct fdisk_context *cxt, size_t i, unsigned long flag) { struct fdisk_gpt_label *gpt; uint64_t attrs, tmp; char *bits; const char *name = NULL; int bit = -1, rc; assert(cxt); assert(cxt->label); assert(fdisk_is_disklabel(cxt, GPT)); DBG(LABEL, ul_debug("GPT entry attribute change requested partno=%zu", i)); gpt = self_label(cxt); if ((uint32_t) i >= le32_to_cpu(gpt->pheader->npartition_entries)) return -EINVAL; attrs = le64_to_cpu(gpt->ents[i].attrs); bits = (char *) &attrs; switch (flag) { case GPT_FLAG_REQUIRED: bit = GPT_ATTRBIT_REQ; name = GPT_ATTRSTR_REQ; break; case GPT_FLAG_NOBLOCK: bit = GPT_ATTRBIT_NOBLOCK; name = GPT_ATTRSTR_NOBLOCK; break; case GPT_FLAG_LEGACYBOOT: bit = GPT_ATTRBIT_LEGACY; name = GPT_ATTRSTR_LEGACY; break; case GPT_FLAG_GUIDSPECIFIC: rc = fdisk_ask_number(cxt, 48, 48, 63, _("Enter GUID specific bit"), &tmp); if (rc) return rc; bit = tmp; break; } if (bit < 0) return -EINVAL; if (!isset(bits, bit)) setbit(bits, bit); else clrbit(bits, bit); gpt->ents[i].attrs = cpu_to_le64(attrs); if (flag == GPT_FLAG_GUIDSPECIFIC) fdisk_sinfo(cxt, FDISK_INFO_SUCCESS, isset(bits, bit) ? _("The GUID specific bit %d on partition %zu is enabled now.") : _("The GUID specific bit %d on partition %zu is disabled now."), bit, i + 1); else fdisk_sinfo(cxt, FDISK_INFO_SUCCESS, isset(bits, bit) ? _("The %s flag on partition %zu is enabled now.") : _("The %s flag on partition %zu is disabled now."), name, i + 1); gpt_recompute_crc(gpt->pheader, gpt->ents); gpt_recompute_crc(gpt->bheader, gpt->ents); fdisk_label_set_changed(cxt->label, 1); return 0; } static int gpt_entry_cmp_start(const void *a, const void *b) { struct gpt_entry *ae = (struct gpt_entry *) a, *be = (struct gpt_entry *) b; int au = partition_unused(ae), bu = partition_unused(be); if (au && bu) return 0; if (au) return 1; if (bu) return -1; return gpt_partition_start(ae) - gpt_partition_start(be); } /* sort partition by start sector */ static int gpt_reorder(struct fdisk_context *cxt) { struct fdisk_gpt_label *gpt; size_t nparts; assert(cxt); assert(cxt->label); assert(fdisk_is_disklabel(cxt, GPT)); gpt = self_label(cxt); nparts = le32_to_cpu(gpt->pheader->npartition_entries); qsort(gpt->ents, nparts, sizeof(struct gpt_entry), gpt_entry_cmp_start); gpt_recompute_crc(gpt->pheader, gpt->ents); gpt_recompute_crc(gpt->bheader, gpt->ents); fdisk_label_set_changed(cxt->label, 1); fdisk_sinfo(cxt, FDISK_INFO_SUCCESS, _("Done.")); return 0; } static int gpt_reset_alignment(struct fdisk_context *cxt) { struct fdisk_gpt_label *gpt; struct gpt_header *h; assert(cxt); assert(cxt->label); assert(fdisk_is_disklabel(cxt, GPT)); gpt = self_label(cxt); h = gpt ? gpt->pheader : NULL; if (h) { /* always follow existing table */ cxt->first_lba = h->first_usable_lba; cxt->last_lba = h->last_usable_lba; } else { /* estimate ranges for GPT */ uint64_t first, last; count_first_last_lba(cxt, &first, &last); if (cxt->first_lba < first) cxt->first_lba = first; if (cxt->last_lba > last) cxt->last_lba = last; } return 0; } /* * Deinitialize fdisk-specific variables */ static void gpt_deinit(struct fdisk_label *lb) { struct fdisk_gpt_label *gpt = (struct fdisk_gpt_label *) lb; if (!gpt) return; free(gpt->ents); free(gpt->pheader); free(gpt->bheader); gpt->ents = NULL; gpt->pheader = NULL; gpt->bheader = NULL; } static const struct fdisk_label_operations gpt_operations = { .probe = gpt_probe_label, .write = gpt_write_disklabel, .verify = gpt_verify_disklabel, .create = gpt_create_disklabel, .list = gpt_list_disklabel, .locate = gpt_locate_disklabel, .reorder = gpt_reorder, .get_id = gpt_get_disklabel_id, .set_id = gpt_set_disklabel_id, .get_part = gpt_get_partition, .add_part = gpt_add_partition, .part_delete = gpt_delete_partition, .part_is_used = gpt_part_is_used, .part_set_type = gpt_set_partition_type, .part_toggle_flag = gpt_toggle_partition_flag, .deinit = gpt_deinit, .reset_alignment = gpt_reset_alignment }; static const struct fdisk_column gpt_columns[] = { /* basic */ { FDISK_COL_DEVICE, N_("Device"), 10, 0 }, { FDISK_COL_START, N_("Start"), 5, SCOLS_FL_RIGHT }, { FDISK_COL_END, N_("End"), 5, SCOLS_FL_RIGHT }, { FDISK_COL_SECTORS, N_("Sectors"), 5, SCOLS_FL_RIGHT }, { FDISK_COL_CYLINDERS, N_("Cylinders"), 5, SCOLS_FL_RIGHT }, { FDISK_COL_SIZE, N_("Size"), 5, SCOLS_FL_RIGHT, FDISK_COLFL_EYECANDY }, { FDISK_COL_TYPE, N_("Type"), 0.1, SCOLS_FL_TRUNC, FDISK_COLFL_EYECANDY }, /* expert */ { FDISK_COL_TYPEID, N_("Type-UUID"), 36, 0, FDISK_COLFL_DETAIL }, { FDISK_COL_UUID, N_("UUID"), 36, 0, FDISK_COLFL_DETAIL }, { FDISK_COL_NAME, N_("Name"), 0.2, SCOLS_FL_TRUNC, FDISK_COLFL_DETAIL }, { FDISK_COL_ATTR, N_("Attrs"), 0, 0, FDISK_COLFL_DETAIL } }; /* * allocates GPT in-memory stuff */ struct fdisk_label *fdisk_new_gpt_label(struct fdisk_context *cxt) { struct fdisk_label *lb; struct fdisk_gpt_label *gpt; assert(cxt); gpt = calloc(1, sizeof(*gpt)); if (!gpt) return NULL; /* initialize generic part of the driver */ lb = (struct fdisk_label *) gpt; lb->name = "gpt"; lb->id = FDISK_DISKLABEL_GPT; lb->op = &gpt_operations; lb->parttypes = gpt_parttypes; lb->nparttypes = ARRAY_SIZE(gpt_parttypes); lb->columns = gpt_columns; lb->ncolumns = ARRAY_SIZE(gpt_columns); return lb; }