/* * lscpu - CPU architecture information helper * * Copyright (C) 2008 Cai Qian * Copyright (C) 2008 Karel Zak * * This program is free software; you can redistribute it and/or modify * it under the terms of the GNU General Public License as published by * the Free Software Foundation; either version 2 of the License, or * (at your option) any later version. * * This program is distributed in the hope that it would be useful, * but WITHOUT ANY WARRANTY; without even the implied warranty of * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the * GNU General Public License for more details. * * You should have received a copy of the GNU General Public License along * with this program; if not, write to the Free Software Foundation, Inc., * 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301 USA. */ #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #if (defined(__x86_64__) || defined(__i386__)) # if !defined( __SANITIZE_ADDRESS__) # define INCLUDE_VMWARE_BDOOR # else # warning VMWARE detection disabled by __SANITIZE_ADDRESS__ # endif #endif #ifdef INCLUDE_VMWARE_BDOOR # include # include # include # include # ifdef HAVE_SYS_IO_H # include # endif #endif #if defined(HAVE_LIBRTAS) #include #endif #include #include "closestream.h" #include "optutils.h" #include "fileutils.h" #include "lscpu.h" #define CACHE_MAX 100 /* /sys paths */ #define _PATH_SYS_SYSTEM "/sys/devices/system" #define _PATH_SYS_HYP_FEATURES "/sys/hypervisor/properties/features" #define _PATH_SYS_CPU _PATH_SYS_SYSTEM "/cpu" #define _PATH_SYS_NODE _PATH_SYS_SYSTEM "/node" /* Xen Domain feature flag used for /sys/hypervisor/properties/features */ #define XENFEAT_supervisor_mode_kernel 3 #define XENFEAT_mmu_pt_update_preserve_ad 5 #define XENFEAT_hvm_callback_vector 8 #define XEN_FEATURES_PV_MASK (1U << XENFEAT_mmu_pt_update_preserve_ad) #define XEN_FEATURES_PVH_MASK ( (1U << XENFEAT_supervisor_mode_kernel) \ | (1U << XENFEAT_hvm_callback_vector) ) static const char *virt_types[] = { [VIRT_NONE] = N_("none"), [VIRT_PARA] = N_("para"), [VIRT_FULL] = N_("full"), [VIRT_CONT] = N_("container"), }; static const char *hv_vendors[] = { [HYPER_NONE] = NULL, [HYPER_XEN] = "Xen", [HYPER_KVM] = "KVM", [HYPER_MSHV] = "Microsoft", [HYPER_VMWARE] = "VMware", [HYPER_IBM] = "IBM", [HYPER_VSERVER] = "Linux-VServer", [HYPER_UML] = "User-mode Linux", [HYPER_INNOTEK] = "Innotek GmbH", [HYPER_HITACHI] = "Hitachi", [HYPER_PARALLELS] = "Parallels", [HYPER_VBOX] = "Oracle", [HYPER_OS400] = "OS/400", [HYPER_PHYP] = "pHyp", [HYPER_SPAR] = "Unisys s-Par", [HYPER_WSL] = "Windows Subsystem for Linux" }; static const int hv_vendor_pci[] = { [HYPER_NONE] = 0x0000, [HYPER_XEN] = 0x5853, [HYPER_KVM] = 0x0000, [HYPER_MSHV] = 0x1414, [HYPER_VMWARE] = 0x15ad, [HYPER_VBOX] = 0x80ee, }; static const int hv_graphics_pci[] = { [HYPER_NONE] = 0x0000, [HYPER_XEN] = 0x0001, [HYPER_KVM] = 0x0000, [HYPER_MSHV] = 0x5353, [HYPER_VMWARE] = 0x0710, [HYPER_VBOX] = 0xbeef, }; /* dispatching modes */ static const char *disp_modes[] = { [DISP_HORIZONTAL] = N_("horizontal"), [DISP_VERTICAL] = N_("vertical") }; static struct polarization_modes polar_modes[] = { [POLAR_UNKNOWN] = {"U", "-"}, [POLAR_VLOW] = {"VL", "vert-low"}, [POLAR_VMEDIUM] = {"VM", "vert-medium"}, [POLAR_VHIGH] = {"VH", "vert-high"}, [POLAR_HORIZONTAL] = {"H", "horizontal"}, }; static int maxcpus; /* size in bits of kernel cpu mask */ #define is_cpu_online(_d, _cpu) \ ((_d) && (_d)->online ? \ CPU_ISSET_S((_cpu), CPU_ALLOC_SIZE(maxcpus), (_d)->online) : 0) #define is_cpu_present(_d, _cpu) \ ((_d) && (_d)->present ? \ CPU_ISSET_S((_cpu), CPU_ALLOC_SIZE(maxcpus), (_d)->present) : 0) #define real_cpu_num(_d, _i) ((_d)->idx2cpunum[(_i)]) /* * IDs */ enum { COL_CPU_CPU, COL_CPU_CORE, COL_CPU_SOCKET, COL_CPU_NODE, COL_CPU_BOOK, COL_CPU_DRAWER, COL_CPU_CACHE, COL_CPU_POLARIZATION, COL_CPU_ADDRESS, COL_CPU_CONFIGURED, COL_CPU_ONLINE, COL_CPU_MAXMHZ, COL_CPU_MINMHZ, }; enum { COL_CACHE_ALLSIZE, COL_CACHE_LEVEL, COL_CACHE_NAME, COL_CACHE_ONESIZE, COL_CACHE_TYPE, COL_CACHE_WAYS, COL_CACHE_ALLOCPOL, COL_CACHE_WRITEPOL, COL_CACHE_PHYLINE, COL_CACHE_SETS, COL_CACHE_COHERENCYSIZE }; /* column description */ struct lscpu_coldesc { const char *name; const char *help; int flags; unsigned int is_abbr:1; /* name is abbreviation */ }; static struct lscpu_coldesc coldescs_cpu[] = { [COL_CPU_CPU] = { "CPU", N_("logical CPU number"), SCOLS_FL_RIGHT, 1 }, [COL_CPU_CORE] = { "CORE", N_("logical core number"), SCOLS_FL_RIGHT }, [COL_CPU_SOCKET] = { "SOCKET", N_("logical socket number"), SCOLS_FL_RIGHT }, [COL_CPU_NODE] = { "NODE", N_("logical NUMA node number"), SCOLS_FL_RIGHT }, [COL_CPU_BOOK] = { "BOOK", N_("logical book number"), SCOLS_FL_RIGHT }, [COL_CPU_DRAWER] = { "DRAWER", N_("logical drawer number"), SCOLS_FL_RIGHT }, [COL_CPU_CACHE] = { "CACHE", N_("shows how caches are shared between CPUs") }, [COL_CPU_POLARIZATION] = { "POLARIZATION", N_("CPU dispatching mode on virtual hardware") }, [COL_CPU_ADDRESS] = { "ADDRESS", N_("physical address of a CPU") }, [COL_CPU_CONFIGURED] = { "CONFIGURED", N_("shows if the hypervisor has allocated the CPU") }, [COL_CPU_ONLINE] = { "ONLINE", N_("shows if Linux currently makes use of the CPU"), SCOLS_FL_RIGHT }, [COL_CPU_MAXMHZ] = { "MAXMHZ", N_("shows the maximum MHz of the CPU"), SCOLS_FL_RIGHT }, [COL_CPU_MINMHZ] = { "MINMHZ", N_("shows the minimum MHz of the CPU"), SCOLS_FL_RIGHT } }; static struct lscpu_coldesc coldescs_cache[] = { [COL_CACHE_ALLSIZE] = { "ALL-SIZE", N_("size of all system caches"), SCOLS_FL_RIGHT }, [COL_CACHE_LEVEL] = { "LEVEL", N_("cache level"), SCOLS_FL_RIGHT }, [COL_CACHE_NAME] = { "NAME", N_("cache name") }, [COL_CACHE_ONESIZE] = { "ONE-SIZE", N_("size of one cache"), SCOLS_FL_RIGHT }, [COL_CACHE_TYPE] = { "TYPE", N_("cache type") }, [COL_CACHE_WAYS] = { "WAYS", N_("ways of associativity"), SCOLS_FL_RIGHT }, [COL_CACHE_ALLOCPOL] = { "ALLOC-POLICY", N_("allocation policy") }, [COL_CACHE_WRITEPOL] = { "WRITE-POLICY", N_("write policy") }, [COL_CACHE_PHYLINE] = { "PHY-LINE", N_("number of physical cache line per cache t"), SCOLS_FL_RIGHT }, [COL_CACHE_SETS] = { "SETS", N_("number of sets in the cache; set lines has the same cache index"), SCOLS_FL_RIGHT }, [COL_CACHE_COHERENCYSIZE] = { "COHERENCY-SIZE", N_("minimum amount of data in bytes transferred from memory to cache"), SCOLS_FL_RIGHT } }; static int get_cache_full_size(struct lscpu_desc *desc, struct cpu_cache *ca, uint64_t *res); static int cpu_column_name_to_id(const char *name, size_t namesz) { size_t i; for (i = 0; i < ARRAY_SIZE(coldescs_cpu); i++) { const char *cn = coldescs_cpu[i].name; if (!strncasecmp(name, cn, namesz) && !*(cn + namesz)) return i; } warnx(_("unknown column: %s"), name); return -1; } static int cache_column_name_to_id(const char *name, size_t namesz) { size_t i; for (i = 0; i < ARRAY_SIZE(coldescs_cache); i++) { const char *cn = coldescs_cache[i].name; if (!strncasecmp(name, cn, namesz) && !*(cn + namesz)) return i; } warnx(_("unknown column: %s"), name); return -1; } /* Lookup a pattern and get the value from cpuinfo. * Format is: * * " : " */ static int lookup(char *line, char *pattern, char **value) { char *p, *v; int len = strlen(pattern); /* don't re-fill already found tags, first one wins */ if (!*line || *value) return 0; /* pattern */ if (strncmp(line, pattern, len)) return 0; /* white spaces */ for (p = line + len; isspace(*p); p++); /* separator */ if (*p != ':') return 0; /* white spaces */ for (++p; isspace(*p); p++); /* value */ if (!*p) return 0; v = p; /* end of value */ len = strlen(line) - 1; for (p = line + len; isspace(*(p-1)); p--); *p = '\0'; *value = xstrdup(v); return 1; } /* Parse extra cache lines contained within /proc/cpuinfo but which are not * part of the cache topology information within the sysfs filesystem. * This is true for all shared caches on e.g. s390. When there are layers of * hypervisors in between it is not knows which CPUs share which caches. * Therefore information about shared caches is only available in * /proc/cpuinfo. * Format is: * "cache : level= type= scope= size= line_size= associativity=" */ static int lookup_cache(char *line, struct lscpu_desc *desc) { struct cpu_cache *cache; long long size; char *p, type; int level; /* Make sure line starts with "cache :" */ if (strncmp(line, "cache", 5)) return 0; for (p = line + 5; isdigit(*p); p++); for (; isspace(*p); p++); if (*p != ':') return 0; p = strstr(line, "scope=") + 6; /* Skip private caches, also present in sysfs */ if (!p || strncmp(p, "Private", 7) == 0) return 0; p = strstr(line, "level="); if (!p || sscanf(p, "level=%d", &level) != 1) return 0; p = strstr(line, "type=") + 5; if (!p || !*p) return 0; type = 0; if (strncmp(p, "Data", 4) == 0) type = 'd'; else if (strncmp(p, "Instruction", 11) == 0) type = 'i'; else if (strncmp(p, "Unified", 7) == 0) type = 'u'; p = strstr(line, "size="); if (!p || sscanf(p, "size=%lld", &size) != 1) return 0; desc->necaches++; desc->ecaches = xrealloc(desc->ecaches, desc->necaches * sizeof(struct cpu_cache)); cache = &desc->ecaches[desc->necaches - 1]; memset(cache, 0 , sizeof(*cache)); if (type == 'i' || type == 'd') xasprintf(&cache->name, "L%d%c", level, type); else xasprintf(&cache->name, "L%d", level); cache->level = level; cache->size = size * 1024; cache->type = type == 'i' ? xstrdup("Instruction") : type == 'd' ? xstrdup("Data") : type == 'u' ? xstrdup("Unified") : NULL; return 1; } /* Don't init the mode for platforms where we are not able to * detect that CPU supports 64-bit mode. */ static int init_mode(struct lscpu_modifier *mod) { int m = 0; if (mod->system == SYSTEM_SNAPSHOT) /* reading info from any /{sys,proc} dump, don't mix it with * information about our real CPU */ return 0; #if defined(__alpha__) || defined(__ia64__) m |= MODE_64BIT; /* 64bit platforms only */ #endif /* platforms with 64bit flag in /proc/cpuinfo, define * 32bit default here */ #if defined(__i386__) || defined(__x86_64__) || \ defined(__s390x__) || defined(__s390__) || defined(__sparc_v9__) m |= MODE_32BIT; #endif #if defined(__aarch64__) { /* personality() is the most reliable way (since 4.7) * to determine aarch32 support */ int pers = personality(PER_LINUX32); if (pers != -1) { personality(pers); m |= MODE_32BIT; } m |= MODE_64BIT; } #endif return m; } #if defined(HAVE_LIBRTAS) #define PROCESSOR_MODULE_INFO 43 static int strbe16toh(const char *buf, int offset) { return (buf[offset] << 8) + buf[offset+1]; } static void read_physical_info_powerpc(struct lscpu_desc *desc) { char buf[BUFSIZ]; int rc, len, ntypes; desc->physsockets = desc->physchips = desc->physcoresperchip = 0; rc = rtas_get_sysparm(PROCESSOR_MODULE_INFO, sizeof(buf), buf); if (rc < 0) return; len = strbe16toh(buf, 0); if (len < 8) return; ntypes = strbe16toh(buf, 2); assert(ntypes <= 1); if (!ntypes) return; desc->physsockets = strbe16toh(buf, 4); desc->physchips = strbe16toh(buf, 6); desc->physcoresperchip = strbe16toh(buf, 8); } #else static void read_physical_info_powerpc( struct lscpu_desc *desc __attribute__((__unused__))) { } #endif static int cmp_vulnerability_name(const void *a0, const void *b0) { const struct cpu_vulnerability *a = (const struct cpu_vulnerability *) a0, *b = (const struct cpu_vulnerability *) b0; return strcmp(a->name, b->name); } static void read_vulnerabilities(struct lscpu_desc *desc) { struct dirent *d; DIR *dir = ul_path_opendir(desc->syscpu, "vulnerabilities"); int n = 0; if (!dir) return; desc->nvuls = n = 0; while (xreaddir(dir)) n++; if (!n) return; rewinddir(dir); desc->vuls = xcalloc(n, sizeof(struct cpu_vulnerability)); while (desc->nvuls < n && (d = xreaddir(dir))) { char *str, *p; struct cpu_vulnerability *vu; #ifdef _DIRENT_HAVE_D_TYPE if (d->d_type == DT_DIR || d->d_type == DT_UNKNOWN) continue; #endif if (ul_path_readf_string(desc->syscpu, &str, "vulnerabilities/%s", d->d_name) <= 0) continue; vu = &desc->vuls[desc->nvuls++]; /* Name */ vu->name = xstrdup(d->d_name); *vu->name = toupper(*vu->name); strrep(vu->name, '_', ' '); /* Description */ vu->text = str; p = (char *) startswith(vu->text, "Mitigation"); if (p) { *p = ';'; strrem(vu->text, ':'); } } closedir(dir); qsort(desc->vuls, desc->nvuls, sizeof(struct cpu_vulnerability), cmp_vulnerability_name); } static void read_basicinfo(struct lscpu_desc *desc, struct lscpu_modifier *mod) { FILE *fp; char buf[BUFSIZ]; struct utsname utsbuf; size_t setsize; cpu_set_t *cpuset = NULL; /* architecture */ if (uname(&utsbuf) == -1) err(EXIT_FAILURE, _("error: uname failed")); fp = ul_path_fopen(desc->procfs, "r", "cpuinfo"); if (!fp) err(EXIT_FAILURE, _("cannot open %s"), "/proc/cpuinfo"); desc->arch = xstrdup(utsbuf.machine); /* details */ while (fgets(buf, sizeof(buf), fp) != NULL) { if (lookup(buf, "vendor", &desc->vendor)) ; else if (lookup(buf, "vendor_id", &desc->vendor)) ; else if (lookup(buf, "CPU implementer", &desc->vendor)) ; /* ARM and aarch64 */ else if (lookup(buf, "family", &desc->family)) ; else if (lookup(buf, "cpu family", &desc->family)) ; else if (lookup(buf, "model", &desc->model)) ; else if (lookup(buf, "CPU part", &desc->model)) ; /* ARM and aarch64 */ else if (lookup(buf, "model name", &desc->modelname)) ; else if (lookup(buf, "stepping", &desc->stepping)) ; else if (lookup(buf, "CPU variant", &desc->stepping)) ; /* aarch64 */ else if (lookup(buf, "cpu MHz", &desc->mhz)) ; else if (lookup(buf, "cpu MHz dynamic", &desc->dynamic_mhz)) ; /* s390 */ else if (lookup(buf, "cpu MHz static", &desc->static_mhz)) ; /* s390 */ else if (lookup(buf, "flags", &desc->flags)) ; /* x86 */ else if (lookup(buf, "features", &desc->flags)) ; /* s390 */ else if (lookup(buf, "Features", &desc->flags)) ; /* aarch64 */ else if (lookup(buf, "type", &desc->flags)) ; /* sparc64 */ else if (lookup(buf, "bogomips", &desc->bogomips)) ; else if (lookup(buf, "BogoMIPS", &desc->bogomips)) ; /* aarch64 */ else if (lookup(buf, "bogomips per cpu", &desc->bogomips)) ; /* s390 */ else if (lookup(buf, "cpu", &desc->cpu)) ; else if (lookup(buf, "revision", &desc->revision)) ; else if (lookup(buf, "CPU revision", &desc->revision)) ; /* aarch64 */ else if (lookup(buf, "max thread id", &desc->mtid)) ; /* s390 */ else if (lookup(buf, "address sizes", &desc->addrsz)) ; /* x86 */ else if (lookup_cache(buf, desc)) ; else continue; } desc->mode = init_mode(mod); if (desc->flags) { snprintf(buf, sizeof(buf), " %s ", desc->flags); if (strstr(buf, " svm ")) desc->virtflag = xstrdup("svm"); else if (strstr(buf, " vmx ")) desc->virtflag = xstrdup("vmx"); if (strstr(buf, " lm ")) desc->mode |= MODE_32BIT | MODE_64BIT; /* x86_64 */ if (strstr(buf, " zarch ")) desc->mode |= MODE_32BIT | MODE_64BIT; /* s390x */ if (strstr(buf, " sun4v ") || strstr(buf, " sun4u ")) desc->mode |= MODE_32BIT | MODE_64BIT; /* sparc64 */ } if (desc->arch && mod->system != SYSTEM_SNAPSHOT) { if (strcmp(desc->arch, "ppc64") == 0) desc->mode |= MODE_32BIT | MODE_64BIT; else if (strcmp(desc->arch, "ppc") == 0) desc->mode |= MODE_32BIT; } fclose(fp); if (ul_path_read_s32(desc->syscpu, &maxcpus, "kernel_max") == 0) /* note that kernel_max is maximum index [NR_CPUS-1] */ maxcpus += 1; else if (mod->system == SYSTEM_LIVE) /* the root is '/' so we are working with data from the current kernel */ maxcpus = get_max_number_of_cpus(); if (maxcpus <= 0) /* error or we are reading some /sys snapshot instead of the * real /sys, let's use any crazy number... */ maxcpus = 2048; setsize = CPU_ALLOC_SIZE(maxcpus); if (ul_path_readf_cpulist(desc->syscpu, &cpuset, maxcpus, "possible") == 0) { int num, idx; desc->ncpuspos = CPU_COUNT_S(setsize, cpuset); desc->idx2cpunum = xcalloc(desc->ncpuspos, sizeof(int)); for (num = 0, idx = 0; num < maxcpus; num++) { if (CPU_ISSET_S(num, setsize, cpuset)) desc->idx2cpunum[idx++] = num; } cpuset_free(cpuset); cpuset = NULL; } else err(EXIT_FAILURE, _("failed to determine number of CPUs: %s"), _PATH_SYS_CPU "/possible"); /* get mask for present CPUs */ if (ul_path_readf_cpulist(desc->syscpu, &desc->present, maxcpus, "present") == 0) desc->ncpus = CPU_COUNT_S(setsize, desc->present); /* get mask for online CPUs */ if (ul_path_readf_cpulist(desc->syscpu, &desc->online, maxcpus, "online") == 0) desc->nthreads = CPU_COUNT_S(setsize, desc->online); /* get dispatching mode */ if (ul_path_read_s32(desc->syscpu, &desc->dispatching, "dispatching") != 0) desc->dispatching = -1; /* get cpufreq boost mode */ if (ul_path_read_s32(desc->syscpu, &desc->freqboost, "cpufreq/boost") != 0) desc->freqboost = -1; if (mod->system == SYSTEM_LIVE) read_physical_info_powerpc(desc); if ((fp = ul_path_fopen(desc->procfs, "r", "sysinfo"))) { while (fgets(buf, sizeof(buf), fp) != NULL) { if (lookup(buf, "Type", &desc->machinetype)) break; } fclose(fp); } /* vulnerabilities */ if (ul_path_access(desc->syscpu, F_OK, "vulnerabilities") == 0) read_vulnerabilities(desc); } static int has_pci_device(struct lscpu_desc *desc, unsigned int vendor, unsigned int device) { FILE *f; unsigned int num, fn, ven, dev; int res = 1; f = ul_path_fopen(desc->procfs, "r", "bus/pci/devices"); if (!f) return 0; /* for more details about bus/pci/devices format see * drivers/pci/proc.c in linux kernel */ while(fscanf(f, "%02x%02x\t%04x%04x\t%*[^\n]", &num, &fn, &ven, &dev) == 4) { if (ven == vendor && dev == device) goto found; } res = 0; found: fclose(f); return res; } #if defined(__x86_64__) || defined(__i386__) /* * This CPUID leaf returns the information about the hypervisor. * EAX : maximum input value for CPUID supported by the hypervisor. * EBX, ECX, EDX : Hypervisor vendor ID signature. E.g. VMwareVMware. */ #define HYPERVISOR_INFO_LEAF 0x40000000 static inline void cpuid(unsigned int op, unsigned int *eax, unsigned int *ebx, unsigned int *ecx, unsigned int *edx) { __asm__( #if defined(__PIC__) && defined(__i386__) /* x86 PIC cannot clobber ebx -- gcc bitches */ "xchg %%ebx, %%esi;" "cpuid;" "xchg %%esi, %%ebx;" : "=S" (*ebx), #else "cpuid;" : "=b" (*ebx), #endif "=a" (*eax), "=c" (*ecx), "=d" (*edx) : "1" (op), "c"(0)); } static void read_hypervisor_cpuid(struct lscpu_desc *desc) { unsigned int eax = 0, ebx = 0, ecx = 0, edx = 0; char hyper_vendor_id[13]; memset(hyper_vendor_id, 0, sizeof(hyper_vendor_id)); cpuid(HYPERVISOR_INFO_LEAF, &eax, &ebx, &ecx, &edx); memcpy(hyper_vendor_id + 0, &ebx, 4); memcpy(hyper_vendor_id + 4, &ecx, 4); memcpy(hyper_vendor_id + 8, &edx, 4); hyper_vendor_id[12] = '\0'; if (!hyper_vendor_id[0]) return; if (!strncmp("XenVMMXenVMM", hyper_vendor_id, 12)) desc->hyper = HYPER_XEN; else if (!strncmp("KVMKVMKVM", hyper_vendor_id, 9)) desc->hyper = HYPER_KVM; else if (!strncmp("Microsoft Hv", hyper_vendor_id, 12)) desc->hyper = HYPER_MSHV; else if (!strncmp("VMwareVMware", hyper_vendor_id, 12)) desc->hyper = HYPER_VMWARE; else if (!strncmp("UnisysSpar64", hyper_vendor_id, 12)) desc->hyper = HYPER_SPAR; } #else /* ! (__x86_64__ || __i386__) */ static void read_hypervisor_cpuid(struct lscpu_desc *desc __attribute__((__unused__))) { } #endif static int is_devtree_compatible(struct lscpu_desc *desc, const char *str) { FILE *fd = ul_path_fopen(desc->procfs, "r", "device-tree/compatible"); if (fd) { char buf[256]; size_t i, len; memset(buf, 0, sizeof(buf)); len = fread(buf, 1, sizeof(buf) - 1, fd); fclose(fd); for (i = 0; i < len;) { if (!strcmp(&buf[i], str)) return 1; i += strlen(&buf[i]); i++; } } return 0; } static int read_hypervisor_powerpc(struct lscpu_desc *desc) { assert(!desc->hyper); /* IBM iSeries: legacy, para-virtualized on top of OS/400 */ if (ul_path_access(desc->procfs, F_OK, "iSeries") == 0) { desc->hyper = HYPER_OS400; desc->virtype = VIRT_PARA; /* PowerNV (POWER Non-Virtualized, bare-metal) */ } else if (is_devtree_compatible(desc, "ibm,powernv")) { desc->hyper = HYPER_NONE; desc->virtype = VIRT_NONE; /* PowerVM (IBM's proprietary hypervisor, aka pHyp) */ } else if (ul_path_access(desc->procfs, F_OK, "device-tree/ibm,partition-name") == 0 && ul_path_access(desc->procfs, F_OK, "device-tree/hmc-managed?") == 0 && ul_path_access(desc->procfs, F_OK, "device-tree/chosen/qemu,graphic-width") != 0) { FILE *fd; desc->hyper = HYPER_PHYP; desc->virtype = VIRT_PARA; fd = ul_path_fopen(desc->procfs, "r", "device-tree/ibm,partition-name"); if (fd) { char buf[256]; if (fscanf(fd, "%255s", buf) == 1 && !strcmp(buf, "full")) desc->virtype = VIRT_NONE; fclose(fd); } /* Qemu */ } else if (is_devtree_compatible(desc, "qemu,pseries")) { desc->hyper = HYPER_KVM; desc->virtype = VIRT_PARA; } return desc->hyper; } #ifdef INCLUDE_VMWARE_BDOOR #define VMWARE_BDOOR_MAGIC 0x564D5868 #define VMWARE_BDOOR_PORT 0x5658 #define VMWARE_BDOOR_CMD_GETVERSION 10 static UL_ASAN_BLACKLIST void vmware_bdoor(uint32_t *eax, uint32_t *ebx, uint32_t *ecx, uint32_t *edx) { __asm__( #if defined(__PIC__) && defined(__i386__) /* x86 PIC cannot clobber ebx -- gcc bitches */ "xchg %%ebx, %%esi;" "inl (%%dx), %%eax;" "xchg %%esi, %%ebx;" : "=S" (*ebx), #else "inl (%%dx), %%eax;" : "=b" (*ebx), #endif "=a" (*eax), "=c" (*ecx), "=d" (*edx) : "0" (VMWARE_BDOOR_MAGIC), "1" (VMWARE_BDOOR_CMD_GETVERSION), "2" (VMWARE_BDOOR_PORT), "3" (0) : "memory"); } static jmp_buf segv_handler_env; static void segv_handler(__attribute__((__unused__)) int sig, __attribute__((__unused__)) siginfo_t *info, __attribute__((__unused__)) void *ignored) { siglongjmp(segv_handler_env, 1); } static int is_vmware_platform(void) { uint32_t eax, ebx, ecx, edx; struct sigaction act, oact; /* * FIXME: Not reliable for non-root users. Note it works as expected if * vmware_bdoor() is not optimized for PIE, but then it fails to build * on 32bit x86 systems. See lscpu git log for more details (commit * 7845b91dbc7690064a2be6df690e4aaba728fb04). kzak [3-Nov-2016] */ if (getuid() != 0) return 0; /* * The assembly routine for vmware detection works * fine under vmware, even if ran as regular user. But * on real HW or under other hypervisors, it segfaults (which is * expected). So we temporarily install SIGSEGV handler to catch * the signal. All this magic is needed because lscpu * isn't supposed to require root privileges. */ if (sigsetjmp(segv_handler_env, 1)) return 0; memset(&act, 0, sizeof(act)); act.sa_sigaction = segv_handler; act.sa_flags = SA_SIGINFO; if (sigaction(SIGSEGV, &act, &oact)) err(EXIT_FAILURE, _("cannot set signal handler")); vmware_bdoor(&eax, &ebx, &ecx, &edx); if (sigaction(SIGSEGV, &oact, NULL)) err(EXIT_FAILURE, _("cannot restore signal handler")); return eax != (uint32_t)-1 && ebx == VMWARE_BDOOR_MAGIC; } #else /* ! INCLUDE_VMWARE_BDOOR */ static int is_vmware_platform(void) { return 0; } #endif /* INCLUDE_VMWARE_BDOOR */ static void read_hypervisor(struct lscpu_desc *desc, struct lscpu_modifier *mod) { FILE *fd; /* We have to detect WSL first. is_vmware_platform() crashes on Windows 10. */ if ((fd = ul_path_fopen(desc->procfs, "r", "sys/kernel/osrelease"))) { char buf[256]; if (fgets(buf, sizeof(buf), fd) != NULL) { if (strstr(buf, "Microsoft")) { desc->hyper = HYPER_WSL; desc->virtype = VIRT_CONT; } } fclose(fd); if (desc->virtype) return; } if (mod->system != SYSTEM_SNAPSHOT) { read_hypervisor_cpuid(desc); if (!desc->hyper) desc->hyper = read_hypervisor_dmi(); if (!desc->hyper && is_vmware_platform()) desc->hyper = HYPER_VMWARE; } if (desc->hyper) { desc->virtype = VIRT_FULL; if (desc->hyper == HYPER_XEN) { uint32_t features; fd = ul_prefix_fopen(desc->prefix, "r", _PATH_SYS_HYP_FEATURES); if (fd && fscanf(fd, "%x", &features) == 1) { /* Xen PV domain */ if (features & XEN_FEATURES_PV_MASK) desc->virtype = VIRT_PARA; /* Xen PVH domain */ else if ((features & XEN_FEATURES_PVH_MASK) == XEN_FEATURES_PVH_MASK) desc->virtype = VIRT_PARA; } if (fd) fclose(fd); } } else if (read_hypervisor_powerpc(desc) > 0) {} /* Xen para-virt or dom0 */ else if (ul_path_access(desc->procfs, F_OK, "xen") == 0) { int dom0 = 0; fd = ul_path_fopen(desc->procfs, "r", "xen/capabilities"); if (fd) { char buf[256]; if (fscanf(fd, "%255s", buf) == 1 && !strcmp(buf, "control_d")) dom0 = 1; fclose(fd); } desc->virtype = dom0 ? VIRT_NONE : VIRT_PARA; desc->hyper = HYPER_XEN; /* Xen full-virt on non-x86_64 */ } else if (has_pci_device(desc, hv_vendor_pci[HYPER_XEN], hv_graphics_pci[HYPER_XEN])) { desc->hyper = HYPER_XEN; desc->virtype = VIRT_FULL; } else if (has_pci_device(desc, hv_vendor_pci[HYPER_VMWARE], hv_graphics_pci[HYPER_VMWARE])) { desc->hyper = HYPER_VMWARE; desc->virtype = VIRT_FULL; } else if (has_pci_device(desc, hv_vendor_pci[HYPER_VBOX], hv_graphics_pci[HYPER_VBOX])) { desc->hyper = HYPER_VBOX; desc->virtype = VIRT_FULL; /* IBM PR/SM */ } else if ((fd = ul_path_fopen(desc->procfs, "r", "sysinfo"))) { char buf[BUFSIZ]; desc->hyper = HYPER_IBM; desc->hypervisor = "PR/SM"; desc->virtype = VIRT_FULL; while (fgets(buf, sizeof(buf), fd) != NULL) { char *str, *p; if (!strstr(buf, "Control Program:")) continue; if (!strstr(buf, "KVM")) desc->hyper = HYPER_IBM; else desc->hyper = HYPER_KVM; p = strchr(buf, ':'); if (!p) continue; xasprintf(&str, "%s", p + 1); /* remove leading, trailing and repeating whitespace */ while (*str == ' ') str++; desc->hypervisor = str; str += strlen(str) - 1; while ((*str == '\n') || (*str == ' ')) *(str--) = '\0'; while ((str = strstr(desc->hypervisor, " "))) memmove(str, str + 1, strlen(str)); break; } fclose(fd); } /* OpenVZ/Virtuozzo - /proc/vz dir should exist * /proc/bc should not */ else if (ul_path_access(desc->procfs, F_OK, "vz") == 0 && ul_path_access(desc->procfs, F_OK, "bc") != 0) { desc->hyper = HYPER_PARALLELS; desc->virtype = VIRT_CONT; /* IBM */ } else if (desc->vendor && (strcmp(desc->vendor, "PowerVM Lx86") == 0 || strcmp(desc->vendor, "IBM/S390") == 0)) { desc->hyper = HYPER_IBM; desc->virtype = VIRT_FULL; /* User-mode-linux */ } else if (desc->modelname && strstr(desc->modelname, "UML")) { desc->hyper = HYPER_UML; desc->virtype = VIRT_PARA; /* Linux-VServer */ } else if ((fd = ul_path_fopen(desc->procfs, "r", "self/status"))) { char buf[BUFSIZ]; char *val = NULL; while (fgets(buf, sizeof(buf), fd) != NULL) { if (lookup(buf, "VxID", &val)) break; } fclose(fd); if (val) { char *org = val; while (isdigit(*val)) ++val; if (!*val) { desc->hyper = HYPER_VSERVER; desc->virtype = VIRT_CONT; } free(org); } } } /* add @set to the @ary, unnecessary set is deallocated. */ static int add_cpuset_to_array(cpu_set_t **ary, int *items, cpu_set_t *set) { int i; size_t setsize = CPU_ALLOC_SIZE(maxcpus); if (!ary) return -1; for (i = 0; i < *items; i++) { if (CPU_EQUAL_S(setsize, set, ary[i])) break; } if (i == *items) { ary[*items] = set; ++*items; return 0; } CPU_FREE(set); return 1; } static void read_topology(struct lscpu_desc *desc, int idx) { cpu_set_t *thread_siblings, *core_siblings; cpu_set_t *book_siblings, *drawer_siblings; int coreid, socketid, bookid, drawerid; int i, num = real_cpu_num(desc, idx); if (ul_path_accessf(desc->syscpu, F_OK, "cpu%d/topology/thread_siblings", num) != 0) return; ul_path_readf_cpuset(desc->syscpu, &thread_siblings, maxcpus, "cpu%d/topology/thread_siblings", num); ul_path_readf_cpuset(desc->syscpu, &core_siblings, maxcpus, "cpu%d/topology/core_siblings", num); ul_path_readf_cpuset(desc->syscpu, &book_siblings, maxcpus, "cpu%d/topology/book_siblings", num); ul_path_readf_cpuset(desc->syscpu, &drawer_siblings, maxcpus, "cpu%d/topology/drawer_siblings", num); if (ul_path_readf_s32(desc->syscpu, &coreid, "cpu%d/topology/core_id", num) != 0) coreid = -1; if (ul_path_readf_s32(desc->syscpu, &socketid, "cpu%d/topology/physical_package_id", num) != 0) socketid = -1; if (ul_path_readf_s32(desc->syscpu, &bookid, "cpu%d/topology/book_id", num) != 0) bookid = -1; if (ul_path_readf_s32(desc->syscpu, &drawerid, "cpu%d/topology/drawer_id", num) != 0) drawerid = -1; if (!desc->coremaps) { int ndrawers, nbooks, nsockets, ncores, nthreads; size_t setsize = CPU_ALLOC_SIZE(maxcpus); /* threads within one core */ nthreads = CPU_COUNT_S(setsize, thread_siblings); if (!nthreads) nthreads = 1; /* cores within one socket */ ncores = CPU_COUNT_S(setsize, core_siblings) / nthreads; if (!ncores) ncores = 1; /* number of sockets within one book. Because of odd / * non-present cpu maps and to keep calculation easy we make * sure that nsockets and nbooks is at least 1. */ nsockets = desc->ncpus / nthreads / ncores; if (!nsockets) nsockets = 1; /* number of books */ nbooks = desc->ncpus / nthreads / ncores / nsockets; if (!nbooks) nbooks = 1; /* number of drawers */ ndrawers = desc->ncpus / nbooks / nthreads / ncores / nsockets; if (!ndrawers) ndrawers = 1; /* all threads, see also read_basicinfo() * -- fallback for kernels without * /sys/devices/system/cpu/online. */ if (!desc->nthreads) desc->nthreads = ndrawers * nbooks * nsockets * ncores * nthreads; /* For each map we make sure that it can have up to ncpuspos * entries. This is because we cannot reliably calculate the * number of cores, sockets and books on all architectures. * E.g. completely virtualized architectures like s390 may * have multiple sockets of different sizes. */ desc->coremaps = xcalloc(desc->ncpuspos, sizeof(cpu_set_t *)); desc->socketmaps = xcalloc(desc->ncpuspos, sizeof(cpu_set_t *)); desc->coreids = xcalloc(desc->ncpuspos, sizeof(*desc->drawerids)); desc->socketids = xcalloc(desc->ncpuspos, sizeof(*desc->drawerids)); for (i = 0; i < desc->ncpuspos; i++) desc->coreids[i] = desc->socketids[i] = -1; if (book_siblings) { desc->bookmaps = xcalloc(desc->ncpuspos, sizeof(cpu_set_t *)); desc->bookids = xcalloc(desc->ncpuspos, sizeof(*desc->drawerids)); for (i = 0; i < desc->ncpuspos; i++) desc->bookids[i] = -1; } if (drawer_siblings) { desc->drawermaps = xcalloc(desc->ncpuspos, sizeof(cpu_set_t *)); desc->drawerids = xcalloc(desc->ncpuspos, sizeof(*desc->drawerids)); for (i = 0; i < desc->ncpuspos; i++) desc->drawerids[i] = -1; } } add_cpuset_to_array(desc->socketmaps, &desc->nsockets, core_siblings); desc->coreids[idx] = coreid; add_cpuset_to_array(desc->coremaps, &desc->ncores, thread_siblings); desc->socketids[idx] = socketid; if (book_siblings) { add_cpuset_to_array(desc->bookmaps, &desc->nbooks, book_siblings); desc->bookids[idx] = bookid; } if (drawer_siblings) { add_cpuset_to_array(desc->drawermaps, &desc->ndrawers, drawer_siblings); desc->drawerids[idx] = drawerid; } } static void read_polarization(struct lscpu_desc *desc, int idx) { char mode[64]; int num = real_cpu_num(desc, idx); if (desc->dispatching < 0) return; if (ul_path_accessf(desc->syscpu, F_OK, "cpu%d/polarization", num) != 0) return; if (!desc->polarization) desc->polarization = xcalloc(desc->ncpuspos, sizeof(int)); ul_path_readf_buffer(desc->syscpu, mode, sizeof(mode), "cpu%d/polarization", num); if (strncmp(mode, "vertical:low", sizeof(mode)) == 0) desc->polarization[idx] = POLAR_VLOW; else if (strncmp(mode, "vertical:medium", sizeof(mode)) == 0) desc->polarization[idx] = POLAR_VMEDIUM; else if (strncmp(mode, "vertical:high", sizeof(mode)) == 0) desc->polarization[idx] = POLAR_VHIGH; else if (strncmp(mode, "horizontal", sizeof(mode)) == 0) desc->polarization[idx] = POLAR_HORIZONTAL; else desc->polarization[idx] = POLAR_UNKNOWN; } static void read_address(struct lscpu_desc *desc, int idx) { int num = real_cpu_num(desc, idx); if (ul_path_accessf(desc->syscpu, F_OK, "cpu%d/address", num) != 0) return; if (!desc->addresses) desc->addresses = xcalloc(desc->ncpuspos, sizeof(int)); ul_path_readf_s32(desc->syscpu, &desc->addresses[idx], "cpu%d/address", num); } static void read_configured(struct lscpu_desc *desc, int idx) { int num = real_cpu_num(desc, idx); if (ul_path_accessf(desc->syscpu, F_OK, "cpu%d/configure", num) != 0) return; if (!desc->configured) desc->configured = xcalloc(desc->ncpuspos, sizeof(int)); ul_path_readf_s32(desc->syscpu, &desc->configured[idx], "cpu%d/configure", num); } /* Read overall maximum frequency of cpu */ static char * cpu_max_mhz(struct lscpu_desc *desc, char *buf, size_t bufsz) { int i; float cpu_freq = 0.0; size_t setsize = CPU_ALLOC_SIZE(maxcpus); if (desc->present) { for (i = 0; i < desc->ncpuspos; i++) { if (CPU_ISSET_S(real_cpu_num(desc, i), setsize, desc->present) && desc->maxmhz[i]) { float freq = atof(desc->maxmhz[i]); if (freq > cpu_freq) cpu_freq = freq; } } } snprintf(buf, bufsz, "%.4f", cpu_freq); return buf; } /* Read overall minimum frequency of cpu */ static char * cpu_min_mhz(struct lscpu_desc *desc, char *buf, size_t bufsz) { int i; float cpu_freq = -1.0; size_t setsize = CPU_ALLOC_SIZE(maxcpus); if (desc->present) { for (i = 0; i < desc->ncpuspos; i++) { if (CPU_ISSET_S(real_cpu_num(desc, i), setsize, desc->present) && desc->minmhz[i]) { float freq = atof(desc->minmhz[i]); if (cpu_freq < 0.0 || freq < cpu_freq) cpu_freq = freq; } } } snprintf(buf, bufsz, "%.4f", cpu_freq); return buf; } static void read_max_mhz(struct lscpu_desc *desc, int idx) { int num = real_cpu_num(desc, idx); int mhz; if (ul_path_readf_s32(desc->syscpu, &mhz, "cpu%d/cpufreq/cpuinfo_max_freq", num) != 0) return; if (!desc->maxmhz) desc->maxmhz = xcalloc(desc->ncpuspos, sizeof(char *)); xasprintf(&desc->maxmhz[idx], "%.4f", (float) mhz / 1000); } static void read_min_mhz(struct lscpu_desc *desc, int idx) { int num = real_cpu_num(desc, idx); int mhz; if (ul_path_readf_s32(desc->syscpu, &mhz, "cpu%d/cpufreq/cpuinfo_min_freq", num) != 0) return; if (!desc->minmhz) desc->minmhz = xcalloc(desc->ncpuspos, sizeof(char *)); xasprintf(&desc->minmhz[idx], "%.4f", (float) mhz / 1000); } static int cachecmp(const void *a, const void *b) { struct cpu_cache *c1 = (struct cpu_cache *) a; struct cpu_cache *c2 = (struct cpu_cache *) b; return strcmp(c2->name, c1->name); } static void read_cache(struct lscpu_desc *desc, int idx) { char buf[256]; int i; int num = real_cpu_num(desc, idx); if (!desc->ncaches) { while (ul_path_accessf(desc->syscpu, F_OK, "cpu%d/cache/index%d", num, desc->ncaches) == 0) desc->ncaches++; if (!desc->ncaches) return; desc->caches = xcalloc(desc->ncaches, sizeof(*desc->caches)); } for (i = 0; i < desc->ncaches; i++) { struct cpu_cache *ca = &desc->caches[i]; cpu_set_t *map; if (ul_path_accessf(desc->syscpu, F_OK, "cpu%d/cache/index%d", num, i) != 0) continue; if (!ca->name) { int type = 0; /* cache type */ if (ul_path_readf_string(desc->syscpu, &ca->type, "cpu%d/cache/index%d/type", num, i) > 0) { if (!strcmp(ca->type, "Data")) type = 'd'; else if (!strcmp(ca->type, "Instruction")) type = 'i'; } /* cache level */ ul_path_readf_s32(desc->syscpu, &ca->level, "cpu%d/cache/index%d/level", num, i); if (type) snprintf(buf, sizeof(buf), "L%d%c", ca->level, type); else snprintf(buf, sizeof(buf), "L%d", ca->level); ca->name = xstrdup(buf); ul_path_readf_u32(desc->syscpu, &ca->ways_of_associativity, "cpu%d/cache/index%d/ways_of_associativity", num, i); ul_path_readf_u32(desc->syscpu, &ca->physical_line_partition, "cpu%d/cache/index%d/physical_line_partition", num, i); ul_path_readf_u32(desc->syscpu, &ca->number_of_sets, "cpu%d/cache/index%d/number_of_sets", num, i); ul_path_readf_u32(desc->syscpu, &ca->coherency_line_size, "cpu%d/cache/index%d/coherency_line_size", num, i); ul_path_readf_string(desc->syscpu, &ca->allocation_policy, "cpu%d/cache/index%d/allocation_policy", num, i); ul_path_readf_string(desc->syscpu, &ca->write_policy, "cpu%d/cache/index%d/write_policy", num, i); /* cache size */ if (ul_path_readf_buffer(desc->syscpu, buf, sizeof(buf), "cpu%d/cache/index%d/size", num, i) > 0) parse_size(buf, &ca->size, NULL); else ca->size = 0; } /* information about how CPUs share different caches */ ul_path_readf_cpuset(desc->syscpu, &map, maxcpus, "cpu%d/cache/index%d/shared_cpu_map", num, i); if (!ca->sharedmaps) ca->sharedmaps = xcalloc(desc->ncpuspos, sizeof(cpu_set_t *)); add_cpuset_to_array(ca->sharedmaps, &ca->nsharedmaps, map); } } static inline int is_node_dirent(struct dirent *d) { return d && #ifdef _DIRENT_HAVE_D_TYPE (d->d_type == DT_DIR || d->d_type == DT_UNKNOWN) && #endif strncmp(d->d_name, "node", 4) == 0 && isdigit_string(d->d_name + 4); } static int nodecmp(const void *ap, const void *bp) { int *a = (int *) ap, *b = (int *) bp; return *a - *b; } static void read_nodes(struct lscpu_desc *desc) { int i = 0; DIR *dir; struct dirent *d; struct path_cxt *sysnode; desc->nnodes = 0; sysnode = ul_new_path(_PATH_SYS_NODE); if (!sysnode) err(EXIT_FAILURE, _("failed to initialize %s handler"), _PATH_SYS_NODE); ul_path_set_prefix(sysnode, desc->prefix); dir = ul_path_opendir(sysnode, NULL); if (!dir) goto done; while ((d = readdir(dir))) { if (is_node_dirent(d)) desc->nnodes++; } if (!desc->nnodes) { closedir(dir); goto done; } desc->nodemaps = xcalloc(desc->nnodes, sizeof(cpu_set_t *)); desc->idx2nodenum = xmalloc(desc->nnodes * sizeof(int)); rewinddir(dir); while ((d = readdir(dir)) && i < desc->nnodes) { if (is_node_dirent(d)) desc->idx2nodenum[i++] = strtol_or_err(((d->d_name) + 4), _("Failed to extract the node number")); } closedir(dir); qsort(desc->idx2nodenum, desc->nnodes, sizeof(int), nodecmp); /* information about how nodes share different CPUs */ for (i = 0; i < desc->nnodes; i++) ul_path_readf_cpuset(sysnode, &desc->nodemaps[i], maxcpus, "node%d/cpumap", desc->idx2nodenum[i]); done: ul_unref_path(sysnode); } static char * get_cell_data(struct lscpu_desc *desc, int idx, int col, struct lscpu_modifier *mod, char *buf, size_t bufsz) { size_t setsize = CPU_ALLOC_SIZE(maxcpus); size_t i; int cpu = real_cpu_num(desc, idx); *buf = '\0'; switch (col) { case COL_CPU_CPU: snprintf(buf, bufsz, "%d", cpu); break; case COL_CPU_CORE: if (mod->physical) { if (desc->coreids[idx] == -1) snprintf(buf, bufsz, "-"); else snprintf(buf, bufsz, "%d", desc->coreids[idx]); } else { if (cpuset_ary_isset(cpu, desc->coremaps, desc->ncores, setsize, &i) == 0) snprintf(buf, bufsz, "%zu", i); } break; case COL_CPU_SOCKET: if (mod->physical) { if (desc->socketids[idx] == -1) snprintf(buf, bufsz, "-"); else snprintf(buf, bufsz, "%d", desc->socketids[idx]); } else { if (cpuset_ary_isset(cpu, desc->socketmaps, desc->nsockets, setsize, &i) == 0) snprintf(buf, bufsz, "%zu", i); } break; case COL_CPU_NODE: if (cpuset_ary_isset(cpu, desc->nodemaps, desc->nnodes, setsize, &i) == 0) snprintf(buf, bufsz, "%d", desc->idx2nodenum[i]); break; case COL_CPU_DRAWER: if (mod->physical) { if (desc->drawerids[idx] == -1) snprintf(buf, bufsz, "-"); else snprintf(buf, bufsz, "%d", desc->drawerids[idx]); } else { if (cpuset_ary_isset(cpu, desc->drawermaps, desc->ndrawers, setsize, &i) == 0) snprintf(buf, bufsz, "%zu", i); } break; case COL_CPU_BOOK: if (mod->physical) { if (desc->bookids[idx] == -1) snprintf(buf, bufsz, "-"); else snprintf(buf, bufsz, "%d", desc->bookids[idx]); } else { if (cpuset_ary_isset(cpu, desc->bookmaps, desc->nbooks, setsize, &i) == 0) snprintf(buf, bufsz, "%zu", i); } break; case COL_CPU_CACHE: { char *p = buf; size_t sz = bufsz; int j; for (j = desc->ncaches - 1; j >= 0; j--) { struct cpu_cache *ca = &desc->caches[j]; if (cpuset_ary_isset(cpu, ca->sharedmaps, ca->nsharedmaps, setsize, &i) == 0) { int x = snprintf(p, sz, "%zu", i); if (x < 0 || (size_t) x >= sz) return NULL; p += x; sz -= x; } if (j != 0) { if (sz < 2) return NULL; *p++ = mod->compat ? ',' : ':'; *p = '\0'; sz--; } } break; } case COL_CPU_POLARIZATION: if (desc->polarization) { int x = desc->polarization[idx]; snprintf(buf, bufsz, "%s", mod->mode == OUTPUT_PARSABLE ? polar_modes[x].parsable : polar_modes[x].readable); } break; case COL_CPU_ADDRESS: if (desc->addresses) snprintf(buf, bufsz, "%d", desc->addresses[idx]); break; case COL_CPU_CONFIGURED: if (!desc->configured) break; if (mod->mode == OUTPUT_PARSABLE) snprintf(buf, bufsz, "%s", desc->configured[idx] ? _("Y") : _("N")); else snprintf(buf, bufsz, "%s", desc->configured[idx] ? _("yes") : _("no")); break; case COL_CPU_ONLINE: if (!desc->online) break; if (mod->mode == OUTPUT_PARSABLE) snprintf(buf, bufsz, "%s", is_cpu_online(desc, cpu) ? _("Y") : _("N")); else snprintf(buf, bufsz, "%s", is_cpu_online(desc, cpu) ? _("yes") : _("no")); break; case COL_CPU_MAXMHZ: if (desc->maxmhz && desc->maxmhz[idx]) xstrncpy(buf, desc->maxmhz[idx], bufsz); break; case COL_CPU_MINMHZ: if (desc->minmhz && desc->minmhz[idx]) xstrncpy(buf, desc->minmhz[idx], bufsz); break; } return buf; } static char * get_cell_header(struct lscpu_desc *desc, int col, struct lscpu_modifier *mod, char *buf, size_t bufsz) { *buf = '\0'; if (col == COL_CPU_CACHE) { char *p = buf; size_t sz = bufsz; int i; for (i = desc->ncaches - 1; i >= 0; i--) { int x = snprintf(p, sz, "%s", desc->caches[i].name); if (x < 0 || (size_t) x >= sz) return NULL; sz -= x; p += x; if (i > 0) { if (sz < 2) return NULL; *p++ = mod->compat ? ',' : ':'; *p = '\0'; sz--; } } if (desc->ncaches) return buf; } snprintf(buf, bufsz, "%s", coldescs_cpu[col].name); return buf; } /* * [-C] backend */ static void print_caches_readable(struct lscpu_desc *desc, int cols[], int ncols, struct lscpu_modifier *mod) { int i; struct libscols_table *table; scols_init_debug(0); table = scols_new_table(); if (!table) err(EXIT_FAILURE, _("failed to allocate output table")); if (mod->json) { scols_table_enable_json(table, 1); scols_table_set_name(table, "caches"); } for (i = 0; i < ncols; i++) { struct lscpu_coldesc *cd = &coldescs_cache[cols[i]]; if (!scols_table_new_column(table, cd->name, 0, cd->flags)) err(EXIT_FAILURE, _("failed to allocate output column")); } for (i = desc->ncaches - 1; i >= 0; i--) { struct cpu_cache *ca = &desc->caches[i]; struct libscols_line *line; int c; line = scols_table_new_line(table, NULL); if (!line) err(EXIT_FAILURE, _("failed to allocate output line")); for (c = 0; c < ncols; c++) { char *data = NULL; int col = cols[c]; switch (col) { case COL_CACHE_NAME: if (ca->name) data = xstrdup(ca->name); break; case COL_CACHE_ONESIZE: if (!ca->size) break; if (mod->bytes) xasprintf(&data, "%" PRIu64, ca->size); else data = size_to_human_string(SIZE_SUFFIX_1LETTER, ca->size); break; case COL_CACHE_ALLSIZE: { uint64_t sz = 0; if (get_cache_full_size(desc, ca, &sz) != 0) break; if (mod->bytes) xasprintf(&data, "%" PRIu64, sz); else data = size_to_human_string(SIZE_SUFFIX_1LETTER, sz); break; } case COL_CACHE_WAYS: if (ca->ways_of_associativity) xasprintf(&data, "%u", ca->ways_of_associativity); break; case COL_CACHE_TYPE: if (ca->type) data = xstrdup(ca->type); break; case COL_CACHE_LEVEL: if (ca->level) xasprintf(&data, "%d", ca->level); break; case COL_CACHE_ALLOCPOL: if (ca->allocation_policy) data = xstrdup(ca->allocation_policy); break; case COL_CACHE_WRITEPOL: if (ca->write_policy) data = xstrdup(ca->write_policy); break; case COL_CACHE_PHYLINE: if (ca->physical_line_partition) xasprintf(&data, "%u", ca->physical_line_partition); break; case COL_CACHE_SETS: if (ca->number_of_sets) xasprintf(&data, "%u", ca->number_of_sets); break; case COL_CACHE_COHERENCYSIZE: if (ca->coherency_line_size) xasprintf(&data, "%u", ca->coherency_line_size); break; } if (data && scols_line_refer_data(line, c, data)) err(EXIT_FAILURE, _("failed to add output data")); } } scols_print_table(table); scols_unref_table(table); } /* * [-p] backend, we support two parsable formats: * * 1) "compatible" -- this format is compatible with the original lscpu(1) * output and it contains fixed set of the columns. The CACHE columns are at * the end of the line and the CACHE is not printed if the number of the caches * is zero. The CACHE columns are separated by two commas, for example: * * $ lscpu --parse * # CPU,Core,Socket,Node,,L1d,L1i,L2 * 0,0,0,0,,0,0,0 * 1,1,0,0,,1,1,0 * * 2) "user defined output" -- this format prints always all columns without * special prefix for CACHE column. If there are not CACHEs then the column is * empty and the header "Cache" is printed rather than a real name of the cache. * The CACHE columns are separated by ':'. * * $ lscpu --parse=CPU,CORE,SOCKET,NODE,CACHE * # CPU,Core,Socket,Node,L1d:L1i:L2 * 0,0,0,0,0:0:0 * 1,1,0,0,1:1:0 */ static void print_cpus_parsable(struct lscpu_desc *desc, int cols[], int ncols, struct lscpu_modifier *mod) { char buf[BUFSIZ], *data; int i; /* * Header */ printf(_( "# The following is the parsable format, which can be fed to other\n" "# programs. Each different item in every column has an unique ID\n" "# starting from zero.\n")); fputs("# ", stdout); for (i = 0; i < ncols; i++) { int col = cols[i]; if (col == COL_CPU_CACHE) { if (mod->compat && !desc->ncaches) continue; if (mod->compat && i != 0) putchar(','); } if (i > 0) putchar(','); data = get_cell_header(desc, col, mod, buf, sizeof(buf)); if (data && * data && col != COL_CPU_CACHE && !coldescs_cpu[col].is_abbr) { /* * For normal column names use mixed case (e.g. "Socket") */ char *p = data + 1; while (p && *p != '\0') { *p = tolower((unsigned int) *p); p++; } } fputs(data && *data ? data : "", stdout); } putchar('\n'); /* * Data */ for (i = 0; i < desc->ncpuspos; i++) { int c; int cpu = real_cpu_num(desc, i); if (desc->online) { if (!mod->offline && !is_cpu_online(desc, cpu)) continue; if (!mod->online && is_cpu_online(desc, cpu)) continue; } if (desc->present && !is_cpu_present(desc, cpu)) continue; for (c = 0; c < ncols; c++) { if (mod->compat && cols[c] == COL_CPU_CACHE) { if (!desc->ncaches) continue; if (c > 0) putchar(','); } if (c > 0) putchar(','); data = get_cell_data(desc, i, cols[c], mod, buf, sizeof(buf)); fputs(data && *data ? data : "", stdout); } putchar('\n'); } } /* * [-e] backend */ static void print_cpus_readable(struct lscpu_desc *desc, int cols[], int ncols, struct lscpu_modifier *mod) { int i; char buf[BUFSIZ]; const char *data; struct libscols_table *table; scols_init_debug(0); table = scols_new_table(); if (!table) err(EXIT_FAILURE, _("failed to allocate output table")); if (mod->json) { scols_table_enable_json(table, 1); scols_table_set_name(table, "cpus"); } for (i = 0; i < ncols; i++) { data = get_cell_header(desc, cols[i], mod, buf, sizeof(buf)); if (!scols_table_new_column(table, data, 0, coldescs_cpu[cols[i]].flags)) err(EXIT_FAILURE, _("failed to allocate output column")); } for (i = 0; i < desc->ncpuspos; i++) { int c; struct libscols_line *line; int cpu = real_cpu_num(desc, i); if (desc->online) { if (!mod->offline && !is_cpu_online(desc, cpu)) continue; if (!mod->online && is_cpu_online(desc, cpu)) continue; } if (desc->present && !is_cpu_present(desc, cpu)) continue; line = scols_table_new_line(table, NULL); if (!line) err(EXIT_FAILURE, _("failed to allocate output line")); for (c = 0; c < ncols; c++) { data = get_cell_data(desc, i, cols[c], mod, buf, sizeof(buf)); if (!data || !*data) data = "-"; if (scols_line_set_data(line, c, data)) err(EXIT_FAILURE, _("failed to add output data")); } } scols_print_table(table); scols_unref_table(table); } static void __attribute__ ((__format__(printf, 3, 4))) add_summary_sprint(struct libscols_table *tb, const char *txt, const char *fmt, ...) { struct libscols_line *ln = scols_table_new_line(tb, NULL); char *data; va_list args; if (!ln) err(EXIT_FAILURE, _("failed to allocate output line")); /* description column */ if (txt && scols_line_set_data(ln, 0, txt)) err(EXIT_FAILURE, _("failed to add output data")); /* data column */ va_start(args, fmt); xvasprintf(&data, fmt, args); va_end(args); if (data && scols_line_refer_data(ln, 1, data)) err(EXIT_FAILURE, _("failed to add output data")); } #define add_summary_n(tb, txt, num) add_summary_sprint(tb, txt, "%d", num) #define add_summary_s(tb, txt, str) add_summary_sprint(tb, txt, "%s", str) static void print_cpuset(struct libscols_table *tb, const char *key, cpu_set_t *set, int hex) { size_t setsize = CPU_ALLOC_SIZE(maxcpus); size_t setbuflen = 7 * maxcpus; char setbuf[setbuflen], *p; if (hex) { p = cpumask_create(setbuf, setbuflen, set, setsize); add_summary_s(tb, key, p); } else { p = cpulist_create(setbuf, setbuflen, set, setsize); add_summary_s(tb, key, p); } } static int get_cache_full_size(struct lscpu_desc *desc, struct cpu_cache *ca, uint64_t *res) { size_t setsize = CPU_ALLOC_SIZE(maxcpus); int i, nshares = 0; /* Count number of CPUs which shares the cache */ for (i = 0; i < desc->ncpuspos; i++) { int cpu = real_cpu_num(desc, i); if (desc->present && !is_cpu_present(desc, cpu)) continue; if (CPU_ISSET_S(cpu, setsize, ca->sharedmaps[0])) nshares++; } /* Correction for CPU threads */ if (desc->nthreads > desc->ncores) nshares /= (desc->nthreads / desc->ncores); if (nshares < 1) nshares = 1; *res = (desc->ncores / nshares) * ca->size; return 0; } /* * default output */ static void print_summary(struct lscpu_desc *desc, struct lscpu_modifier *mod) { char buf[BUFSIZ]; int i = 0; size_t setsize = CPU_ALLOC_SIZE(maxcpus); struct libscols_table *tb; scols_init_debug(0); tb = scols_new_table(); if (!tb) err(EXIT_FAILURE, _("failed to allocate output table")); scols_table_enable_noheadings(tb, 1); if (mod->json) { scols_table_enable_json(tb, 1); scols_table_set_name(tb, "lscpu"); } if (scols_table_new_column(tb, "field", 0, 0) == NULL || scols_table_new_column(tb, "data", 0, SCOLS_FL_NOEXTREMES | SCOLS_FL_WRAP) == NULL) err(EXIT_FAILURE, _("failed to initialize output column")); add_summary_s(tb, _("Architecture:"), desc->arch); if (desc->mode) { char *p = buf; if (desc->mode & MODE_32BIT) { strcpy(p, "32-bit, "); p += 8; } if (desc->mode & MODE_64BIT) { strcpy(p, "64-bit, "); p += 8; } *(p - 2) = '\0'; add_summary_s(tb, _("CPU op-mode(s):"), buf); } #if !defined(WORDS_BIGENDIAN) add_summary_s(tb, _("Byte Order:"), "Little Endian"); #else add_summary_s(tb, _("Byte Order:"), "Big Endian"); #endif if (desc->addrsz) add_summary_s(tb, _("Address sizes:"), desc->addrsz); add_summary_n(tb, _("CPU(s):"), desc->ncpus); if (desc->online) print_cpuset(tb, mod->hex ? _("On-line CPU(s) mask:") : _("On-line CPU(s) list:"), desc->online, mod->hex); if (desc->online && CPU_COUNT_S(setsize, desc->online) != desc->ncpus) { cpu_set_t *set; /* Linux kernel provides cpuset of off-line CPUs that contains * all configured CPUs (see /sys/devices/system/cpu/offline), * but want to print real (present in system) off-line CPUs only. */ set = cpuset_alloc(maxcpus, NULL, NULL); if (!set) err(EXIT_FAILURE, _("failed to callocate cpu set")); CPU_ZERO_S(setsize, set); for (i = 0; i < desc->ncpuspos; i++) { int cpu = real_cpu_num(desc, i); if (!is_cpu_online(desc, cpu) && is_cpu_present(desc, cpu)) CPU_SET_S(cpu, setsize, set); } print_cpuset(tb, mod->hex ? _("Off-line CPU(s) mask:") : _("Off-line CPU(s) list:"), set, mod->hex); cpuset_free(set); } if (desc->nsockets) { int threads_per_core, cores_per_socket, sockets_per_book; int books_per_drawer, drawers; FILE *fd; threads_per_core = cores_per_socket = sockets_per_book = 0; books_per_drawer = drawers = 0; /* s390 detects its cpu topology via /proc/sysinfo, if present. * Using simply the cpu topology masks in sysfs will not give * usable results since everything is virtualized. E.g. * virtual core 0 may have only 1 cpu, but virtual core 2 may * five cpus. * If the cpu topology is not exported (e.g. 2nd level guest) * fall back to old calculation scheme. */ if ((fd = ul_path_fopen(desc->procfs, "r", "sysinfo"))) { int t0, t1; while (fd && fgets(buf, sizeof(buf), fd) != NULL) { if (sscanf(buf, "CPU Topology SW:%d%d%d%d%d%d", &t0, &t1, &drawers, &books_per_drawer, &sockets_per_book, &cores_per_socket) == 6) break; } if (fd) fclose(fd); } if (desc->mtid) threads_per_core = atoi(desc->mtid) + 1; add_summary_n(tb, _("Thread(s) per core:"), threads_per_core ?: desc->nthreads / desc->ncores); add_summary_n(tb, _("Core(s) per socket:"), cores_per_socket ?: desc->ncores / desc->nsockets); if (desc->nbooks) { add_summary_n(tb, _("Socket(s) per book:"), sockets_per_book ?: desc->nsockets / desc->nbooks); if (desc->ndrawers) { add_summary_n(tb, _("Book(s) per drawer:"), books_per_drawer ?: desc->nbooks / desc->ndrawers); add_summary_n(tb, _("Drawer(s):"), drawers ?: desc->ndrawers); } else { add_summary_n(tb, _("Book(s):"), books_per_drawer ?: desc->nbooks); } } else { add_summary_n(tb, _("Socket(s):"), sockets_per_book ?: desc->nsockets); } } if (desc->nnodes) add_summary_n(tb, _("NUMA node(s):"), desc->nnodes); if (desc->vendor) add_summary_s(tb, _("Vendor ID:"), desc->vendor); if (desc->machinetype) add_summary_s(tb, _("Machine type:"), desc->machinetype); if (desc->family) add_summary_s(tb, _("CPU family:"), desc->family); if (desc->model || desc->revision) add_summary_s(tb, _("Model:"), desc->revision ? desc->revision : desc->model); if (desc->modelname || desc->cpu) add_summary_s(tb, _("Model name:"), desc->cpu ? desc->cpu : desc->modelname); if (desc->stepping) add_summary_s(tb, _("Stepping:"), desc->stepping); if (desc->freqboost >= 0) add_summary_s(tb, _("Frequency boost:"), desc->freqboost ? _("enabled") : _("disabled")); if (desc->mhz) add_summary_s(tb, _("CPU MHz:"), desc->mhz); if (desc->dynamic_mhz) add_summary_s(tb, _("CPU dynamic MHz:"), desc->dynamic_mhz); if (desc->static_mhz) add_summary_s(tb, _("CPU static MHz:"), desc->static_mhz); if (desc->maxmhz) add_summary_s(tb, _("CPU max MHz:"), cpu_max_mhz(desc, buf, sizeof(buf))); if (desc->minmhz) add_summary_s(tb, _("CPU min MHz:"), cpu_min_mhz(desc, buf, sizeof(buf))); if (desc->bogomips) add_summary_s(tb, _("BogoMIPS:"), desc->bogomips); if (desc->virtflag) { if (!strcmp(desc->virtflag, "svm")) add_summary_s(tb, _("Virtualization:"), "AMD-V"); else if (!strcmp(desc->virtflag, "vmx")) add_summary_s(tb, _("Virtualization:"), "VT-x"); } if (desc->hypervisor) add_summary_s(tb, _("Hypervisor:"), desc->hypervisor); if (desc->hyper) { add_summary_s(tb, _("Hypervisor vendor:"), hv_vendors[desc->hyper]); add_summary_s(tb, _("Virtualization type:"), _(virt_types[desc->virtype])); } if (desc->dispatching >= 0) add_summary_s(tb, _("Dispatching mode:"), _(disp_modes[desc->dispatching])); if (desc->ncaches) { for (i = desc->ncaches - 1; i >= 0; i--) { uint64_t sz = 0; char *tmp; struct cpu_cache *ca = &desc->caches[i]; if (ca->size == 0) continue; if (get_cache_full_size(desc, ca, &sz) != 0 || sz == 0) continue; if (mod->bytes) xasprintf(&tmp, "%" PRIu64, sz); else tmp = size_to_human_string( SIZE_SUFFIX_3LETTER | SIZE_SUFFIX_SPACE, sz); snprintf(buf, sizeof(buf), _("%s cache:"), ca->name); add_summary_s(tb, buf, tmp); free(tmp); } } if (desc->necaches) { for (i = desc->necaches - 1; i >= 0; i--) { char *tmp; struct cpu_cache *ca = &desc->ecaches[i]; if (ca->size == 0) continue; if (mod->bytes) xasprintf(&tmp, "%" PRIu64, ca->size); else tmp = size_to_human_string( SIZE_SUFFIX_3LETTER | SIZE_SUFFIX_SPACE, ca->size); snprintf(buf, sizeof(buf), _("%s cache:"), ca->name); add_summary_s(tb, buf, tmp); free(tmp); } } for (i = 0; i < desc->nnodes; i++) { snprintf(buf, sizeof(buf), _("NUMA node%d CPU(s):"), desc->idx2nodenum[i]); print_cpuset(tb, buf, desc->nodemaps[i], mod->hex); } if (desc->physsockets) { add_summary_n(tb, _("Physical sockets:"), desc->physsockets); add_summary_n(tb, _("Physical chips:"), desc->physchips); add_summary_n(tb, _("Physical cores/chip:"), desc->physcoresperchip); } if (desc->vuls) { for (i = 0; i < desc->nvuls; i++) { snprintf(buf, sizeof(buf), ("Vulnerability %s:"), desc->vuls[i].name); add_summary_s(tb, buf, desc->vuls[i].text); } } if (desc->flags) add_summary_s(tb, _("Flags:"), desc->flags); scols_print_table(tb); scols_unref_table(tb); } static void __attribute__((__noreturn__)) usage(void) { FILE *out = stdout; size_t i; fputs(USAGE_HEADER, out); fprintf(out, _(" %s [options]\n"), program_invocation_short_name); fputs(USAGE_SEPARATOR, out); fputs(_("Display information about the CPU architecture.\n"), out); fputs(USAGE_OPTIONS, out); fputs(_(" -a, --all print both online and offline CPUs (default for -e)\n"), out); fputs(_(" -b, --online print online CPUs only (default for -p)\n"), out); fputs(_(" -B, --bytes print sizes in bytes rather than in human readable format\n"), out); fputs(_(" -C, --caches[=] info about caches in extended readable format\n"), out); fputs(_(" -c, --offline print offline CPUs only\n"), out); fputs(_(" -J, --json use JSON for default or extended format\n"), out); fputs(_(" -e, --extended[=] print out an extended readable format\n"), out); fputs(_(" -p, --parse[=] print out a parsable format\n"), out); fputs(_(" -s, --sysroot use specified directory as system root\n"), out); fputs(_(" -x, --hex print hexadecimal masks rather than lists of CPUs\n"), out); fputs(_(" -y, --physical print physical instead of logical IDs\n"), out); fputs(_(" --output-all print all available columns for -e, -p or -C\n"), out); fputs(USAGE_SEPARATOR, out); printf(USAGE_HELP_OPTIONS(25)); fputs(_("\nAvailable output columns for -e or -p:\n"), out); for (i = 0; i < ARRAY_SIZE(coldescs_cpu); i++) fprintf(out, " %13s %s\n", coldescs_cpu[i].name, _(coldescs_cpu[i].help)); fputs(_("\nAvailable output columns for -C:\n"), out); for (i = 0; i < ARRAY_SIZE(coldescs_cache); i++) fprintf(out, " %13s %s\n", coldescs_cache[i].name, _(coldescs_cache[i].help)); printf(USAGE_MAN_TAIL("lscpu(1)")); exit(EXIT_SUCCESS); } int main(int argc, char *argv[]) { struct lscpu_modifier _mod = { .mode = OUTPUT_SUMMARY }, *mod = &_mod; struct lscpu_desc _desc = { .flags = NULL }, *desc = &_desc; int c, i, all = 0; int columns[ARRAY_SIZE(coldescs_cpu)], ncolumns = 0; int cpu_modifier_specified = 0; size_t setsize; enum { OPT_OUTPUT_ALL = CHAR_MAX + 1, }; static const struct option longopts[] = { { "all", no_argument, NULL, 'a' }, { "online", no_argument, NULL, 'b' }, { "bytes", no_argument, NULL, 'B' }, { "caches", optional_argument, NULL, 'C' }, { "offline", no_argument, NULL, 'c' }, { "help", no_argument, NULL, 'h' }, { "extended", optional_argument, NULL, 'e' }, { "json", no_argument, NULL, 'J' }, { "parse", optional_argument, NULL, 'p' }, { "sysroot", required_argument, NULL, 's' }, { "physical", no_argument, NULL, 'y' }, { "hex", no_argument, NULL, 'x' }, { "version", no_argument, NULL, 'V' }, { "output-all", no_argument, NULL, OPT_OUTPUT_ALL }, { NULL, 0, NULL, 0 } }; static const ul_excl_t excl[] = { /* rows and cols in ASCII order */ { 'C','e','p' }, { 'a','b','c' }, { 0 } }; int excl_st[ARRAY_SIZE(excl)] = UL_EXCL_STATUS_INIT; setlocale(LC_ALL, ""); bindtextdomain(PACKAGE, LOCALEDIR); textdomain(PACKAGE); close_stdout_atexit(); while ((c = getopt_long(argc, argv, "aBbC::ce::hJp::s:xyV", longopts, NULL)) != -1) { err_exclusive_options(c, longopts, excl, excl_st); switch (c) { case 'a': mod->online = mod->offline = 1; cpu_modifier_specified = 1; break; case 'B': mod->bytes = 1; break; case 'b': mod->online = 1; cpu_modifier_specified = 1; break; case 'c': mod->offline = 1; cpu_modifier_specified = 1; break; case 'C': if (optarg) { if (*optarg == '=') optarg++; ncolumns = string_to_idarray(optarg, columns, ARRAY_SIZE(columns), cache_column_name_to_id); if (ncolumns < 0) return EXIT_FAILURE; } mod->mode = OUTPUT_CACHES; break; case 'J': mod->json = 1; break; case 'p': case 'e': if (optarg) { if (*optarg == '=') optarg++; ncolumns = string_to_idarray(optarg, columns, ARRAY_SIZE(columns), cpu_column_name_to_id); if (ncolumns < 0) return EXIT_FAILURE; } mod->mode = c == 'p' ? OUTPUT_PARSABLE : OUTPUT_READABLE; break; case 's': desc->prefix = optarg; mod->system = SYSTEM_SNAPSHOT; break; case 'x': mod->hex = 1; break; case 'y': mod->physical = 1; break; case OPT_OUTPUT_ALL: all = 1; break; case 'h': usage(); case 'V': print_version(EXIT_SUCCESS); default: errtryhelp(EXIT_FAILURE); } } if (all && ncolumns == 0) { size_t sz, maxsz = mod->mode == OUTPUT_CACHES ? ARRAY_SIZE(coldescs_cache) : ARRAY_SIZE(coldescs_cpu); for (sz = 0; sz < maxsz; sz++) columns[ncolumns++] = sz; } if (cpu_modifier_specified && mod->mode == OUTPUT_SUMMARY) { fprintf(stderr, _("%s: options --all, --online and --offline may only " "be used with options --extended or --parse.\n"), program_invocation_short_name); return EXIT_FAILURE; } if (argc != optind) { warnx(_("bad usage")); errtryhelp(EXIT_FAILURE); } /* set default cpu display mode if none was specified */ if (!mod->online && !mod->offline) { mod->online = 1; mod->offline = mod->mode == OUTPUT_READABLE ? 1 : 0; } ul_path_init_debug(); /* /sys/devices/system/cpu */ desc->syscpu = ul_new_path(_PATH_SYS_CPU); if (!desc->syscpu) err(EXIT_FAILURE, _("failed to initialize CPUs sysfs handler")); if (desc->prefix) ul_path_set_prefix(desc->syscpu, desc->prefix); /* /proc */ desc->procfs = ul_new_path("/proc"); if (!desc->procfs) err(EXIT_FAILURE, _("failed to initialize procfs handler")); if (desc->prefix) ul_path_set_prefix(desc->procfs, desc->prefix); read_basicinfo(desc, mod); setsize = CPU_ALLOC_SIZE(maxcpus); for (i = 0; i < desc->ncpuspos; i++) { /* only consider present CPUs */ if (desc->present && !CPU_ISSET_S(real_cpu_num(desc, i), setsize, desc->present)) continue; read_topology(desc, i); read_cache(desc, i); read_polarization(desc, i); read_address(desc, i); read_configured(desc, i); read_max_mhz(desc, i); read_min_mhz(desc, i); } if (desc->caches) qsort(desc->caches, desc->ncaches, sizeof(struct cpu_cache), cachecmp); if (desc->ecaches) qsort(desc->ecaches, desc->necaches, sizeof(struct cpu_cache), cachecmp); read_nodes(desc); read_hypervisor(desc, mod); arm_cpu_decode(desc); switch(mod->mode) { case OUTPUT_SUMMARY: print_summary(desc, mod); break; case OUTPUT_CACHES: if (!ncolumns) { columns[ncolumns++] = COL_CACHE_NAME; columns[ncolumns++] = COL_CACHE_ONESIZE; columns[ncolumns++] = COL_CACHE_ALLSIZE; columns[ncolumns++] = COL_CACHE_WAYS; columns[ncolumns++] = COL_CACHE_TYPE; columns[ncolumns++] = COL_CACHE_LEVEL; columns[ncolumns++] = COL_CACHE_SETS; columns[ncolumns++] = COL_CACHE_PHYLINE; columns[ncolumns++] = COL_CACHE_COHERENCYSIZE; } print_caches_readable(desc, columns, ncolumns, mod); break; case OUTPUT_PARSABLE: if (!ncolumns) { columns[ncolumns++] = COL_CPU_CPU; columns[ncolumns++] = COL_CPU_CORE; columns[ncolumns++] = COL_CPU_SOCKET; columns[ncolumns++] = COL_CPU_NODE; columns[ncolumns++] = COL_CPU_CACHE; mod->compat = 1; } print_cpus_parsable(desc, columns, ncolumns, mod); break; case OUTPUT_READABLE: if (!ncolumns) { /* No list was given. Just print whatever is there. */ columns[ncolumns++] = COL_CPU_CPU; if (desc->nodemaps) columns[ncolumns++] = COL_CPU_NODE; if (desc->drawermaps) columns[ncolumns++] = COL_CPU_DRAWER; if (desc->bookmaps) columns[ncolumns++] = COL_CPU_BOOK; if (desc->socketmaps) columns[ncolumns++] = COL_CPU_SOCKET; if (desc->coremaps) columns[ncolumns++] = COL_CPU_CORE; if (desc->caches) columns[ncolumns++] = COL_CPU_CACHE; if (desc->online) columns[ncolumns++] = COL_CPU_ONLINE; if (desc->configured) columns[ncolumns++] = COL_CPU_CONFIGURED; if (desc->polarization) columns[ncolumns++] = COL_CPU_POLARIZATION; if (desc->addresses) columns[ncolumns++] = COL_CPU_ADDRESS; if (desc->maxmhz) columns[ncolumns++] = COL_CPU_MAXMHZ; if (desc->minmhz) columns[ncolumns++] = COL_CPU_MINMHZ; } print_cpus_readable(desc, columns, ncolumns, mod); break; } ul_unref_path(desc->syscpu); ul_unref_path(desc->procfs); return EXIT_SUCCESS; }