
Analysis
Implementation

Outlook

QCOW2 in the Linux kernel

Manuel Bentele

University of Freiburg

September 2, 2019

M. Bentele QCOW2 in the Linux kernel



Analysis
Implementation

Outlook

Requirements
Linux storage stack
Implementation approaches

What has to be done?

Implement the QCOW (QEMU Copy On Write) disk file
format version 2 in the Linux kernel such that . . .

reading of the normal QCOW2 disk file format is possible

compressed & sparse QCOW2 disk files are supported as well

the disk file format is exposed as block device

the implementation compiles & runs under Linux kernel 5 later

the performance is better than using qemu-nbd

M. Bentele QCOW2 in the Linux kernel



Analysis
Implementation

Outlook

Requirements
Linux storage stack
Implementation approaches

How does the Linux storage stack looks like?

Applications

Virtual file system (VFS)Direct IO Page cache

read write open . . .

mmap
malloc

Device mapper (optional)

Block layer
(maps BIOs to requests)

BIOs (block IOs)BIOs (block IOs)

BIOs

stackable

Block drivers
(request based)

Block drivers
(BIO based)

Requests

BIOs

Physical or virtual devices

M. Bentele QCOW2 in the Linux kernel



Analysis
Implementation

Outlook

Requirements
Linux storage stack
Implementation approaches

How can the implementation be achieved?

7 FUSE (Filesystem in Userspace) driver

implement reading of QCOW2 file format as user space driver

7 Device mapper target

implement reading of QCOW2 file format as mapped target

7 Custom block driver

create block driver & configuration utility for reading QCOW2

3 Loop device module extension

extend the loop device module & configuration utility by a file
format subsystem to implement QCOW2 as additional file
format driver

M. Bentele QCOW2 in the Linux kernel



Analysis
Implementation

Outlook

Loop device module extension
QCOW2 file format driver
Performance of the driver

How is the file format subsystem integrated?

Block layer

Loop device module

Loop devices

File format subsystem

File format drivers

Backing files

Requests

Requests re
ad

w
ri

te
. . .

file format subsystem abstracts the direct access to backing
files to implement various file formats

file formats are implemented as file format drivers

drivers are registered at the subsystem

subsystem supports (asynchronous) reads, (asynchronous)
writes, flushes and virtual disk sizes

M. Bentele QCOW2 in the Linux kernel



Analysis
Implementation

Outlook

Loop device module extension
QCOW2 file format driver
Performance of the driver

How does a file format driver look like?

#include "loop_file_fmt.h"

static int drv_file_fmt_read(struct loop_file_fmt *lo_fmt,

struct request *rq) {

/* TODO: implement reading of file format */

return -EIO;

}

static struct loop_file_fmt_ops drv_file_fmt_ops = {

.read = drv_file_fmt_read

};

static struct loop_file_fmt_driver drv_file_fmt = {

.name = "DRV",

.file_fmt_type = LO_FILE_FMT_RAW,

.ops = &drv_file_fmt_ops,

.owner = THIS_MODULE

};

// register driver with loop_file_fmt_register_driver(&drv_file_fmt)

// unregister driver with loop_file_fmt_unregister_driver(&drv_file_fmt)

M. Bentele QCOW2 in the Linux kernel



Analysis
Implementation

Outlook

Loop device module extension
QCOW2 file format driver
Performance of the driver

How is the QCOW2 disk file format structured?

Header

Refcount table

Refcount block

L1 table

L2 table

Data cluster

L2 table

Data cluster

Data cluster
...

data is saved in data clusters of equal size
(512 B – 2 MB)

header provides offsets to 1st level tables

two-level lookup of data clusters (L1 &
L2 tables)

two-level reference count for copy on write
(Refcount & Refcount block tables)

numbers are stored in big-endian order

data clusters can be compressed or encrypted

support of embedded snapshots by use of
internal copy on write

M. Bentele QCOW2 in the Linux kernel



Analysis
Implementation

Outlook

Loop device module extension
QCOW2 file format driver
Performance of the driver

How does QCOW2 addresses data clusters?

QCOW2 header stores an offset in the file to the L1 table

L1 table stores offsets in the file to L2 tables

L2 tables stores offsets in the file to the data clusters

L1 table L2 tables Data clusters

M. Bentele QCOW2 in the Linux kernel



Analysis
Implementation

Outlook

Loop device module extension
QCOW2 file format driver
Performance of the driver

How does the QCOW2 driver read data?

Header

Refcount table

Refcount block

L1 table

L2 table

Data cluster

L2 table

Data cluster

Data cluster

Data cluster

O

S

Block
device

QCOW2
file format Given a Linux IO read request with size

S and block device offset O:

1 calculate cluster C and position P
for O using cached L1 & L2 tables

2 decompress the data of C if C is
compressed

3 read data from P into IO read
request until S bytes or the end of
C is reached

4 repeat steps 1 – 3 until IO read
request is filled with S bytes

M. Bentele QCOW2 in the Linux kernel



Analysis
Implementation

Outlook

Loop device module extension
QCOW2 file format driver
Performance of the driver

How does the implementation perform compared to
qemu-nbd?

Sequentia
l read

(un
com

pre
sse

d QC
OW

2)

Random
read

(un
com

pre
sse

d QC
OW

2)

Sequentia
l read

(co
mp

res
sed

QC
OW

2)

Random
read

(co
mp

res
sed

QC
OW

2)

1

2

3

4

T
h

ro
u

gh
p

u
t

ga
in

fa
ct

or

512 byte operation
4096 byte operation

M. Bentele QCOW2 in the Linux kernel



Analysis
Implementation

Outlook
Further work

What can be done in the future?

File format subsystem

implement other file formats, e.g. VDI, VMDK, . . .

extend the API to support snapshots & encryption

QCOW2 file format driver

implement write operations

implement encryption & snapshot support

improve performance by hardware aligned cache allocation

add a QCOW2 L2 cache clean interval

M. Bentele QCOW2 in the Linux kernel


	Analysis
	Requirements
	Linux storage stack
	Implementation approaches

	Implementation
	Loop device module extension
	QCOW2 file format driver
	Performance of the driver

	Outlook
	Further work


