/*
* Block layer I/O functions
*
* Copyright (c) 2003 Fabrice Bellard
*
* Permission is hereby granted, free of charge, to any person obtaining a copy
* of this software and associated documentation files (the "Software"), to deal
* in the Software without restriction, including without limitation the rights
* to use, copy, modify, merge, publish, distribute, sublicense, and/or sell
* copies of the Software, and to permit persons to whom the Software is
* furnished to do so, subject to the following conditions:
*
* The above copyright notice and this permission notice shall be included in
* all copies or substantial portions of the Software.
*
* THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
* IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
* FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL
* THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
* LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM,
* OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN
* THE SOFTWARE.
*/
#include "qemu/osdep.h"
#include "trace.h"
#include "sysemu/block-backend.h"
#include "block/aio-wait.h"
#include "block/blockjob.h"
#include "block/blockjob_int.h"
#include "block/block_int.h"
#include "qemu/cutils.h"
#include "qapi/error.h"
#include "qemu/error-report.h"
#include "qemu/main-loop.h"
#define NOT_DONE 0x7fffffff /* used while emulated sync operation in progress */
/* Maximum bounce buffer for copy-on-read and write zeroes, in bytes */
#define MAX_BOUNCE_BUFFER (32768 << BDRV_SECTOR_BITS)
static void bdrv_parent_cb_resize(BlockDriverState *bs);
static int coroutine_fn bdrv_co_do_pwrite_zeroes(BlockDriverState *bs,
int64_t offset, int bytes, BdrvRequestFlags flags);
static void bdrv_parent_drained_begin(BlockDriverState *bs, BdrvChild *ignore,
bool ignore_bds_parents)
{
BdrvChild *c, *next;
QLIST_FOREACH_SAFE(c, &bs->parents, next_parent, next) {
if (c == ignore || (ignore_bds_parents && c->role->parent_is_bds)) {
continue;
}
bdrv_parent_drained_begin_single(c, false);
}
}
static void bdrv_parent_drained_end_single_no_poll(BdrvChild *c,
int *drained_end_counter)
{
assert(c->parent_quiesce_counter > 0);
c->parent_quiesce_counter--;
if (c->role->drained_end) {
c->role->drained_end(c, drained_end_counter);
}
}
void bdrv_parent_drained_end_single(BdrvChild *c)
{
int drained_end_counter = 0;
bdrv_parent_drained_end_single_no_poll(c, &drained_end_counter);
BDRV_POLL_WHILE(c->bs, atomic_read(&drained_end_counter) > 0);
}
static void bdrv_parent_drained_end(BlockDriverState *bs, BdrvChild *ignore,
bool ignore_bds_parents,
int *drained_end_counter)
{
BdrvChild *c;
QLIST_FOREACH(c, &bs->parents, next_parent) {
if (c == ignore || (ignore_bds_parents && c->role->parent_is_bds)) {
continue;
}
bdrv_parent_drained_end_single_no_poll(c, drained_end_counter);
}
}
static bool bdrv_parent_drained_poll_single(BdrvChild *c)
{
if (c->role->drained_poll) {
return c->role->drained_poll(c);
}
return false;
}
static bool bdrv_parent_drained_poll(BlockDriverState *bs, BdrvChild *ignore,
bool ignore_bds_parents)
{
BdrvChild *c, *next;
bool busy = false;
QLIST_FOREACH_SAFE(c, &bs->parents, next_parent, next) {
if (c == ignore || (ignore_bds_parents && c->role->parent_is_bds)) {
continue;
}
busy |= bdrv_parent_drained_poll_single(c);
}
return busy;
}
void bdrv_parent_drained_begin_single(BdrvChild *c, bool poll)
{
c->parent_quiesce_counter++;
if (c->role->drained_begin) {
c->role->drained_begin(c);
}
if (poll) {
BDRV_POLL_WHILE(c->bs, bdrv_parent_drained_poll_single(c));
}
}
static void bdrv_merge_limits(BlockLimits *dst, const BlockLimits *src)
{
dst->opt_transfer = MAX(dst->opt_transfer, src->opt_transfer);
dst->max_transfer = MIN_NON_ZERO(dst->max_transfer, src->max_transfer);
dst->opt_mem_alignment = MAX(dst->opt_mem_alignment,
src->opt_mem_alignment);
dst->min_mem_alignment = MAX(dst->min_mem_alignment,
src->min_mem_alignment);
dst->max_iov = MIN_NON_ZERO(dst->max_iov, src->max_iov);
}
void bdrv_refresh_limits(BlockDriverState *bs, Error **errp)
{
BlockDriver *drv = bs->drv;
Error *local_err = NULL;
memset(&bs->bl, 0, sizeof(bs->bl));
if (!drv) {
return;
}
/* Default alignment based on whether driver has byte interface */
bs->bl.request_alignment = (drv->bdrv_co_preadv ||
drv->bdrv_aio_preadv) ? 1 : 512;
/* Take some limits from the children as a default */
if (bs->file) {
bdrv_refresh_limits(bs->file->bs, &local_err);
if (local_err) {
error_propagate(errp, local_err);
return;
}
bdrv_merge_limits(&bs->bl, &bs->file->bs->bl);
} else {
bs->bl.min_mem_alignment = 512;
bs->bl.opt_mem_alignment = getpagesize();
/* Safe default since most protocols use readv()/writev()/etc */
bs->bl.max_iov = IOV_MAX;
}
if (bs->backing) {
bdrv_refresh_limits(bs->backing->bs, &local_err);
if (local_err) {
error_propagate(errp, local_err);
return;
}
bdrv_merge_limits(&bs->bl, &bs->backing->bs->bl);
}
/* Then let the driver override it */
if (drv->bdrv_refresh_limits) {
drv->bdrv_refresh_limits(bs, errp);
}
}
/**
* The copy-on-read flag is actually a reference count so multiple users may
* use the feature without worrying about clobbering its previous state.
* Copy-on-read stays enabled until all users have called to disable it.
*/
void bdrv_enable_copy_on_read(BlockDriverState *bs)
{
atomic_inc(&bs->copy_on_read);
}
void bdrv_disable_copy_on_read(BlockDriverState *bs)
{
int old = atomic_fetch_dec(&bs->copy_on_read);
assert(old >= 1);
}
typedef struct {
Coroutine *co;
BlockDriverState *bs;
bool done;
bool begin;
bool recursive;
bool poll;
BdrvChild *parent;
bool ignore_bds_parents;
int *drained_end_counter;
} BdrvCoDrainData;
static void coroutine_fn bdrv_drain_invoke_entry(void *opaque)
{
BdrvCoDrainData *data = opaque;
BlockDriverState *bs = data->bs;
if (data->begin) {
bs->drv->bdrv_co_drain_begin(bs);
} else {
bs->drv->bdrv_co_drain_end(bs);
}
/* Set data->done and decrement drained_end_counter before bdrv_wakeup() */
atomic_mb_set(&data->done, true);
if (!data->begin) {
atomic_dec(data->drained_end_counter);
}
bdrv_dec_in_flight(bs);
g_free(data);
}
/* Recursively call BlockDriver.bdrv_co_drain_begin/end callbacks */
static void bdrv_drain_invoke(BlockDriverState *bs, bool begin,
int *drained_end_counter)
{
BdrvCoDrainData *data;
if (!bs->drv || (begin && !bs->drv->bdrv_co_drain_begin) ||
(!begin && !bs->drv->bdrv_co_drain_end)) {
return;
}
data = g_new(BdrvCoDrainData, 1);
*data = (BdrvCoDrainData) {
.bs = bs,
.done = false,
.begin = begin,
.drained_end_counter = drained_end_counter,
};
if (!begin) {
atomic_inc(drained_end_counter);
}
/* Make sure the driver callback completes during the polling phase for
* drain_begin. */
bdrv_inc_in_flight(bs);
data->co = qemu_coroutine_create(bdrv_drain_invoke_entry, data);
aio_co_schedule(bdrv_get_aio_context(bs), data->co);
}
/* Returns true if BDRV_POLL_WHILE() should go into a blocking aio_poll() */
bool bdrv_drain_poll(BlockDriverState *bs, bool recursive,
BdrvChild *ignore_parent, bool ignore_bds_parents)
{
BdrvChild *child, *next;
if (bdrv_parent_drained_poll(bs, ignore_parent, ignore_bds_parents)) {
return true;
}
if (atomic_read(&bs->in_flight)) {
return true;
}
if (recursive) {
assert(!ignore_bds_parents);
QLIST_FOREACH_SAFE(child, &bs->children, next, next) {
if (bdrv_drain_poll(child->bs, recursive, child, false)) {
return true;
}
}
}
return false;
}
static bool bdrv_drain_poll_top_level(BlockDriverState *bs, bool recursive,
BdrvChild *ignore_parent)
{
return bdrv_drain_poll(bs, recursive, ignore_parent, false);
}
static void bdrv_do_drained_begin(BlockDriverState *bs, bool recursive,
BdrvChild *parent, bool ignore_bds_parents,
bool poll);
static void bdrv_do_drained_end(BlockDriverState *bs, bool recursive,
BdrvChild *parent, bool ignore_bds_parents,
int *drained_end_counter);
static void bdrv_co_drain_bh_cb(void *opaque)
{
BdrvCoDrainData *data = opaque;
Coroutine *co = data->co;
BlockDriverState *bs = data->bs;
if (bs) {
AioContext *ctx = bdrv_get_aio_context(bs);
AioContext *co_ctx = qemu_coroutine_get_aio_context(co);
/*
* When the coroutine yielded, the lock for its home context was
* released, so we need to re-acquire it here. If it explicitly
* acquired a different context, the lock is still held and we don't
* want to lock it a second time (or AIO_WAIT_WHILE() would hang).
*/
if (ctx == co_ctx) {
aio_context_acquire(ctx);
}
bdrv_dec_in_flight(bs);
if (data->begin) {
assert(!data->drained_end_counter);
bdrv_do_drained_begin(bs, data->recursive, data->parent,
data->ignore_bds_parents, data->poll);
} else {
assert(!data->poll);
bdrv_do_drained_end(bs, data->recursive, data->parent,
data->ignore_bds_parents,
data->drained_end_counter);
}
if (ctx == co_ctx) {
aio_context_release(ctx);
}
} else {
assert(data->begin);
bdrv_drain_all_begin();
}
data->done = true;
aio_co_wake(co);
}
static void coroutine_fn bdrv_co_yield_to_drain(BlockDriverState *bs,
bool begin, bool recursive,
BdrvChild *parent,
bool ignore_bds_parents,
bool poll,
int *drained_end_counter)
{
BdrvCoDrainData data;
/* Calling bdrv_drain() from a BH ensures the current coroutine yields and
* other coroutines run if they were queued by aio_co_enter(). */
assert(qemu_in_coroutine());
data = (BdrvCoDrainData) {
.co = qemu_coroutine_self(),
.bs = bs,
.done = false,
.begin = begin,
.recursive = recursive,
.parent = parent,
.ignore_bds_parents = ignore_bds_parents,
.poll = poll,
.drained_end_counter = drained_end_counter,
};
if (bs) {
bdrv_inc_in_flight(bs);
}
aio_bh_schedule_oneshot(bdrv_get_aio_context(bs),
bdrv_co_drain_bh_cb, &data);
qemu_coroutine_yield();
/* If we are resumed from some other event (such as an aio completion or a
* timer callback), it is a bug in the caller that should be fixed. */
assert(data.done);
}
void bdrv_do_drained_begin_quiesce(BlockDriverState *bs,
BdrvChild *parent, bool ignore_bds_parents)
{
assert(!qemu_in_coroutine());
/* Stop things in parent-to-child order */
if (atomic_fetch_inc(&bs->quiesce_counter) == 0) {
aio_disable_external(bdrv_get_aio_context(bs));
}
bdrv_parent_drained_begin(bs, parent, ignore_bds_parents);
bdrv_drain_invoke(bs, true, NULL);
}
static void bdrv_do_drained_begin(BlockDriverState *bs, bool recursive,
BdrvChild *parent, bool ignore_bds_parents,
bool poll)
{
BdrvChild *child, *next;
if (qemu_in_coroutine()) {
bdrv_co_yield_to_drain(bs, true, recursive, parent, ignore_bds_parents,
poll, NULL);
return;
}
bdrv_do_drained_begin_quiesce(bs, parent, ignore_bds_parents);
if (recursive) {
assert(!ignore_bds_parents);
bs->recursive_quiesce_counter++;
QLIST_FOREACH_SAFE(child, &bs->children, next, next) {
bdrv_do_drained_begin(child->bs, true, child, ignore_bds_parents,
false);
}
}
/*
* Wait for drained requests to finish.
*
* Calling BDRV_POLL_WHILE() only once for the top-level node is okay: The
* call is needed so things in this AioContext can make progress even
* though we don't return to the main AioContext loop - this automatically
* includes other nodes in the same AioContext and therefore all child
* nodes.
*/
if (poll) {
assert(!ignore_bds_parents);
BDRV_POLL_WHILE(bs, bdrv_drain_poll_top_level(bs, recursive, parent));
}
}
void bdrv_drained_begin(BlockDriverState *bs)
{
bdrv_do_drained_begin(bs, false, NULL, false, true);
}
void bdrv_subtree_drained_begin(BlockDriverState *bs)
{
bdrv_do_drained_begin(bs, true, NULL, false, true);
}
/**
* This function does not poll, nor must any of its recursively called
* functions. The *drained_end_counter pointee will be incremented
* once for every background operation scheduled, and decremented once
* the operation settles. Therefore, the pointer must remain valid
* until the pointee reaches 0. That implies that whoever sets up the
* pointee has to poll until it is 0.
*
* We use atomic operations to access *drained_end_counter, because
* (1) when called from bdrv_set_aio_context_ignore(), the subgraph of
* @bs may contain nodes in different AioContexts,
* (2) bdrv_drain_all_end() uses the same counter for all nodes,
* regardless of which AioContext they are in.
*/
static void bdrv_do_drained_end(BlockDriverState *bs, bool recursive,
BdrvChild *parent, bool ignore_bds_parents,
int *drained_end_counter)
{
BdrvChild *child;
int old_quiesce_counter;
assert(drained_end_counter != NULL);
if (qemu_in_coroutine()) {
bdrv_co_yield_to_drain(bs, false, recursive, parent, ignore_bds_parents,
false, drained_end_counter);
return;
}
assert(bs->quiesce_counter > 0);
/* Re-enable things in child-to-parent order */
bdrv_drain_invoke(bs, false, drained_end_counter);
bdrv_parent_drained_end(bs, parent, ignore_bds_parents,
drained_end_counter);
old_quiesce_counter = atomic_fetch_dec(&bs->quiesce_counter);
if (old_quiesce_counter == 1) {
aio_enable_external(bdrv_get_aio_context(bs));
}
if (recursive) {
assert(!ignore_bds_parents);
bs->recursive_quiesce_counter--;
QLIST_FOREACH(child, &bs->children, next) {
bdrv_do_drained_end(child->bs, true, child, ignore_bds_parents,
drained_end_counter);
}
}
}
void bdrv_drained_end(BlockDriverState *bs)
{
int drained_end_counter = 0;
bdrv_do_drained_end(bs, false, NULL, false, &drained_end_counter);
BDRV_POLL_WHILE(bs, atomic_read(&drained_end_counter) > 0);
}
void bdrv_drained_end_no_poll(BlockDriverState *bs, int *drained_end_counter)
{
bdrv_do_drained_end(bs, false, NULL, false, drained_end_counter);
}
void bdrv_subtree_drained_end(BlockDriverState *bs)
{
int drained_end_counter = 0;
bdrv_do_drained_end(bs, true, NULL, false, &drained_end_counter);
BDRV_POLL_WHILE(bs, atomic_read(&drained_end_counter) > 0);
}
void bdrv_apply_subtree_drain(BdrvChild *child, BlockDriverState *new_parent)
{
int i;
for (i = 0; i < new_parent->recursive_quiesce_counter; i++) {
bdrv_do_drained_begin(child->bs, true, child, false, true);
}
}
void bdrv_unapply_subtree_drain(BdrvChild *child, BlockDriverState *old_parent)
{
int drained_end_counter = 0;
int i;
for (i = 0; i < old_parent->recursive_quiesce_counter; i++) {
bdrv_do_drained_end(child->bs, true, child, false,
&drained_end_counter);
}
BDRV_POLL_WHILE(child->bs, atomic_read(&drained_end_counter) > 0);
}
/*
* Wait for pending requests to complete on a single BlockDriverState subtree,
* and suspend block driver's internal I/O until next request arrives.
*
* Note that unlike bdrv_drain_all(), the caller must hold the BlockDriverState
* AioContext.
*/
void coroutine_fn bdrv_co_drain(BlockDriverState *bs)
{
assert(qemu_in_coroutine());
bdrv_drained_begin(bs);
bdrv_drained_end(bs);
}
void bdrv_drain(BlockDriverState *bs)
{
bdrv_drained_begin(bs);
bdrv_drained_end(bs);
}
static void bdrv_drain_assert_idle(BlockDriverState *bs)
{
BdrvChild *child, *next;
assert(atomic_read(&bs->in_flight) == 0);
QLIST_FOREACH_SAFE(child, &bs->children, next, next) {
bdrv_drain_assert_idle(child->bs);
}
}
unsigned int bdrv_drain_all_count = 0;
static bool bdrv_drain_all_poll(void)
{
BlockDriverState *bs = NULL;
bool result = false;
/* bdrv_drain_poll() can't make changes to the graph and we are holding the
* main AioContext lock, so iterating bdrv_next_all_states() is safe. */
while ((bs = bdrv_next_all_states(bs))) {
AioContext *aio_context = bdrv_get_aio_context(bs);
aio_context_acquire(aio_context);
result |= bdrv_drain_poll(bs, false, NULL, true);
aio_context_release(aio_context);
}
return result;
}
/*
* Wait for pending requests to complete across all BlockDriverStates
*
* This function does not flush data to disk, use bdrv_flush_all() for that
* after calling this function.
*
* This pauses all block jobs and disables external clients. It must
* be paired with bdrv_drain_all_end().
*
* NOTE: no new block jobs or BlockDriverStates can be created between
* the bdrv_drain_all_begin() and bdrv_drain_all_end() calls.
*/
void bdrv_drain_all_begin(void)
{
BlockDriverState *bs = NULL;
if (qemu_in_coroutine()) {
bdrv_co_yield_to_drain(NULL, true, false, NULL, true, true, NULL);
return;
}
/* AIO_WAIT_WHILE() with a NULL context can only be called from the main
* loop AioContext, so make sure we're in the main context. */
assert(qemu_get_current_aio_context() == qemu_get_aio_context());
assert(bdrv_drain_all_count < INT_MAX);
bdrv_drain_all_count++;
/* Quiesce all nodes, without polling in-flight requests yet. The graph
* cannot change during this loop. */
while ((bs = bdrv_next_all_states(bs))) {
AioContext *aio_context = bdrv_get_aio_context(bs);
aio_context_acquire(aio_context);
bdrv_do_drained_begin(bs, false, NULL, true, false);
aio_context_release(aio_context);
}
/* Now poll the in-flight requests */
AIO_WAIT_WHILE(NULL, bdrv_drain_all_poll());
while ((bs = bdrv_next_all_states(bs))) {
bdrv_drain_assert_idle(bs);
}
}
void bdrv_drain_all_end(void)
{
BlockDriverState *bs = NULL;
int drained_end_counter = 0;
while ((bs = bdrv_next_all_states(bs))) {
AioContext *aio_context = bdrv_get_aio_context(bs);
aio_context_acquire(aio_context);
bdrv_do_drained_end(bs, false, NULL, true, &drained_end_counter);
aio_context_release(aio_context);
}
assert(qemu_get_current_aio_context() == qemu_get_aio_context());
AIO_WAIT_WHILE(NULL, atomic_read(&drained_end_counter) > 0);
assert(bdrv_drain_all_count > 0);
bdrv_drain_all_count--;
}
void bdrv_drain_all(void)
{
bdrv_drain_all_begin();
bdrv_drain_all_end();
}
/**
* Remove an active request from the tracked requests list
*
* This function should be called when a tracked request is completing.
*/
static void tracked_request_end(BdrvTrackedRequest *req)
{
if (req->serialising) {
atomic_dec(&req->bs->serialising_in_flight);
}
qemu_co_mutex_lock(&req->bs->reqs_lock);
QLIST_REMOVE(req, list);
qemu_co_queue_restart_all(&req->wait_queue);
qemu_co_mutex_unlock(&req->bs->reqs_lock);
}
/**
* Add an active request to the tracked requests list
*/
static void tracked_request_begin(BdrvTrackedRequest *req,
BlockDriverState *bs,
int64_t offset,
uint64_t bytes,
enum BdrvTrackedRequestType type)
{
assert(bytes <= INT64_MAX && offset <= INT64_MAX - bytes);
*req = (BdrvTrackedRequest){
.bs = bs,
.offset = offset,
.bytes = bytes,
.type = type,
.co = qemu_coroutine_self(),
.serialising = false,
.overlap_offset = offset,
.overlap_bytes = bytes,
};
qemu_co_queue_init(&req->wait_queue);
qemu_co_mutex_lock(&bs->reqs_lock);
QLIST_INSERT_HEAD(&bs->tracked_requests, req, list);
qemu_co_mutex_unlock(&bs->reqs_lock);
}
static void mark_request_serialising(BdrvTrackedRequest *req, uint64_t align)
{
int64_t overlap_offset = req->offset & ~(align - 1);
uint64_t overlap_bytes = ROUND_UP(req->offset + req->bytes, align)
- overlap_offset;
if (!req->serialising) {
atomic_inc(&req->bs->serialising_in_flight);
req->serialising = true;
}
req->overlap_offset = MIN(req->overlap_offset, overlap_offset);
req->overlap_bytes = MAX(req->overlap_bytes, overlap_bytes);
}
static bool is_request_serialising_and_aligned(BdrvTrackedRequest *req)
{
/*
* If the request is serialising, overlap_offset and overlap_bytes are set,
* so we can check if the request is aligned. Otherwise, don't care and
* return false.
*/
return req->serialising && (req->offset == req->overlap_offset) &&
(req->bytes == req->overlap_bytes);
}
/**
* Round a region to cluster boundaries
*/
void bdrv_round_to_clusters(BlockDriverState *bs,
int64_t offset, int64_t bytes,
int64_t *cluster_offset,
int64_t *cluster_bytes)
{
BlockDriverInfo bdi;
if (bdrv_get_info(bs, &bdi) < 0 || bdi.cluster_size == 0) {
*cluster_offset = offset;
*cluster_bytes = bytes;
} else {
int64_t c = bdi.cluster_size;
*cluster_offset = QEMU_ALIGN_DOWN(offset, c);
*cluster_bytes = QEMU_ALIGN_UP(offset - *cluster_offset + bytes, c);
}
}
static int bdrv_get_cluster_size(BlockDriverState *bs)
{
BlockDriverInfo bdi;
int ret;
ret = bdrv_get_info(bs, &bdi);
if (ret < 0 || bdi.cluster_size == 0) {
return bs->bl.request_alignment;
} else {
return bdi.cluster_size;
}
}
static bool tracked_request_overlaps(BdrvTrackedRequest *req,
int64_t offset, uint64_t bytes)
{
/* aaaa bbbb */
if (offset >= req->overlap_offset + req->overlap_bytes) {
return false;
}
/* bbbb aaaa */
if (req->overlap_offset >= offset + bytes) {
return false;
}
return true;
}
void bdrv_inc_in_flight(BlockDriverState *bs)
{
atomic_inc(&bs->in_flight);
}
void bdrv_wakeup(BlockDriverState *bs)
{
aio_wait_kick();
}
void bdrv_dec_in_flight(BlockDriverState *bs)
{
atomic_dec(&bs->in_flight);
bdrv_wakeup(bs);
}
static bool coroutine_fn wait_serialising_requests(BdrvTrackedRequest *self)
{
BlockDriverState *bs = self->bs;
BdrvTrackedRequest *req;
bool retry;
bool waited = false;
if (!atomic_read(&bs->serialising_in_flight)) {
return false;
}
do {
retry = false;
qemu_co_mutex_lock(&bs->reqs_lock);
QLIST_FOREACH(req, &bs->tracked_requests, list) {
if (req == self || (!req->serialising && !self->serialising)) {
continue;
}
if (tracked_request_overlaps(req, self->overlap_offset,
self->overlap_bytes))
{
/* Hitting this means there was a reentrant request, for
* example, a block driver issuing nested requests. This must
* never happen since it means deadlock.
*/
assert(qemu_coroutine_self() != req->co);
/* If the request is already (indirectly) waiting for us, or
* will wait for us as soon as it wakes up, then just go on
* (instead of producing a deadlock in the former case). */
if (!req->waiting_for) {
self->waiting_for = req;
qemu_co_queue_wait(&req->wait_queue, &bs->reqs_lock);
self->waiting_for = NULL;
retry = true;
waited = true;
break;
}
}
}
qemu_co_mutex_unlock(&bs->reqs_lock);
} while (retry);
return waited;
}
static int bdrv_check_byte_request(BlockDriverState *bs, int64_t offset,
size_t size)
{
if (size > BDRV_REQUEST_MAX_BYTES) {
return -EIO;
}
if (!bdrv_is_inserted(bs)) {
return -ENOMEDIUM;
}
if (offset < 0) {
return -EIO;
}
return 0;
}
typedef struct RwCo {
BdrvChild *child;
int64_t offset;
QEMUIOVector *qiov;
bool is_write;
int ret;
BdrvRequestFlags flags;
} RwCo;
static void coroutine_fn bdrv_rw_co_entry(void *opaque)
{
RwCo *rwco = opaque;
if (!rwco->is_write) {
rwco->ret = bdrv_co_preadv(rwco->child, rwco->offset,
rwco->qiov->size, rwco->qiov,
rwco->flags);
} else {
rwco->ret = bdrv_co_pwritev(rwco->child, rwco->offset,
rwco->qiov->size, rwco->qiov,
rwco->flags);
}
aio_wait_kick();
}
/*
* Process a vectored synchronous request using coroutines
*/
static int bdrv_prwv_co(BdrvChild *child, int64_t offset,
QEMUIOVector *qiov, bool is_write,
BdrvRequestFlags flags)
{
Coroutine *co;
RwCo rwco = {
.child = child,
.offset = offset,
.qiov = qiov,
.is_write = is_write,
.ret = NOT_DONE,
.flags = flags,
};
if (qemu_in_coroutine()) {
/* Fast-path if already in coroutine context */
bdrv_rw_co_entry(&rwco);
} else {
co = qemu_coroutine_create(bdrv_rw_co_entry, &rwco);
bdrv_coroutine_enter(child->bs, co);
BDRV_POLL_WHILE(child->bs, rwco.ret == NOT_DONE);
}
return rwco.ret;
}
int bdrv_pwrite_zeroes(BdrvChild *child, int64_t offset,
int bytes, BdrvRequestFlags flags)
{
QEMUIOVector qiov = QEMU_IOVEC_INIT_BUF(qiov, NULL, bytes);
return bdrv_prwv_co(child, offset, &qiov, true,
BDRV_REQ_ZERO_WRITE | flags);
}
/*
* Completely zero out a block device with the help of bdrv_pwrite_zeroes.
* The operation is sped up by checking the block status and only writing
* zeroes to the device if they currently do not return zeroes. Optional
* flags are passed through to bdrv_pwrite_zeroes (e.g. BDRV_REQ_MAY_UNMAP,
* BDRV_REQ_FUA).
*
* Returns < 0 on error, 0 on success. For error codes see bdrv_write().
*/
int bdrv_make_zero(BdrvChild *child, BdrvRequestFlags flags)
{
int ret;
int64_t target_size, bytes, offset = 0;
BlockDriverState *bs = child->bs;
target_size = bdrv_getlength(bs);
if (target_size < 0) {
return target_size;
}
for (;;) {
bytes = MIN(target_size - offset, BDRV_REQUEST_MAX_BYTES);
if (bytes <= 0) {
return 0;
}
ret = bdrv_block_status(bs, offset, bytes, &bytes, NULL, NULL);
if (ret < 0) {
return ret;
}
if (ret & BDRV_BLOCK_ZERO) {
offset += bytes;
continue;
}
ret = bdrv_pwrite_zeroes(child, offset, bytes, flags);
if (ret < 0) {
return ret;
}
offset += bytes;
}
}
int bdrv_preadv(BdrvChild *child, int64_t offset, QEMUIOVector *qiov)
{
int ret;
ret = bdrv_prwv_co(child, offset, qiov, false, 0);
if (ret < 0) {
return ret;
}
return qiov->size;
}
/* See bdrv_pwrite() for the return codes */
int bdrv_pread(BdrvChild *child, int64_t offset, void *buf, int bytes)
{
QEMUIOVector qiov = QEMU_IOVEC_INIT_BUF(qiov, buf, bytes);
if (bytes < 0) {
return -EINVAL;
}
return bdrv_preadv(child, offset, &qiov);
}
int bdrv_pwritev(BdrvChild *child, int64_t offset, QEMUIOVector *qiov)
{
int ret;
ret = bdrv_prwv_co(child, offset, qiov, true, 0);
if (ret < 0) {
return ret;
}
return qiov->size;
}
/* Return no. of bytes on success or < 0 on error. Important errors are:
-EIO generic I/O error (may happen for all errors)
-ENOMEDIUM No media inserted.
-EINVAL Invalid offset or number of bytes
-EACCES Trying to write a read-only device
*/
int bdrv_pwrite(BdrvChild *child, int64_t offset, const void *buf, int bytes)
{
QEMUIOVector qiov = QEMU_IOVEC_INIT_BUF(qiov, buf, bytes);
if (bytes < 0) {
return -EINVAL;
}
return bdrv_pwritev(child, offset, &qiov);
}
/*
* Writes to the file and ensures that no writes are reordered across this
* request (acts as a barrier)
*
* Returns 0 on success, -errno in error cases.
*/
int bdrv_pwrite_sync(BdrvChild *child, int64_t offset,
const void *buf, int count)
{
int ret;
ret = bdrv_pwrite(child, offset, buf, count);
if (ret < 0) {
return ret;
}
ret = bdrv_flush(child->bs);
if (ret < 0) {
return ret;
}
return 0;
}
typedef struct CoroutineIOCompletion {
Coroutine *coroutine;
int ret;
} CoroutineIOCompletion;
static void bdrv_co_io_em_complete(void *opaque, int ret)
{
CoroutineIOCompletion *co = opaque;
co->ret = ret;
aio_co_wake(co->coroutine);
}
static int coroutine_fn bdrv_driver_preadv(BlockDriverState *bs,
uint64_t offset, uint64_t bytes,
QEMUIOVector *qiov, int flags)
{
BlockDriver *drv = bs->drv;
int64_t sector_num;
unsigned int nb_sectors;
assert(!(flags & ~BDRV_REQ_MASK));
assert(!(flags & BDRV_REQ_NO_FALLBACK));
if (!drv) {
return -ENOMEDIUM;
}
if (drv->bdrv_co_preadv) {
return drv->bdrv_co_preadv(bs, offset, bytes, qiov, flags);
}
if (drv->bdrv_aio_preadv) {
BlockAIOCB *acb;
CoroutineIOCompletion co = {
.coroutine = qemu_coroutine_self(),
};
acb = drv->bdrv_aio_preadv(bs, offset, bytes, qiov, flags,
bdrv_co_io_em_complete, &co);
if (acb == NULL) {
return -EIO;
} else {
qemu_coroutine_yield();
return co.ret;
}
}
sector_num = offset >> BDRV_SECTOR_BITS;
nb_sectors = bytes >> BDRV_SECTOR_BITS;
assert((offset & (BDRV_SECTOR_SIZE - 1)) == 0);
assert((bytes & (BDRV_SECTOR_SIZE - 1)) == 0);
assert(bytes <= BDRV_REQUEST_MAX_BYTES);
assert(drv->bdrv_co_readv);
return drv->bdrv_co_readv(bs, sector_num, nb_sectors, qiov);
}
static int coroutine_fn bdrv_driver_pwritev(BlockDriverState *bs,
uint64_t offset, uint64_t bytes,
QEMUIOVector *qiov, int flags)
{
BlockDriver *drv = bs->drv;
int64_t sector_num;
unsigned int nb_sectors;
int ret;
assert(!(flags & ~BDRV_REQ_MASK));
assert(!(flags & BDRV_REQ_NO_FALLBACK));
if (!drv) {
return -ENOMEDIUM;
}
if (drv->bdrv_co_pwritev) {
ret = drv->bdrv_co_pwritev(bs, offset, bytes, qiov,
flags & bs->supported_write_flags);
flags &= ~bs->supported_write_flags;
goto emulate_flags;
}
if (drv->bdrv_aio_pwritev) {
BlockAIOCB *acb;
CoroutineIOCompletion co = {
.coroutine = qemu_coroutine_self(),
};
acb = drv->bdrv_aio_pwritev(bs, offset, bytes, qiov,
flags & bs->supported_write_flags,
bdrv_co_io_em_complete, &co);
flags &= ~bs->supported_write_flags;
if (acb == NULL) {
ret = -EIO;
} else {
qemu_coroutine_yield();
ret = co.ret;
}
goto emulate_flags;
}
sector_num = offset >> BDRV_SECTOR_BITS;
nb_sectors = bytes >> BDRV_SECTOR_BITS;
assert((offset & (BDRV_SECTOR_SIZE - 1)) == 0);
assert((bytes & (BDRV_SECTOR_SIZE - 1)) == 0);
assert(bytes <= BDRV_REQUEST_MAX_BYTES);
assert(drv->bdrv_co_writev);
ret = drv->bdrv_co_writev(bs, sector_num, nb_sectors, qiov,
flags & bs->supported_write_flags);
flags &= ~bs->supported_write_flags;
emulate_flags:
if (ret == 0 && (flags & BDRV_REQ_FUA)) {
ret = bdrv_co_flush(bs);
}
return ret;
}
static int coroutine_fn
bdrv_driver_pwritev_compressed(BlockDriverState *bs, uint64_t offset,
uint64_t bytes, QEMUIOVector *qiov)
{
BlockDriver *drv = bs->drv;
if (!drv) {
return -ENOMEDIUM;
}
if (!drv->bdrv_co_pwritev_compressed) {
return -ENOTSUP;
}
return drv->bdrv_co_pwritev_compressed(bs, offset, bytes, qiov);
}
static int coroutine_fn bdrv_co_do_copy_on_readv(BdrvChild *child,
int64_t offset, unsigned int bytes, QEMUIOVector *qiov,
int flags)
{
BlockDriverState *bs = child->bs;
/* Perform I/O through a temporary buffer so that users who scribble over
* their read buffer while the operation is in progress do not end up
* modifying the image file. This is critical for zero-copy guest I/O
* where anything might happen inside guest memory.
*/
void *bounce_buffer;
BlockDriver *drv = bs->drv;
QEMUIOVector local_qiov;
int64_t cluster_offset;
int64_t cluster_bytes;
size_t skip_bytes;
int ret;
int max_transfer = MIN_NON_ZERO(bs->bl.max_transfer,
BDRV_REQUEST_MAX_BYTES);
unsigned int progress = 0;
if (!drv) {
return -ENOMEDIUM;
}
/* FIXME We cannot require callers to have write permissions when all they
* are doing is a read request. If we did things right, write permissions
* would be obtained anyway, but internally by the copy-on-read code. As
* long as it is implemented here rather than in a separate filter driver,
* the copy-on-read code doesn't have its own BdrvChild, however, for which
* it could request permissions. Therefore we have to bypass the permission
* system for the moment. */
// assert(child->perm & (BLK_PERM_WRITE_UNCHANGED | BLK_PERM_WRITE));
/* Cover entire cluster so no additional backing file I/O is required when
* allocating cluster in the image file. Note that this value may exceed
* BDRV_REQUEST_MAX_BYTES (even when the original read did not), which
* is one reason we loop rather than doing it all at once.
*/
bdrv_round_to_clusters(bs, offset, bytes, &cluster_offset, &cluster_bytes);
skip_bytes = offset - cluster_offset;
trace_bdrv_co_do_copy_on_readv(bs, offset, bytes,
cluster_offset, cluster_bytes);
bounce_buffer = qemu_try_blockalign(bs,
MIN(MIN(max_transfer, cluster_bytes),
MAX_BOUNCE_BUFFER));
if (bounce_buffer == NULL) {
ret = -ENOMEM;
goto err;
}
while (cluster_bytes) {
int64_t pnum;
ret = bdrv_is_allocated(bs, cluster_offset,
MIN(cluster_bytes, max_transfer), &pnum);
if (ret < 0) {
/* Safe to treat errors in querying allocation as if
* unallocated; we'll probably fail again soon on the
* read, but at least that will set a decent errno.
*/
pnum = MIN(cluster_bytes, max_transfer);
}
/* Stop at EOF if the image ends in the middle of the cluster */
if (ret == 0 && pnum == 0) {
assert(progress >= bytes);
break;
}
assert(skip_bytes < pnum);
if (ret <= 0) {
/* Must copy-on-read; use the bounce buffer */
pnum = MIN(pnum, MAX_BOUNCE_BUFFER);
qemu_iovec_init_buf(&local_qiov, bounce_buffer, pnum);
ret = bdrv_driver_preadv(bs, cluster_offset, pnum,
&local_qiov, 0);
if (ret < 0) {
goto err;
}
bdrv_debug_event(bs, BLKDBG_COR_WRITE);
if (drv->bdrv_co_pwrite_zeroes &&
buffer_is_zero(bounce_buffer, pnum)) {
/* FIXME: Should we (perhaps conditionally) be setting
* BDRV_REQ_MAY_UNMAP, if it will allow for a sparser copy
* that still correctly reads as zero? */
ret = bdrv_co_do_pwrite_zeroes(bs, cluster_offset, pnum,
BDRV_REQ_WRITE_UNCHANGED);
} else {
/* This does not change the data on the disk, it is not
* necessary to flush even in cache=writethrough mode.
*/
ret = bdrv_driver_pwritev(bs, cluster_offset, pnum,
&local_qiov,
BDRV_REQ_WRITE_UNCHANGED);
}
if (ret < 0) {
/* It might be okay to ignore write errors for guest
* requests. If this is a deliberate copy-on-read
* then we don't want to ignore the error. Simply
* report it in all cases.
*/
goto err;
}
if (!(flags & BDRV_REQ_PREFETCH)) {
qemu_iovec_from_buf(qiov, progress, bounce_buffer + skip_bytes,
pnum - skip_bytes);
}
} else if (!(flags & BDRV_REQ_PREFETCH)) {
/* Read directly into the destination */
qemu_iovec_init(&local_qiov, qiov->niov);
qemu_iovec_concat(&local_qiov, qiov, progress, pnum - skip_bytes);
ret = bdrv_driver_preadv(bs, offset + progress, local_qiov.size,
&local_qiov, 0);
qemu_iovec_destroy(&local_qiov);
if (ret < 0) {
goto err;
}
}
cluster_offset += pnum;
cluster_bytes -= pnum;
progress += pnum - skip_bytes;
skip_bytes = 0;
}
ret = 0;
err:
qemu_vfree(bounce_buffer);
return ret;
}
/*
* Forwards an already correctly aligned request to the BlockDriver. This
* handles copy on read, zeroing after EOF, and fragmentation of large
* reads; any other features must be implemented by the caller.
*/
static int coroutine_fn bdrv_aligned_preadv(BdrvChild *child,
BdrvTrackedRequest *req, int64_t offset, unsigned int bytes,
int64_t align, QEMUIOVector *qiov, int flags)
{
BlockDriverState *bs = child->bs;
int64_t total_bytes, max_bytes;
int ret = 0;
uint64_t bytes_remaining = bytes;
int max_transfer;
assert(is_power_of_2(align));
assert((offset & (align - 1)) == 0);
assert((bytes & (align - 1)) == 0);
assert(!qiov || bytes == qiov->size);
assert((bs->open_flags & BDRV_O_NO_IO) == 0);
max_transfer = QEMU_ALIGN_DOWN(MIN_NON_ZERO(bs->bl.max_transfer, INT_MAX),
align);
/* TODO: We would need a per-BDS .supported_read_flags and
* potential fallback support, if we ever implement any read flags
* to pass through to drivers. For now, there aren't any
* passthrough flags. */
assert(!(flags & ~(BDRV_REQ_NO_SERIALISING | BDRV_REQ_COPY_ON_READ |
BDRV_REQ_PREFETCH)));
/* Handle Copy on Read and associated serialisation */
if (flags & BDRV_REQ_COPY_ON_READ) {
/* If we touch the same cluster it counts as an overlap. This
* guarantees that allocating writes will be serialized and not race
* with each other for the same cluster. For example, in copy-on-read
* it ensures that the CoR read and write operations are atomic and
* guest writes cannot interleave between them. */
mark_request_serialising(req, bdrv_get_cluster_size(bs));
}
/* BDRV_REQ_SERIALISING is only for write operation */
assert(!(flags & BDRV_REQ_SERIALISING));
if (!(flags & BDRV_REQ_NO_SERIALISING)) {
wait_serialising_requests(req);
}
if (flags & BDRV_REQ_COPY_ON_READ) {
int64_t pnum;
ret = bdrv_is_allocated(bs, offset, bytes, &pnum);
if (ret < 0) {
goto out;
}
if (!ret || pnum != bytes) {
ret = bdrv_co_do_copy_on_readv(child, offset, bytes, qiov, flags);
goto out;
} else if (flags & BDRV_REQ_PREFETCH) {
goto out;
}
}
/* Forward the request to the BlockDriver, possibly fragmenting it */
total_bytes = bdrv_getlength(bs);
if (total_bytes < 0) {
ret = total_bytes;
goto out;
}
max_bytes = ROUND_UP(MAX(0, total_bytes - offset), align);
if (bytes <= max_bytes && bytes <= max_transfer) {
ret = bdrv_driver_preadv(bs, offset, bytes, qiov, 0);
goto out;
}
while (bytes_remaining) {
int num;
if (max_bytes) {
QEMUIOVector local_qiov;
num = MIN(bytes_remaining, MIN(max_bytes, max_transfer));
assert(num);
qemu_iovec_init(&local_qiov, qiov->niov);
qemu_iovec_concat(&local_qiov, qiov, bytes - bytes_remaining, num);
ret = bdrv_driver_preadv(bs, offset + bytes - bytes_remaining,
num, &local_qiov, 0);
max_bytes -= num;
qemu_iovec_destroy(&local_qiov);
} else {
num = bytes_remaining;
ret = qemu_iovec_memset(qiov, bytes - bytes_remaining, 0,
bytes_remaining);
}
if (ret < 0) {
goto out;
}
bytes_remaining -= num;
}
out:
return ret < 0 ? ret : 0;
}
/*
* Handle a read request in coroutine context
*/
int coroutine_fn bdrv_co_preadv(BdrvChild *child,
int64_t offset, unsigned int bytes, QEMUIOVector *qiov,
BdrvRequestFlags flags)
{
BlockDriverState *bs = child->bs;
BlockDriver *drv = bs->drv;
BdrvTrackedRequest req;
uint64_t align = bs->bl.request_alignment;
uint8_t *head_buf = NULL;
uint8_t *tail_buf = NULL;
QEMUIOVector local_qiov;
bool use_local_qiov = false;
int ret;
trace_bdrv_co_preadv(child->bs, offset, bytes, flags);
if (!drv) {
return -ENOMEDIUM;
}
ret = bdrv_check_byte_request(bs, offset, bytes);
if (ret < 0) {
return ret;
}
bdrv_inc_in_flight(bs);
/* Don't do copy-on-read if we read data before write operation */
if (atomic_read(&bs->copy_on_read) && !(flags & BDRV_REQ_NO_SERIALISING)) {
flags |= BDRV_REQ_COPY_ON_READ;
}
/* Align read if necessary by padding qiov */
if (offset & (align - 1)) {
head_buf = qemu_blockalign(bs, align);
qemu_iovec_init(&local_qiov, qiov->niov + 2);
qemu_iovec_add(&local_qiov, head_buf, offset & (align - 1));
qemu_iovec_concat(&local_qiov, qiov, 0, qiov->size);
use_local_qiov = true;
bytes += offset & (align - 1);
offset = offset & ~(align - 1);
}
if ((offset + bytes) & (align - 1)) {
if (!use_local_qiov) {
qemu_iovec_init(&local_qiov, qiov->niov + 1);
qemu_iovec_concat(&local_qiov, qiov, 0, qiov->size);
use_local_qiov = true;
}
tail_buf = qemu_blockalign(bs, align);
qemu_iovec_add(&local_qiov, tail_buf,
align - ((offset + bytes) & (align - 1)));
bytes = ROUND_UP(bytes, align);
}
tracked_request_begin(&req, bs, offset, bytes, BDRV_TRACKED_READ);
ret = bdrv_aligned_preadv(child, &req, offset, bytes, align,
use_local_qiov ? &local_qiov : qiov,
flags);
tracked_request_end(&req);
bdrv_dec_in_flight(bs);
if (use_local_qiov) {
qemu_iovec_destroy(&local_qiov);
qemu_vfree(head_buf);
qemu_vfree(tail_buf);
}
return ret;
}
static int coroutine_fn bdrv_co_do_pwrite_zeroes(BlockDriverState *bs,
int64_t offset, int bytes, BdrvRequestFlags flags)
{
BlockDriver *drv = bs->drv;
QEMUIOVector qiov;
void *buf = NULL;
int ret = 0;
bool need_flush = false;
int head = 0;
int tail = 0;
int max_write_zeroes = MIN_NON_ZERO(bs->bl.max_pwrite_zeroes, INT_MAX);
int alignment = MAX(bs->bl.pwrite_zeroes_alignment,
bs->bl.request_alignment);
int max_transfer = MIN_NON_ZERO(bs->bl.max_transfer, MAX_BOUNCE_BUFFER);
if (!drv) {
return -ENOMEDIUM;
}
if ((flags & ~bs->supported_zero_flags) & BDRV_REQ_NO_FALLBACK) {
return -ENOTSUP;
}
assert(alignment % bs->bl.request_alignment == 0);
head = offset % alignment;
tail = (offset + bytes) % alignment;
max_write_zeroes = QEMU_ALIGN_DOWN(max_write_zeroes, alignment);
assert(max_write_zeroes >= bs->bl.request_alignment);
while (bytes > 0 && !ret) {
int num = bytes;
/* Align request. Block drivers can expect the "bulk" of the request
* to be aligned, and that unaligned requests do not cross cluster
* boundaries.
*/
if (head) {
/* Make a small request up to the first aligned sector. For
* convenience, limit this request to max_transfer even if
* we don't need to fall back to writes. */
num = MIN(MIN(bytes, max_transfer), alignment - head);
head = (head + num) % alignment;
assert(num < max_write_zeroes);
} else if (tail && num > alignment) {
/* Shorten the request to the last aligned sector. */
num -= tail;
}
/* limit request size */
if (num > max_write_zeroes) {
num = max_write_zeroes;
}
ret = -ENOTSUP;
/* First try the efficient write zeroes operation */
if (drv->bdrv_co_pwrite_zeroes) {
ret = drv->bdrv_co_pwrite_zeroes(bs, offset, num,
flags & bs->supported_zero_flags);
if (ret != -ENOTSUP && (flags & BDRV_REQ_FUA) &&
!(bs->supported_zero_flags & BDRV_REQ_FUA)) {
need_flush = true;
}
} else {
assert(!bs->supported_zero_flags);
}
if (ret < 0 && !(flags & BDRV_REQ_NO_FALLBACK)) {
/* Fall back to bounce buffer if write zeroes is unsupported */
BdrvRequestFlags write_flags = flags & ~BDRV_REQ_ZERO_WRITE;
if ((flags & BDRV_REQ_FUA) &&
!(bs->supported_write_flags & BDRV_REQ_FUA)) {
/* No need for bdrv_driver_pwrite() to do a fallback
* flush on each chunk; use just one at the end */
write_flags &= ~BDRV_REQ_FUA;
need_flush = true;
}
num = MIN(num, max_transfer);
if (buf == NULL) {
buf = qemu_try_blockalign0(bs, num);
if (buf == NULL) {
ret = -ENOMEM;
goto fail;
}
}
qemu_iovec_init_buf(&qiov, buf, num);
ret = bdrv_driver_pwritev(bs, offset, num, &qiov, write_flags);
/* Keep bounce buffer around if it is big enough for all
* all future requests.
*/
if (num < max_transfer) {
qemu_vfree(buf);
buf = NULL;
}
}
offset += num;
bytes -= num;
}
fail:
if (ret == 0 && need_flush) {
ret = bdrv_co_flush(bs);
}
qemu_vfree(buf);
return ret;
}
static inline int coroutine_fn
bdrv_co_write_req_prepare(BdrvChild *child, int64_t offset, uint64_t bytes,
BdrvTrackedRequest *req, int flags)
{
BlockDriverState *bs = child->bs;
bool waited;
int64_t end_sector = DIV_ROUND_UP(offset + bytes, BDRV_SECTOR_SIZE);
if (bs->read_only) {
return -EPERM;
}
/* BDRV_REQ_NO_SERIALISING is only for read operation */
assert(!(flags & BDRV_REQ_NO_SERIALISING));
assert(!(bs->open_flags & BDRV_O_INACTIVE));
assert((bs->open_flags & BDRV_O_NO_IO) == 0);
assert(!(flags & ~BDRV_REQ_MASK));
if (flags & BDRV_REQ_SERIALISING) {
mark_request_serialising(req, bdrv_get_cluster_size(bs));
}
waited = wait_serialising_requests(req);
assert(!waited || !req->serialising ||
is_request_serialising_and_aligned(req));
assert(req->overlap_offset <= offset);
assert(offset + bytes <= req->overlap_offset + req->overlap_bytes);
assert(end_sector <= bs->total_sectors || child->perm & BLK_PERM_RESIZE);
switch (req->type) {
case BDRV_TRACKED_WRITE:
case BDRV_TRACKED_DISCARD:
if (flags & BDRV_REQ_WRITE_UNCHANGED) {
assert(child->perm & (BLK_PERM_WRITE_UNCHANGED | BLK_PERM_WRITE));
} else {
assert(child->perm & BLK_PERM_WRITE);
}
return notifier_with_return_list_notify(&bs->before_write_notifiers,
req);
case BDRV_TRACKED_TRUNCATE:
assert(child->perm & BLK_PERM_RESIZE);
return 0;
default:
abort();
}
}
static inline void coroutine_fn
bdrv_co_write_req_finish(BdrvChild *child, int64_t offset, uint64_t bytes,
BdrvTrackedRequest *req, int ret)
{
int64_t end_sector = DIV_ROUND_UP(offset + bytes, BDRV_SECTOR_SIZE);
BlockDriverState *bs = child->bs;
atomic_inc(&bs->write_gen);
/*
* Discard cannot extend the image, but in error handling cases, such as
* when reverting a qcow2 cluster allocation, the discarded range can pass
* the end of image file, so we cannot assert about BDRV_TRACKED_DISCARD
* here. Instead, just skip it, since semantically a discard request
* beyond EOF cannot expand the image anyway.
*/
if (ret == 0 &&
(req->type == BDRV_TRACKED_TRUNCATE ||
end_sector > bs->total_sectors) &&
req->type != BDRV_TRACKED_DISCARD) {
bs->total_sectors = end_sector;
bdrv_parent_cb_resize(bs);
bdrv_dirty_bitmap_truncate(bs, end_sector << BDRV_SECTOR_BITS);
}
if (req->bytes) {
switch (req->type) {
case BDRV_TRACKED_WRITE:
stat64_max(&bs->wr_highest_offset, offset + bytes);
/* fall through, to set dirty bits */
case BDRV_TRACKED_DISCARD:
bdrv_set_dirty(bs, offset, bytes);
break;
default:
break;
}
}
}
/*
* Forwards an already correctly aligned write request to the BlockDriver,
* after possibly fragmenting it.
*/
static int coroutine_fn bdrv_aligned_pwritev(BdrvChild *child,
BdrvTrackedRequest *req, int64_t offset, unsigned int bytes,
int64_t align, QEMUIOVector *qiov, int flags)
{
BlockDriverState *bs = child->bs;
BlockDriver *drv = bs->drv;
int ret;
uint64_t bytes_remaining = bytes;
int max_transfer;
if (!drv) {
return -ENOMEDIUM;
}
if (bdrv_has_readonly_bitmaps(bs)) {
return -EPERM;
}
assert(is_power_of_2(align));
assert((offset & (align - 1)) == 0);
assert((bytes & (align - 1)) == 0);
assert(!qiov || bytes == qiov->size);
max_transfer = QEMU_ALIGN_DOWN(MIN_NON_ZERO(bs->bl.max_transfer, INT_MAX),
align);
ret = bdrv_co_write_req_prepare(child, offset, bytes, req, flags);
if (!ret && bs->detect_zeroes != BLOCKDEV_DETECT_ZEROES_OPTIONS_OFF &&
!(flags & BDRV_REQ_ZERO_WRITE) && drv->bdrv_co_pwrite_zeroes &&
qemu_iovec_is_zero(qiov)) {
flags |= BDRV_REQ_ZERO_WRITE;
if (bs->detect_zeroes == BLOCKDEV_DETECT_ZEROES_OPTIONS_UNMAP) {
flags |= BDRV_REQ_MAY_UNMAP;
}
}
if (ret < 0) {
/* Do nothing, write notifier decided to fail this request */
} else if (flags & BDRV_REQ_ZERO_WRITE) {
bdrv_debug_event(bs, BLKDBG_PWRITEV_ZERO);
ret = bdrv_co_do_pwrite_zeroes(bs, offset, bytes, flags);
} else if (flags & BDRV_REQ_WRITE_COMPRESSED) {
ret = bdrv_driver_pwritev_compressed(bs, offset, bytes, qiov);
} else if (bytes <= max_transfer) {
bdrv_debug_event(bs, BLKDBG_PWRITEV);
ret = bdrv_driver_pwritev(bs, offset, bytes, qiov, flags);
} else {
bdrv_debug_event(bs, BLKDBG_PWRITEV);
while (bytes_remaining) {
int num = MIN(bytes_remaining, max_transfer);
QEMUIOVector local_qiov;
int local_flags = flags;
assert(num);
if (num < bytes_remaining && (flags & BDRV_REQ_FUA) &&
!(bs->supported_write_flags & BDRV_REQ_FUA)) {
/* If FUA is going to be emulated by flush, we only
* need to flush on the last iteration */
local_flags &= ~BDRV_REQ_FUA;
}
qemu_iovec_init(&local_qiov, qiov->niov);
qemu_iovec_concat(&local_qiov, qiov, bytes - bytes_remaining, num);
ret = bdrv_driver_pwritev(bs, offset + bytes - bytes_remaining,
num, &local_qiov, local_flags);
qemu_iovec_destroy(&local_qiov);
if (ret < 0) {
break;
}
bytes_remaining -= num;
}
}
bdrv_debug_event(bs, BLKDBG_PWRITEV_DONE);
if (ret >= 0) {
ret = 0;
}
bdrv_co_write_req_finish(child, offset, bytes, req, ret);
return ret;
}
static int coroutine_fn bdrv_co_do_zero_pwritev(BdrvChild *child,
int64_t offset,
unsigned int bytes,
BdrvRequestFlags flags,
BdrvTrackedRequest *req)
{
BlockDriverState *bs = child->bs;
uint8_t *buf = NULL;
QEMUIOVector local_qiov;
uint64_t align = bs->bl.request_alignment;
unsigned int head_padding_bytes, tail_padding_bytes;
int ret = 0;
head_padding_bytes = offset & (align - 1);
tail_padding_bytes = (align - (offset + bytes)) & (align - 1);
assert(flags & BDRV_REQ_ZERO_WRITE);
if (head_padding_bytes || tail_padding_bytes) {
buf = qemu_blockalign(bs, align);
qemu_iovec_init_buf(&local_qiov, buf, align);
}
if (head_padding_bytes) {
uint64_t zero_bytes = MIN(bytes, align - head_padding_bytes);
/* RMW the unaligned part before head. */
mark_request_serialising(req, align);
wait_serialising_requests(req);
bdrv_debug_event(bs, BLKDBG_PWRITEV_RMW_HEAD);
ret = bdrv_aligned_preadv(child, req, offset & ~(align - 1), align,
align, &local_qiov, 0);
if (ret < 0) {
goto fail;
}
bdrv_debug_event(bs, BLKDBG_PWRITEV_RMW_AFTER_HEAD);
memset(buf + head_padding_bytes, 0, zero_bytes);
ret = bdrv_aligned_pwritev(child, req, offset & ~(align - 1), align,
align, &local_qiov,
flags & ~BDRV_REQ_ZERO_WRITE);
if (ret < 0) {
goto fail;
}
offset += zero_bytes;
bytes -= zero_bytes;
}
assert(!bytes || (offset & (align - 1)) == 0);
if (bytes >= align) {
/* Write the aligned part in the middle. */
uint64_t aligned_bytes = bytes & ~(align - 1);
ret = bdrv_aligned_pwritev(child, req, offset, aligned_bytes, align,
NULL, flags);
if (ret < 0) {
goto fail;
}
bytes -= aligned_bytes;
offset += aligned_bytes;
}
assert(!bytes || (offset & (align - 1)) == 0);
if (bytes) {
assert(align == tail_padding_bytes + bytes);
/* RMW the unaligned part after tail. */
mark_request_serialising(req, align);
wait_serialising_requests(req);
bdrv_debug_event(bs, BLKDBG_PWRITEV_RMW_TAIL);
ret = bdrv_aligned_preadv(child, req, offset, align,
align, &local_qiov, 0);
if (ret < 0) {
goto fail;
}
bdrv_debug_event(bs, BLKDBG_PWRITEV_RMW_AFTER_TAIL);
memset(buf, 0, bytes);
ret = bdrv_aligned_pwritev(child, req, offset, align, align,
&local_qiov, flags & ~BDRV_REQ_ZERO_WRITE);
}
fail:
qemu_vfree(buf);
return ret;
}
/*
* Handle a write request in coroutine context
*/
int coroutine_fn bdrv_co_pwritev(BdrvChild *child,
int64_t offset, unsigned int bytes, QEMUIOVector *qiov,
BdrvRequestFlags flags)
{
BlockDriverState *bs = child->bs;
BdrvTrackedRequest req;
uint64_t align = bs->bl.request_alignment;
uint8_t *head_buf = NULL;
uint8_t *tail_buf = NULL;
QEMUIOVector local_qiov;
bool use_local_qiov = false;
int ret;
trace_bdrv_co_pwritev(child->bs, offset, bytes, flags);
if (!bs->drv) {
return -ENOMEDIUM;
}
ret = bdrv_check_byte_request(bs, offset, bytes);
if (ret < 0) {
return ret;
}
bdrv_inc_in_flight(bs);
/*
* Align write if necessary by performing a read-modify-write cycle.
* Pad qiov with the read parts and be sure to have a tracked request not
* only for bdrv_aligned_pwritev, but also for the reads of the RMW cycle.
*/
tracked_request_begin(&req, bs, offset, bytes, BDRV_TRACKED_WRITE);
if (flags & BDRV_REQ_ZERO_WRITE) {
ret = bdrv_co_do_zero_pwritev(child, offset, bytes, flags, &req);
goto out;
}
if (offset & (align - 1)) {
QEMUIOVector head_qiov;
mark_request_serialising(&req, align);
wait_serialising_requests(&req);
head_buf = qemu_blockalign(bs, align);
qemu_iovec_init_buf(&head_qiov, head_buf, align);
bdrv_debug_event(bs, BLKDBG_PWRITEV_RMW_HEAD);
ret = bdrv_aligned_preadv(child, &req, offset & ~(align - 1), align,
align, &head_qiov, 0);
if (ret < 0) {
goto fail;
}
bdrv_debug_event(bs, BLKDBG_PWRITEV_RMW_AFTER_HEAD);
qemu_iovec_init(&local_qiov, qiov->niov + 2);
qemu_iovec_add(&local_qiov, head_buf, offset & (align - 1));
qemu_iovec_concat(&local_qiov, qiov, 0, qiov->size);
use_local_qiov = true;
bytes += offset & (align - 1);
offset = offset & ~(align - 1);
/* We have read the tail already if the request is smaller
* than one aligned block.
*/
if (bytes < align) {
qemu_iovec_add(&local_qiov, head_buf + bytes, align - bytes);
bytes = align;
}
}
if ((offset + bytes) & (align - 1)) {
QEMUIOVector tail_qiov;
size_t tail_bytes;
bool waited;
mark_request_serialising(&req, align);
waited = wait_serialising_requests(&req);
assert(!waited || !use_local_qiov);
tail_buf = qemu_blockalign(bs, align);
qemu_iovec_init_buf(&tail_qiov, tail_buf, align);
bdrv_debug_event(bs, BLKDBG_PWRITEV_RMW_TAIL);
ret = bdrv_aligned_preadv(child, &req, (offset + bytes) & ~(align - 1),
align, align, &tail_qiov, 0);
if (ret < 0) {
goto fail;
}
bdrv_debug_event(bs, BLKDBG_PWRITEV_RMW_AFTER_TAIL);
if (!use_local_qiov) {
qemu_iovec_init(&local_qiov, qiov->niov + 1);
qemu_iovec_concat(&local_qiov, qiov, 0, qiov->size);
use_local_qiov = true;
}
tail_bytes = (offset + bytes) & (align - 1);
qemu_iovec_add(&local_qiov, tail_buf + tail_bytes, align - tail_bytes);
bytes = ROUND_UP(bytes, align);
}
ret = bdrv_aligned_pwritev(child, &req, offset, bytes, align,
use_local_qiov ? &local_qiov : qiov,
flags);
fail:
if (use_local_qiov) {
qemu_iovec_destroy(&local_qiov);
}
qemu_vfree(head_buf);
qemu_vfree(tail_buf);
out:
tracked_request_end(&req);
bdrv_dec_in_flight(bs);
return ret;
}
int coroutine_fn bdrv_co_pwrite_zeroes(BdrvChild *child, int64_t offset,
int bytes, BdrvRequestFlags flags)
{
trace_bdrv_co_pwrite_zeroes(child->bs, offset, bytes, flags);
if (!(child->bs->open_flags & BDRV_O_UNMAP)) {
flags &= ~BDRV_REQ_MAY_UNMAP;
}
return bdrv_co_pwritev(child, offset, bytes, NULL,
BDRV_REQ_ZERO_WRITE | flags);
}
/*
* Flush ALL BDSes regardless of if they are reachable via a BlkBackend or not.
*/
int bdrv_flush_all(void)
{
BdrvNextIterator it;
BlockDriverState *bs = NULL;
int result = 0;
for (bs = bdrv_first(&it); bs; bs = bdrv_next(&it)) {
AioContext *aio_context = bdrv_get_aio_context(bs);
int ret;
aio_context_acquire(aio_context);
ret = bdrv_flush(bs);
if (ret < 0 && !result) {
result = ret;
}
aio_context_release(aio_context);
}
return result;
}
typedef struct BdrvCoBlockStatusData {
BlockDriverState *bs;
BlockDriverState *base;
bool want_zero;
int64_t offset;
int64_t bytes;
int64_t *pnum;
int64_t *map;
BlockDriverState **file;
int ret;
bool done;
} BdrvCoBlockStatusData;
int coroutine_fn bdrv_co_block_status_from_file(BlockDriverState *bs,
bool want_zero,
int64_t offset,
int64_t bytes,
int64_t *pnum,
int64_t *map,
BlockDriverState **file)
{
assert(bs->file && bs->file->bs);
*pnum = bytes;
*map = offset;
*file = bs->file->bs;
return BDRV_BLOCK_RAW | BDRV_BLOCK_OFFSET_VALID;
}
int coroutine_fn bdrv_co_block_status_from_backing(BlockDriverState *bs,
bool want_zero,
int64_t offset,
int64_t bytes,
int64_t *pnum,
int64_t *map,
BlockDriverState **file)
{
assert(bs->backing && bs->backing->bs);
*pnum = bytes;
*map = offset;
*file = bs->backing->bs;
return BDRV_BLOCK_RAW | BDRV_BLOCK_OFFSET_VALID;
}
/*
* Returns the allocation status of the specified sectors.
* Drivers not implementing the functionality are assumed to not support
* backing files, hence all their sectors are reported as allocated.
*
* If 'want_zero' is true, the caller is querying for mapping
* purposes, with a focus on valid BDRV_BLOCK_OFFSET_VALID, _DATA, and
* _ZERO where possible; otherwise, the result favors larger 'pnum',
* with a focus on accurate BDRV_BLOCK_ALLOCATED.
*
* If 'offset' is beyond the end of the disk image the return value is
* BDRV_BLOCK_EOF and 'pnum' is set to 0.
*
* 'bytes' is the max value 'pnum' should be set to. If bytes goes
* beyond the end of the disk image it will be clamped; if 'pnum' is set to
* the end of the image, then the returned value will include BDRV_BLOCK_EOF.
*
* 'pnum' is set to the number of bytes (including and immediately
* following the specified offset) that are easily known to be in the
* same allocated/unallocated state. Note that a second call starting
* at the original offset plus returned pnum may have the same status.
* The returned value is non-zero on success except at end-of-file.
*
* Returns negative errno on failure. Otherwise, if the
* BDRV_BLOCK_OFFSET_VALID bit is set, 'map' and 'file' (if non-NULL) are
* set to the host mapping and BDS corresponding to the guest offset.
*/
static int coroutine_fn bdrv_co_block_status(BlockDriverState *bs,
bool want_zero,
int64_t offset, int64_t bytes,
int64_t *pnum, int64_t *map,
BlockDriverState **file)
{
int64_t total_size;
int64_t n; /* bytes */
int ret;
int64_t local_map = 0;
BlockDriverState *local_file = NULL;
int64_t aligned_offset, aligned_bytes;
uint32_t align;
assert(pnum);
*pnum = 0;
total_size = bdrv_getlength(bs);
if (total_size < 0) {
ret = total_size;
goto early_out;
}
if (offset >= total_size) {
ret = BDRV_BLOCK_EOF;
goto early_out;
}
if (!bytes) {
ret = 0;
goto early_out;
}
n = total_size - offset;
if (n < bytes) {
bytes = n;
}
/* Must be non-NULL or bdrv_getlength() would have failed */
assert(bs->drv);
if (!bs->drv->bdrv_co_block_status) {
*pnum = bytes;
ret = BDRV_BLOCK_DATA | BDRV_BLOCK_ALLOCATED;
if (offset + bytes == total_size) {
ret |= BDRV_BLOCK_EOF;
}
if (bs->drv->protocol_name) {
ret |= BDRV_BLOCK_OFFSET_VALID;
local_map = offset;
local_file = bs;
}
goto early_out;
}
bdrv_inc_in_flight(bs);
/* Round out to request_alignment boundaries */
align = bs->bl.request_alignment;
aligned_offset = QEMU_ALIGN_DOWN(offset, align);
aligned_bytes = ROUND_UP(offset + bytes, align) - aligned_offset;
ret = bs->drv->bdrv_co_block_status(bs, want_zero, aligned_offset,
aligned_bytes, pnum, &local_map,
&local_file);
if (ret < 0) {
*pnum = 0;
goto out;
}
/*
* The driver's result must be a non-zero multiple of request_alignment.
* Clamp pnum and adjust map to original request.
*/
assert(*pnum && QEMU_IS_ALIGNED(*pnum, align) &&
align > offset - aligned_offset);
if (ret & BDRV_BLOCK_RECURSE) {
assert(ret & BDRV_BLOCK_DATA);
assert(ret & BDRV_BLOCK_OFFSET_VALID);
assert(!(ret & BDRV_BLOCK_ZERO));
}
*pnum -= offset - aligned_offset;
if (*pnum > bytes) {
*pnum = bytes;
}
if (ret & BDRV_BLOCK_OFFSET_VALID) {
local_map += offset - aligned_offset;
}
if (ret & BDRV_BLOCK_RAW) {
assert(ret & BDRV_BLOCK_OFFSET_VALID && local_file);
ret = bdrv_co_block_status(local_file, want_zero, local_map,
*pnum, pnum, &local_map, &local_file);
goto out;
}
if (ret & (BDRV_BLOCK_DATA | BDRV_BLOCK_ZERO)) {
ret |= BDRV_BLOCK_ALLOCATED;
} else if (want_zero) {
if (bdrv_unallocated_blocks_are_zero(bs)) {
ret |= BDRV_BLOCK_ZERO;
} else if (bs->backing) {
BlockDriverState *bs2 = bs->backing->bs;
int64_t size2 = bdrv_getlength(bs2);
if (size2 >= 0 && offset >= size2) {
ret |= BDRV_BLOCK_ZERO;
}
}
}
if (want_zero && ret & BDRV_BLOCK_RECURSE &&
local_file && local_file != bs &&
(ret & BDRV_BLOCK_DATA) && !(ret & BDRV_BLOCK_ZERO) &&
(ret & BDRV_BLOCK_OFFSET_VALID)) {
int64_t file_pnum;
int ret2;
ret2 = bdrv_co_block_status(local_file, want_zero, local_map,
*pnum, &file_pnum, NULL, NULL);
if (ret2 >= 0) {
/* Ignore errors. This is just providing extra information, it
* is useful but not necessary.
*/
if (ret2 & BDRV_BLOCK_EOF &&
(!file_pnum || ret2 & BDRV_BLOCK_ZERO)) {
/*
* It is valid for the format block driver to read
* beyond the end of the underlying file's current
* size; such areas read as zero.
*/
ret |= BDRV_BLOCK_ZERO;
} else {
/* Limit request to the range reported by the protocol driver */
*pnum = file_pnum;
ret |= (ret2 & BDRV_BLOCK_ZERO);
}
}
}
out:
bdrv_dec_in_flight(bs);
if (ret >= 0 && offset + *pnum == total_size) {
ret |= BDRV_BLOCK_EOF;
}
early_out:
if (file) {
*file = local_file;
}
if (map) {
*map = local_map;
}
return ret;
}
static int coroutine_fn bdrv_co_block_status_above(BlockDriverState *bs,
BlockDriverState *base,
bool want_zero,
int64_t offset,
int64_t bytes,
int64_t *pnum,
int64_t *map,
BlockDriverState **file)
{
BlockDriverState *p;
int ret = 0;
bool first = true;
assert(bs != base);
for (p = bs; p != base; p = backing_bs(p)) {
ret = bdrv_co_block_status(p, want_zero, offset, bytes, pnum, map,
file);
if (ret < 0) {
break;
}
if (ret & BDRV_BLOCK_ZERO && ret & BDRV_BLOCK_EOF && !first) {
/*
* Reading beyond the end of the file continues to read
* zeroes, but we can only widen the result to the
* unallocated length we learned from an earlier
* iteration.
*/
*pnum = bytes;
}
if (ret & (BDRV_BLOCK_ZERO | BDRV_BLOCK_DATA)) {
break;
}
/* [offset, pnum] unallocated on this layer, which could be only
* the first part of [offset, bytes]. */
bytes = MIN(bytes, *pnum);
first = false;
}
return ret;
}
/* Coroutine wrapper for bdrv_block_status_above() */
static void coroutine_fn bdrv_block_status_above_co_entry(void *opaque)
{
BdrvCoBlockStatusData *data = opaque;
data->ret = bdrv_co_block_status_above(data->bs, data->base,
data->want_zero,
data->offset, data->bytes,
data->pnum, data->map, data->file);
data->done = true;
aio_wait_kick();
}
/*
* Synchronous wrapper around bdrv_co_block_status_above().
*
* See bdrv_co_block_status_above() for details.
*/
static int bdrv_common_block_status_above(BlockDriverState *bs,
BlockDriverState *base,
bool want_zero, int64_t offset,
int64_t bytes, int64_t *pnum,
int64_t *map,
BlockDriverState **file)
{
Coroutine *co;
BdrvCoBlockStatusData data = {
.bs = bs,
.base = base,
.want_zero = want_zero,
.offset = offset,
.bytes = bytes,
.pnum = pnum,
.map = map,
.file = file,
.done = false,
};
if (qemu_in_coroutine()) {
/* Fast-path if already in coroutine context */
bdrv_block_status_above_co_entry(&data);
} else {
co = qemu_coroutine_create(bdrv_block_status_above_co_entry, &data);
bdrv_coroutine_enter(bs, co);
BDRV_POLL_WHILE(bs, !data.done);
}
return data.ret;
}
int bdrv_block_status_above(BlockDriverState *bs, BlockDriverState *base,
int64_t offset, int64_t bytes, int64_t *pnum,
int64_t *map, BlockDriverState **file)
{
return bdrv_common_block_status_above(bs, base, true, offset, bytes,
pnum, map, file);
}
int bdrv_block_status(BlockDriverState *bs, int64_t offset, int64_t bytes,
int64_t *pnum, int64_t *map, BlockDriverState **file)
{
return bdrv_block_status_above(bs, backing_bs(bs),
offset, bytes, pnum, map, file);
}
int coroutine_fn bdrv_is_allocated(BlockDriverState *bs, int64_t offset,
int64_t bytes, int64_t *pnum)
{
int ret;
int64_t dummy;
ret = bdrv_common_block_status_above(bs, backing_bs(bs), false, offset,
bytes, pnum ? pnum : &dummy, NULL,
NULL);
if (ret < 0) {
return ret;
}
return !!(ret & BDRV_BLOCK_ALLOCATED);
}
/*
* Given an image chain: ... -> [BASE] -> [INTER1] -> [INTER2] -> [TOP]
*
* Return 1 if (a prefix of) the given range is allocated in any image
* between BASE and TOP (BASE is only included if include_base is set).
* BASE can be NULL to check if the given offset is allocated in any
* image of the chain. Return 0 otherwise, or negative errno on
* failure.
*
* 'pnum' is set to the number of bytes (including and immediately
* following the specified offset) that are known to be in the same
* allocated/unallocated state. Note that a subsequent call starting
* at 'offset + *pnum' may return the same allocation status (in other
* words, the result is not necessarily the maximum possible range);
* but 'pnum' will only be 0 when end of file is reached.
*
*/
int bdrv_is_allocated_above(BlockDriverState *top,
BlockDriverState *base,
bool include_base, int64_t offset,
int64_t bytes, int64_t *pnum)
{
BlockDriverState *intermediate;
int ret;
int64_t n = bytes;
assert(base || !include_base);
intermediate = top;
while (include_base || intermediate != base) {
int64_t pnum_inter;
int64_t size_inter;
assert(intermediate);
ret = bdrv_is_allocated(intermediate, offset, bytes, &pnum_inter);
if (ret < 0) {
return ret;
}
if (ret) {
*pnum = pnum_inter;
return 1;
}
size_inter = bdrv_getlength(intermediate);
if (size_inter < 0) {
return size_inter;
}
if (n > pnum_inter &&
(intermediate == top || offset + pnum_inter < size_inter)) {
n = pnum_inter;
}
if (intermediate == base) {
break;
}
intermediate = backing_bs(intermediate);
}
*pnum = n;
return 0;
}
typedef struct BdrvVmstateCo {
BlockDriverState *bs;
QEMUIOVector *qiov;
int64_t pos;
bool is_read;
int ret;
} BdrvVmstateCo;
static int coroutine_fn
bdrv_co_rw_vmstate(BlockDriverState *bs, QEMUIOVector *qiov, int64_t pos,
bool is_read)
{
BlockDriver *drv = bs->drv;
int ret = -ENOTSUP;
bdrv_inc_in_flight(bs);
if (!drv) {
ret = -ENOMEDIUM;
} else if (drv->bdrv_load_vmstate) {
if (is_read) {
ret = drv->bdrv_load_vmstate(bs, qiov, pos);
} else {
ret = drv->bdrv_save_vmstate(bs, qiov, pos);
}
} else if (bs->file) {
ret = bdrv_co_rw_vmstate(bs->file->bs, qiov, pos, is_read);
}
bdrv_dec_in_flight(bs);
return ret;
}
static void coroutine_fn bdrv_co_rw_vmstate_entry(void *opaque)
{
BdrvVmstateCo *co = opaque;
co->ret = bdrv_co_rw_vmstate(co->bs, co->qiov, co->pos, co->is_read);
aio_wait_kick();
}
static inline int
bdrv_rw_vmstate(BlockDriverState *bs, QEMUIOVector *qiov, int64_t pos,
bool is_read)
{
if (qemu_in_coroutine()) {
return bdrv_co_rw_vmstate(bs, qiov, pos, is_read);
} else {
BdrvVmstateCo data = {
.bs = bs,
.qiov = qiov,
.pos = pos,
.is_read = is_read,
.ret = -EINPROGRESS,
};
Coroutine *co = qemu_coroutine_create(bdrv_co_rw_vmstate_entry, &data);
bdrv_coroutine_enter(bs, co);
BDRV_POLL_WHILE(bs, data.ret == -EINPROGRESS);
return data.ret;
}
}
int bdrv_save_vmstate(BlockDriverState *bs, const uint8_t *buf,
int64_t pos, int size)
{
QEMUIOVector qiov = QEMU_IOVEC_INIT_BUF(qiov, buf, size);
int ret;
ret = bdrv_writev_vmstate(bs, &qiov, pos);
if (ret < 0) {
return ret;
}
return size;
}
int bdrv_writev_vmstate(BlockDriverState *bs, QEMUIOVector *qiov, int64_t pos)
{
return bdrv_rw_vmstate(bs, qiov, pos, false);
}
int bdrv_load_vmstate(BlockDriverState *bs, uint8_t *buf,
int64_t pos, int size)
{
QEMUIOVector qiov = QEMU_IOVEC_INIT_BUF(qiov, buf, size);
int ret;
ret = bdrv_readv_vmstate(bs, &qiov, pos);
if (ret < 0) {
return ret;
}
return size;
}
int bdrv_readv_vmstate(BlockDriverState *bs, QEMUIOVector *qiov, int64_t pos)
{
return bdrv_rw_vmstate(bs, qiov, pos, true);
}
/**************************************************************/
/* async I/Os */
void bdrv_aio_cancel(BlockAIOCB *acb)
{
qemu_aio_ref(acb);
bdrv_aio_cancel_async(acb);
while (acb->refcnt > 1) {
if (acb->aiocb_info->get_aio_context) {
aio_poll(acb->aiocb_info->get_aio_context(acb), true);
} else if (acb->bs) {
/* qemu_aio_ref and qemu_aio_unref are not thread-safe, so
* assert that we're not using an I/O thread. Thread-safe
* code should use bdrv_aio_cancel_async exclusively.
*/
assert(bdrv_get_aio_context(acb->bs) == qemu_get_aio_context());
aio_poll(bdrv_get_aio_context(acb->bs), true);
} else {
abort();
}
}
qemu_aio_unref(acb);
}
/* Async version of aio cancel. The caller is not blocked if the acb implements
* cancel_async, otherwise we do nothing and let the request normally complete.
* In either case the completion callback must be called. */
void bdrv_aio_cancel_async(BlockAIOCB *acb)
{
if (acb->aiocb_info->cancel_async) {
acb->aiocb_info->cancel_async(acb);
}
}
/**************************************************************/
/* Coroutine block device emulation */
typedef struct FlushCo {
BlockDriverState *bs;
int ret;
} FlushCo;
static void coroutine_fn bdrv_flush_co_entry(void *opaque)
{
FlushCo *rwco = opaque;
rwco->ret = bdrv_co_flush(rwco->bs);
aio_wait_kick();
}
int coroutine_fn bdrv_co_flush(BlockDriverState *bs)
{
int current_gen;
int ret = 0;
bdrv_inc_in_flight(bs);
if (!bdrv_is_inserted(bs) || bdrv_is_read_only(bs) ||
bdrv_is_sg(bs)) {
goto early_exit;
}
qemu_co_mutex_lock(&bs->reqs_lock);
current_gen = atomic_read(&bs->write_gen);
/* Wait until any previous flushes are completed */
while (bs->active_flush_req) {
qemu_co_queue_wait(&bs->flush_queue, &bs->reqs_lock);
}
/* Flushes reach this point in nondecreasing current_gen order. */
bs->active_flush_req = true;
qemu_co_mutex_unlock(&bs->reqs_lock);
/* Write back all layers by calling one driver function */
if (bs->drv->bdrv_co_flush) {
ret = bs->drv->bdrv_co_flush(bs);
goto out;
}
/* Write back cached data to the OS even with cache=unsafe */
BLKDBG_EVENT(bs->file, BLKDBG_FLUSH_TO_OS);
if (bs->drv->bdrv_co_flush_to_os) {
ret = bs->drv->bdrv_co_flush_to_os(bs);
if (ret < 0) {
goto out;
}
}
/* But don't actually force it to the disk with cache=unsafe */
if (bs->open_flags & BDRV_O_NO_FLUSH) {
goto flush_parent;
}
/* Check if we really need to flush anything */
if (bs->flushed_gen == current_gen) {
goto flush_parent;
}
BLKDBG_EVENT(bs->file, BLKDBG_FLUSH_TO_DISK);
if (!bs->drv) {
/* bs->drv->bdrv_co_flush() might have ejected the BDS
* (even in case of apparent success) */
ret = -ENOMEDIUM;
goto out;
}
if (bs->drv->bdrv_co_flush_to_disk) {
ret = bs->drv->bdrv_co_flush_to_disk(bs);
} else if (bs->drv->bdrv_aio_flush) {
BlockAIOCB *acb;
CoroutineIOCompletion co = {
.coroutine = qemu_coroutine_self(),
};
acb = bs->drv->bdrv_aio_flush(bs, bdrv_co_io_em_complete, &co);
if (acb == NULL) {
ret = -EIO;
} else {
qemu_coroutine_yield();
ret = co.ret;
}
} else {
/*
* Some block drivers always operate in either writethrough or unsafe
* mode and don't support bdrv_flush therefore. Usually qemu doesn't
* know how the server works (because the behaviour is hardcoded or
* depends on server-side configuration), so we can't ensure that
* everything is safe on disk. Returning an error doesn't work because
* that would break guests even if the server operates in writethrough
* mode.
*
* Let's hope the user knows what he's doing.
*/
ret = 0;
}
if (ret < 0) {
goto out;
}
/* Now flush the underlying protocol. It will also have BDRV_O_NO_FLUSH
* in the case of cache=unsafe, so there are no useless flushes.
*/
flush_parent:
ret = bs->file ? bdrv_co_flush(bs->file->bs) : 0;
out:
/* Notify any pending flushes that we have completed */
if (ret == 0) {
bs->flushed_gen = current_gen;
}
qemu_co_mutex_lock(&bs->reqs_lock);
bs->active_flush_req = false;
/* Return value is ignored - it's ok if wait queue is empty */
qemu_co_queue_next(&bs->flush_queue);
qemu_co_mutex_unlock(&bs->reqs_lock);
early_exit:
bdrv_dec_in_flight(bs);
return ret;
}
int bdrv_flush(BlockDriverState *bs)
{
Coroutine *co;
FlushCo flush_co = {
.bs = bs,
.ret = NOT_DONE,
};
if (qemu_in_coroutine()) {
/* Fast-path if already in coroutine context */
bdrv_flush_co_entry(&flush_co);
} else {
co = qemu_coroutine_create(bdrv_flush_co_entry, &flush_co);
bdrv_coroutine_enter(bs, co);
BDRV_POLL_WHILE(bs, flush_co.ret == NOT_DONE);
}
return flush_co.ret;
}
typedef struct DiscardCo {
BdrvChild *child;
int64_t offset;
int64_t bytes;
int ret;
} DiscardCo;
static void coroutine_fn bdrv_pdiscard_co_entry(void *opaque)
{
DiscardCo *rwco = opaque;
rwco->ret = bdrv_co_pdiscard(rwco->child, rwco->offset, rwco->bytes);
aio_wait_kick();
}
int coroutine_fn bdrv_co_pdiscard(BdrvChild *child, int64_t offset,
int64_t bytes)
{
BdrvTrackedRequest req;
int max_pdiscard, ret;
int head, tail, align;
BlockDriverState *bs = child->bs;
if (!bs || !bs->drv || !bdrv_is_inserted(bs)) {
return -ENOMEDIUM;
}
if (bdrv_has_readonly_bitmaps(bs)) {
return -EPERM;
}
if (offset < 0 || bytes < 0 || bytes > INT64_MAX - offset) {
return -EIO;
}
/* Do nothing if disabled. */
if (!(bs->open_flags & BDRV_O_UNMAP)) {
return 0;
}
if (!bs->drv->bdrv_co_pdiscard && !bs->drv->bdrv_aio_pdiscard) {
return 0;
}
/* Discard is advisory, but some devices track and coalesce
* unaligned requests, so we must pass everything down rather than
* round here. Still, most devices will just silently ignore
* unaligned requests (by returning -ENOTSUP), so we must fragment
* the request accordingly. */
align = MAX(bs->bl.pdiscard_alignment, bs->bl.request_alignment);
assert(align % bs->bl.request_alignment == 0);
head = offset % align;
tail = (offset + bytes) % align;
bdrv_inc_in_flight(bs);
tracked_request_begin(&req, bs, offset, bytes, BDRV_TRACKED_DISCARD);
ret = bdrv_co_write_req_prepare(child, offset, bytes, &req, 0);
if (ret < 0) {
goto out;
}
max_pdiscard = QEMU_ALIGN_DOWN(MIN_NON_ZERO(bs->bl.max_pdiscard, INT_MAX),
align);
assert(max_pdiscard >= bs->bl.request_alignment);
while (bytes > 0) {
int64_t num = bytes;
if (head) {
/* Make small requests to get to alignment boundaries. */
num = MIN(bytes, align - head);
if (!QEMU_IS_ALIGNED(num, bs->bl.request_alignment)) {
num %= bs->bl.request_alignment;
}
head = (head + num) % align;
assert(num < max_pdiscard);
} else if (tail) {
if (num > align) {
/* Shorten the request to the last aligned cluster. */
num -= tail;
} else if (!QEMU_IS_ALIGNED(tail, bs->bl.request_alignment) &&
tail > bs->bl.request_alignment) {
tail %= bs->bl.request_alignment;
num -= tail;
}
}
/* limit request size */
if (num > max_pdiscard) {
num = max_pdiscard;
}
if (!bs->drv) {
ret = -ENOMEDIUM;
goto out;
}
if (bs->drv->bdrv_co_pdiscard) {
ret = bs->drv->bdrv_co_pdiscard(bs, offset, num);
} else {
BlockAIOCB *acb;
CoroutineIOCompletion co = {
.coroutine = qemu_coroutine_self(),
};
acb = bs->drv->bdrv_aio_pdiscard(bs, offset, num,
bdrv_co_io_em_complete, &co);
if (acb == NULL) {
ret = -EIO;
goto out;
} else {
qemu_coroutine_yield();
ret = co.ret;
}
}
if (ret && ret != -ENOTSUP) {
goto out;
}
offset += num;
bytes -= num;
}
ret = 0;
out:
bdrv_co_write_req_finish(child, req.offset, req.bytes, &req, ret);
tracked_request_end(&req);
bdrv_dec_in_flight(bs);
return ret;
}
int bdrv_pdiscard(BdrvChild *child, int64_t offset, int64_t bytes)
{
Coroutine *co;
DiscardCo rwco = {
.child = child,
.offset = offset,
.bytes = bytes,
.ret = NOT_DONE,
};
if (qemu_in_coroutine()) {
/* Fast-path if already in coroutine context */
bdrv_pdiscard_co_entry(&rwco);
} else {
co = qemu_coroutine_create(bdrv_pdiscard_co_entry, &rwco);
bdrv_coroutine_enter(child->bs, co);
BDRV_POLL_WHILE(child->bs, rwco.ret == NOT_DONE);
}
return rwco.ret;
}
int bdrv_co_ioctl(BlockDriverState *bs, int req, void *buf)
{
BlockDriver *drv = bs->drv;
CoroutineIOCompletion co = {
.coroutine = qemu_coroutine_self(),
};
BlockAIOCB *acb;
bdrv_inc_in_flight(bs);
if (!drv || (!drv->bdrv_aio_ioctl && !drv->bdrv_co_ioctl)) {
co.ret = -ENOTSUP;
goto out;
}
if (drv->bdrv_co_ioctl) {
co.ret = drv->bdrv_co_ioctl(bs, req, buf);
} else {
acb = drv->bdrv_aio_ioctl(bs, req, buf, bdrv_co_io_em_complete, &co);
if (!acb) {
co.ret = -ENOTSUP;
goto out;
}
qemu_coroutine_yield();
}
out:
bdrv_dec_in_flight(bs);
return co.ret;
}
void *qemu_blockalign(BlockDriverState *bs, size_t size)
{
return qemu_memalign(bdrv_opt_mem_align(bs), size);
}
void *qemu_blockalign0(BlockDriverState *bs, size_t size)
{
return memset(qemu_blockalign(bs, size), 0, size);
}
void *qemu_try_blockalign(BlockDriverState *bs, size_t size)
{
size_t align = bdrv_opt_mem_align(bs);
/* Ensure that NULL is never returned on success */
assert(align > 0);
if (size == 0) {
size = align;
}
return qemu_try_memalign(align, size);
}
void *qemu_try_blockalign0(BlockDriverState *bs, size_t size)
{
void *mem = qemu_try_blockalign(bs, size);
if (mem) {
memset(mem, 0, size);
}
return mem;
}
/*
* Check if all memory in this vector is sector aligned.
*/
bool bdrv_qiov_is_aligned(BlockDriverState *bs, QEMUIOVector *qiov)
{
int i;
size_t alignment = bdrv_min_mem_align(bs);
for (i = 0; i < qiov->niov; i++) {
if ((uintptr_t) qiov->iov[i].iov_base % alignment) {
return false;
}
if (qiov->iov[i].iov_len % alignment) {
return false;
}
}
return true;
}
void bdrv_add_before_write_notifier(BlockDriverState *bs,
NotifierWithReturn *notifier)
{
notifier_with_return_list_add(&bs->before_write_notifiers, notifier);
}
void bdrv_io_plug(BlockDriverState *bs)
{
BdrvChild *child;
QLIST_FOREACH(child, &bs->children, next) {
bdrv_io_plug(child->bs);
}
if (atomic_fetch_inc(&bs->io_plugged) == 0) {
BlockDriver *drv = bs->drv;
if (drv && drv->bdrv_io_plug) {
drv->bdrv_io_plug(bs);
}
}
}
void bdrv_io_unplug(BlockDriverState *bs)
{
BdrvChild *child;
assert(bs->io_plugged);
if (atomic_fetch_dec(&bs->io_plugged) == 1) {
BlockDriver *drv = bs->drv;
if (drv && drv->bdrv_io_unplug) {
drv->bdrv_io_unplug(bs);
}
}
QLIST_FOREACH(child, &bs->children, next) {
bdrv_io_unplug(child->bs);
}
}
void bdrv_register_buf(BlockDriverState *bs, void *host, size_t size)
{
BdrvChild *child;
if (bs->drv && bs->drv->bdrv_register_buf) {
bs->drv->bdrv_register_buf(bs, host, size);
}
QLIST_FOREACH(child, &bs->children, next) {
bdrv_register_buf(child->bs, host, size);
}
}
void bdrv_unregister_buf(BlockDriverState *bs, void *host)
{
BdrvChild *child;
if (bs->drv && bs->drv->bdrv_unregister_buf) {
bs->drv->bdrv_unregister_buf(bs, host);
}
QLIST_FOREACH(child, &bs->children, next) {
bdrv_unregister_buf(child->bs, host);
}
}
static int coroutine_fn bdrv_co_copy_range_internal(
BdrvChild *src, uint64_t src_offset, BdrvChild *dst,
uint64_t dst_offset, uint64_t bytes,
BdrvRequestFlags read_flags, BdrvRequestFlags write_flags,
bool recurse_src)
{
BdrvTrackedRequest req;
int ret;
/* TODO We can support BDRV_REQ_NO_FALLBACK here */
assert(!(read_flags & BDRV_REQ_NO_FALLBACK));
assert(!(write_flags & BDRV_REQ_NO_FALLBACK));
if (!dst || !dst->bs) {
return -ENOMEDIUM;
}
ret = bdrv_check_byte_request(dst->bs, dst_offset, bytes);
if (ret) {
return ret;
}
if (write_flags & BDRV_REQ_ZERO_WRITE) {
return bdrv_co_pwrite_zeroes(dst, dst_offset, bytes, write_flags);
}
if (!src || !src->bs) {
return -ENOMEDIUM;
}
ret = bdrv_check_byte_request(src->bs, src_offset, bytes);
if (ret) {
return ret;
}
if (!src->bs->drv->bdrv_co_copy_range_from
|| !dst->bs->drv->bdrv_co_copy_range_to
|| src->bs->encrypted || dst->bs->encrypted) {
return -ENOTSUP;
}
if (recurse_src) {
bdrv_inc_in_flight(src->bs);
tracked_request_begin(&req, src->bs, src_offset, bytes,
BDRV_TRACKED_READ);
/* BDRV_REQ_SERIALISING is only for write operation */
assert(!(read_flags & BDRV_REQ_SERIALISING));
if (!(read_flags & BDRV_REQ_NO_SERIALISING)) {
wait_serialising_requests(&req);
}
ret = src->bs->drv->bdrv_co_copy_range_from(src->bs,
src, src_offset,
dst, dst_offset,
bytes,
read_flags, write_flags);
tracked_request_end(&req);
bdrv_dec_in_flight(src->bs);
} else {
bdrv_inc_in_flight(dst->bs);
tracked_request_begin(&req, dst->bs, dst_offset, bytes,
BDRV_TRACKED_WRITE);
ret = bdrv_co_write_req_prepare(dst, dst_offset, bytes, &req,
write_flags);
if (!ret) {
ret = dst->bs->drv->bdrv_co_copy_range_to(dst->bs,
src, src_offset,
dst, dst_offset,
bytes,
read_flags, write_flags);
}
bdrv_co_write_req_finish(dst, dst_offset, bytes, &req, ret);
tracked_request_end(&req);
bdrv_dec_in_flight(dst->bs);
}
return ret;
}
/* Copy range from @src to @dst.
*
* See the comment of bdrv_co_copy_range for the parameter and return value
* semantics. */
int coroutine_fn bdrv_co_copy_range_from(BdrvChild *src, uint64_t src_offset,
BdrvChild *dst, uint64_t dst_offset,
uint64_t bytes,
BdrvRequestFlags read_flags,
BdrvRequestFlags write_flags)
{
trace_bdrv_co_copy_range_from(src, src_offset, dst, dst_offset, bytes,
read_flags, write_flags);
return bdrv_co_copy_range_internal(src, src_offset, dst, dst_offset,
bytes, read_flags, write_flags, true);
}
/* Copy range from @src to @dst.
*
* See the comment of bdrv_co_copy_range for the parameter and return value
* semantics. */
int coroutine_fn bdrv_co_copy_range_to(BdrvChild *src, uint64_t src_offset,
BdrvChild *dst, uint64_t dst_offset,
uint64_t bytes,
BdrvRequestFlags read_flags,
BdrvRequestFlags write_flags)
{
trace_bdrv_co_copy_range_to(src, src_offset, dst, dst_offset, bytes,
read_flags, write_flags);
return bdrv_co_copy_range_internal(src, src_offset, dst, dst_offset,
bytes, read_flags, write_flags, false);
}
int coroutine_fn bdrv_co_copy_range(BdrvChild *src, uint64_t src_offset,
BdrvChild *dst, uint64_t dst_offset,
uint64_t bytes, BdrvRequestFlags read_flags,
BdrvRequestFlags write_flags)
{
return bdrv_co_copy_range_from(src, src_offset,
dst, dst_offset,
bytes, read_flags, write_flags);
}
static void bdrv_parent_cb_resize(BlockDriverState *bs)
{
BdrvChild *c;
QLIST_FOREACH(c, &bs->parents, next_parent) {
if (c->role->resize) {
c->role->resize(c);
}
}
}
/**
* Truncate file to 'offset' bytes (needed only for file protocols)
*/
int coroutine_fn bdrv_co_truncate(BdrvChild *child, int64_t offset,
PreallocMode prealloc, Error **errp)
{
BlockDriverState *bs = child->bs;
BlockDriver *drv = bs->drv;
BdrvTrackedRequest req;
int64_t old_size, new_bytes;
int ret;
/* if bs->drv == NULL, bs is closed, so there's nothing to do here */
if (!drv) {
error_setg(errp, "No medium inserted");
return -ENOMEDIUM;
}
if (offset < 0) {
error_setg(errp, "Image size cannot be negative");
return -EINVAL;
}
old_size = bdrv_getlength(bs);
if (old_size < 0) {
error_setg_errno(errp, -old_size, "Failed to get old image size");
return old_size;
}
if (offset > old_size) {
new_bytes = offset - old_size;
} else {
new_bytes = 0;
}
bdrv_inc_in_flight(bs);
tracked_request_begin(&req, bs, offset - new_bytes, new_bytes,
BDRV_TRACKED_TRUNCATE);
/* If we are growing the image and potentially using preallocation for the
* new area, we need to make sure that no write requests are made to it
* concurrently or they might be overwritten by preallocation. */
if (new_bytes) {
mark_request_serialising(&req, 1);
}
if (bs->read_only) {
error_setg(errp, "Image is read-only");
ret = -EACCES;
goto out;
}
ret = bdrv_co_write_req_prepare(child, offset - new_bytes, new_bytes, &req,
0);
if (ret < 0) {
error_setg_errno(errp, -ret,
"Failed to prepare request for truncation");
goto out;
}
if (!drv->bdrv_co_truncate) {
if (bs->file && drv->is_filter) {
ret = bdrv_co_truncate(bs->file, offset, prealloc, errp);
goto out;
}
error_setg(errp, "Image format driver does not support resize");
ret = -ENOTSUP;
goto out;
}
ret = drv->bdrv_co_truncate(bs, offset, prealloc, errp);
if (ret < 0) {
goto out;
}
ret = refresh_total_sectors(bs, offset >> BDRV_SECTOR_BITS);
if (ret < 0) {
error_setg_errno(errp, -ret, "Could not refresh total sector count");
} else {
offset = bs->total_sectors * BDRV_SECTOR_SIZE;
}
/* It's possible that truncation succeeded but refresh_total_sectors
* failed, but the latter doesn't affect how we should finish the request.
* Pass 0 as the last parameter so that dirty bitmaps etc. are handled. */
bdrv_co_write_req_finish(child, offset - new_bytes, new_bytes, &req, 0);
out:
tracked_request_end(&req);
bdrv_dec_in_flight(bs);
return ret;
}
typedef struct TruncateCo {
BdrvChild *child;
int64_t offset;
PreallocMode prealloc;
Error **errp;
int ret;
} TruncateCo;
static void coroutine_fn bdrv_truncate_co_entry(void *opaque)
{
TruncateCo *tco = opaque;
tco->ret = bdrv_co_truncate(tco->child, tco->offset, tco->prealloc,
tco->errp);
aio_wait_kick();
}
int bdrv_truncate(BdrvChild *child, int64_t offset, PreallocMode prealloc,
Error **errp)
{
Coroutine *co;
TruncateCo tco = {
.child = child,
.offset = offset,
.prealloc = prealloc,
.errp = errp,
.ret = NOT_DONE,
};
if (qemu_in_coroutine()) {
/* Fast-path if already in coroutine context */
bdrv_truncate_co_entry(&tco);
} else {
co = qemu_coroutine_create(bdrv_truncate_co_entry, &tco);
bdrv_coroutine_enter(child->bs, co);
BDRV_POLL_WHILE(child->bs, tco.ret == NOT_DONE);
}
return tco.ret;
}