/*
* internal execution defines for qemu
*
* Copyright (c) 2003 Fabrice Bellard
*
* This library is free software; you can redistribute it and/or
* modify it under the terms of the GNU Lesser General Public
* License as published by the Free Software Foundation; either
* version 2 of the License, or (at your option) any later version.
*
* This library is distributed in the hope that it will be useful,
* but WITHOUT ANY WARRANTY; without even the implied warranty of
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
* Lesser General Public License for more details.
*
* You should have received a copy of the GNU Lesser General Public
* License along with this library; if not, see <http://www.gnu.org/licenses/>.
*/
#ifndef _EXEC_ALL_H_
#define _EXEC_ALL_H_
#include "qemu-common.h"
/* allow to see translation results - the slowdown should be negligible, so we leave it */
#define DEBUG_DISAS
/* Page tracking code uses ram addresses in system mode, and virtual
addresses in userspace mode. Define tb_page_addr_t to be an appropriate
type. */
#if defined(CONFIG_USER_ONLY)
typedef abi_ulong tb_page_addr_t;
#else
typedef ram_addr_t tb_page_addr_t;
#endif
/* is_jmp field values */
#define DISAS_NEXT 0 /* next instruction can be analyzed */
#define DISAS_JUMP 1 /* only pc was modified dynamically */
#define DISAS_UPDATE 2 /* cpu state was modified dynamically */
#define DISAS_TB_JUMP 3 /* only pc was modified statically */
struct TranslationBlock;
typedef struct TranslationBlock TranslationBlock;
/* XXX: make safe guess about sizes */
#define MAX_OP_PER_INSTR 208
#if HOST_LONG_BITS == 32
#define MAX_OPC_PARAM_PER_ARG 2
#else
#define MAX_OPC_PARAM_PER_ARG 1
#endif
#define MAX_OPC_PARAM_IARGS 4
#define MAX_OPC_PARAM_OARGS 1
#define MAX_OPC_PARAM_ARGS (MAX_OPC_PARAM_IARGS + MAX_OPC_PARAM_OARGS)
/* A Call op needs up to 4 + 2N parameters on 32-bit archs,
* and up to 4 + N parameters on 64-bit archs
* (N = number of input arguments + output arguments). */
#define MAX_OPC_PARAM (4 + (MAX_OPC_PARAM_PER_ARG * MAX_OPC_PARAM_ARGS))
#define OPC_BUF_SIZE 640
#define OPC_MAX_SIZE (OPC_BUF_SIZE - MAX_OP_PER_INSTR)
/* Maximum size a TCG op can expand to. This is complicated because a
single op may require several host instructions and register reloads.
For now take a wild guess at 192 bytes, which should allow at least
a couple of fixup instructions per argument. */
#define TCG_MAX_OP_SIZE 192
#define OPPARAM_BUF_SIZE (OPC_BUF_SIZE * MAX_OPC_PARAM)
extern target_ulong gen_opc_pc[OPC_BUF_SIZE];
extern uint8_t gen_opc_instr_start[OPC_BUF_SIZE];
extern uint16_t gen_opc_icount[OPC_BUF_SIZE];
#include "qemu-log.h"
void gen_intermediate_code(CPUArchState *env, struct TranslationBlock *tb);
void gen_intermediate_code_pc(CPUArchState *env, struct TranslationBlock *tb);
void restore_state_to_opc(CPUArchState *env, struct TranslationBlock *tb,
int pc_pos);
void cpu_gen_init(void);
int cpu_gen_code(CPUArchState *env, struct TranslationBlock *tb,
int *gen_code_size_ptr);
int cpu_restore_state(struct TranslationBlock *tb,
CPUArchState *env, uintptr_t searched_pc);
void QEMU_NORETURN cpu_resume_from_signal(CPUArchState *env1, void *puc);
void QEMU_NORETURN cpu_io_recompile(CPUArchState *env, uintptr_t retaddr);
TranslationBlock *tb_gen_code(CPUArchState *env,
target_ulong pc, target_ulong cs_base, int flags,
int cflags);
void cpu_exec_init(CPUArchState *env);
void QEMU_NORETURN cpu_loop_exit(CPUArchState *env1);
int page_unprotect(target_ulong address, uintptr_t pc, void *puc);
void tb_invalidate_phys_page_range(tb_page_addr_t start, tb_page_addr_t end,
int is_cpu_write_access);
void tb_invalidate_phys_range(tb_page_addr_t start, tb_page_addr_t end,
int is_cpu_write_access);
#if !defined(CONFIG_USER_ONLY)
/* cputlb.c */
void tlb_flush_page(CPUArchState *env, target_ulong addr);
void tlb_flush(CPUArchState *env, int flush_global);
void tlb_set_page(CPUArchState *env, target_ulong vaddr,
target_phys_addr_t paddr, int prot,
int mmu_idx, target_ulong size);
void tb_invalidate_phys_addr(target_phys_addr_t addr);
#else
static inline void tlb_flush_page(CPUArchState *env, target_ulong addr)
{
}
static inline void tlb_flush(CPUArchState *env, int flush_global)
{
}
#endif
#define CODE_GEN_ALIGN 16 /* must be >= of the size of a icache line */
#define CODE_GEN_PHYS_HASH_BITS 15
#define CODE_GEN_PHYS_HASH_SIZE (1 << CODE_GEN_PHYS_HASH_BITS)
#define MIN_CODE_GEN_BUFFER_SIZE (1024 * 1024)
/* estimated block size for TB allocation */
/* XXX: use a per code average code fragment size and modulate it
according to the host CPU */
#if defined(CONFIG_SOFTMMU)
#define CODE_GEN_AVG_BLOCK_SIZE 128
#else
#define CODE_GEN_AVG_BLOCK_SIZE 64
#endif
#if defined(_ARCH_PPC) || defined(__x86_64__) || defined(__arm__) || defined(__i386__)
#define USE_DIRECT_JUMP
#elif defined(CONFIG_TCG_INTERPRETER)
#define USE_DIRECT_JUMP
#endif
struct TranslationBlock {
target_ulong pc; /* simulated PC corresponding to this block (EIP + CS base) */
target_ulong cs_base; /* CS base for this block */
uint64_t flags; /* flags defining in which context the code was generated */
uint16_t size; /* size of target code for this block (1 <=
size <= TARGET_PAGE_SIZE) */
uint16_t cflags; /* compile flags */
#define CF_COUNT_MASK 0x7fff
#define CF_LAST_IO 0x8000 /* Last insn may be an IO access. */
uint8_t *tc_ptr; /* pointer to the translated code */
/* next matching tb for physical address. */
struct TranslationBlock *phys_hash_next;
/* first and second physical page containing code. The lower bit
of the pointer tells the index in page_next[] */
struct TranslationBlock *page_next[2];
tb_page_addr_t page_addr[2];
/* the following data are used to directly call another TB from
the code of this one. */
uint16_t tb_next_offset[2]; /* offset of original jump target */
#ifdef USE_DIRECT_JUMP
uint16_t tb_jmp_offset[2]; /* offset of jump instruction */
#else
uintptr_t tb_next[2]; /* address of jump generated code */
#endif
/* list of TBs jumping to this one. This is a circular list using
the two least significant bits of the pointers to tell what is
the next pointer: 0 = jmp_next[0], 1 = jmp_next[1], 2 =
jmp_first */
struct TranslationBlock *jmp_next[2];
struct TranslationBlock *jmp_first;
uint32_t icount;
};
static inline unsigned int tb_jmp_cache_hash_page(target_ulong pc)
{
target_ulong tmp;
tmp = pc ^ (pc >> (TARGET_PAGE_BITS - TB_JMP_PAGE_BITS));
return (tmp >> (TARGET_PAGE_BITS - TB_JMP_PAGE_BITS)) & TB_JMP_PAGE_MASK;
}
static inline unsigned int tb_jmp_cache_hash_func(target_ulong pc)
{
target_ulong tmp;
tmp = pc ^ (pc >> (TARGET_PAGE_BITS - TB_JMP_PAGE_BITS));
return (((tmp >> (TARGET_PAGE_BITS - TB_JMP_PAGE_BITS)) & TB_JMP_PAGE_MASK)
| (tmp & TB_JMP_ADDR_MASK));
}
static inline unsigned int tb_phys_hash_func(tb_page_addr_t pc)
{
return (pc >> 2) & (CODE_GEN_PHYS_HASH_SIZE - 1);
}
void tb_free(TranslationBlock *tb);
void tb_flush(CPUArchState *env);
void tb_link_page(TranslationBlock *tb,
tb_page_addr_t phys_pc, tb_page_addr_t phys_page2);
void tb_phys_invalidate(TranslationBlock *tb, tb_page_addr_t page_addr);
extern TranslationBlock *tb_phys_hash[CODE_GEN_PHYS_HASH_SIZE];
#if defined(USE_DIRECT_JUMP)
#if defined(CONFIG_TCG_INTERPRETER)
static inline void tb_set_jmp_target1(uintptr_t jmp_addr, uintptr_t addr)
{
/* patch the branch destination */
*(uint32_t *)jmp_addr = addr - (jmp_addr + 4);
/* no need to flush icache explicitly */
}
#elif defined(_ARCH_PPC)
void ppc_tb_set_jmp_target(unsigned long jmp_addr, unsigned long addr);
#define tb_set_jmp_target1 ppc_tb_set_jmp_target
#elif defined(__i386__) || defined(__x86_64__)
static inline void tb_set_jmp_target1(uintptr_t jmp_addr, uintptr_t addr)
{
/* patch the branch destination */
*(uint32_t *)jmp_addr = addr - (jmp_addr + 4);
/* no need to flush icache explicitly */
}
#elif defined(__arm__)
static inline void tb_set_jmp_target1(uintptr_t jmp_addr, uintptr_t addr)
{
#if !QEMU_GNUC_PREREQ(4, 1)
register unsigned long _beg __asm ("a1");
register unsigned long _end __asm ("a2");
register unsigned long _flg __asm ("a3");
#endif
/* we could use a ldr pc, [pc, #-4] kind of branch and avoid the flush */
*(uint32_t *)jmp_addr =
(*(uint32_t *)jmp_addr & ~0xffffff)
| (((addr - (jmp_addr + 8)) >> 2) & 0xffffff);
#if QEMU_GNUC_PREREQ(4, 1)
__builtin___clear_cache((char *) jmp_addr, (char *) jmp_addr + 4);
#else
/* flush icache */
_beg = jmp_addr;
_end = jmp_addr + 4;
_flg = 0;
__asm __volatile__ ("swi 0x9f0002" : : "r" (_beg), "r" (_end), "r" (_flg));
#endif
}
#else
#error tb_set_jmp_target1 is missing
#endif
static inline void tb_set_jmp_target(TranslationBlock *tb,
int n, uintptr_t addr)
{
uint16_t offset = tb->tb_jmp_offset[n];
tb_set_jmp_target1((uintptr_t)(tb->tc_ptr + offset), addr);
}
#else
/* set the jump target */
static inline void tb_set_jmp_target(TranslationBlock *tb,
int n, uintptr_t addr)
{
tb->tb_next[n] = addr;
}
#endif
static inline void tb_add_jump(TranslationBlock *tb, int n,
TranslationBlock *tb_next)
{
/* NOTE: this test is only needed for thread safety */
if (!tb->jmp_next[n]) {
/* patch the native jump address */
tb_set_jmp_target(tb, n, (uintptr_t)tb_next->tc_ptr);
/* add in TB jmp circular list */
tb->jmp_next[n] = tb_next->jmp_first;
tb_next->jmp_first = (TranslationBlock *)((uintptr_t)(tb) | (n));
}
}
TranslationBlock *tb_find_pc(uintptr_t pc_ptr);
#include "qemu-lock.h"
extern spinlock_t tb_lock;
extern int tb_invalidated_flag;
/* The return address may point to the start of the next instruction.
Subtracting one gets us the call instruction itself. */
#if defined(CONFIG_TCG_INTERPRETER)
/* Alpha and SH4 user mode emulations and Softmmu call GETPC().
For all others, GETPC remains undefined (which makes TCI a little faster. */
# if defined(CONFIG_SOFTMMU) || defined(TARGET_ALPHA) || defined(TARGET_SH4)
extern uintptr_t tci_tb_ptr;
# define GETPC() tci_tb_ptr
# endif
#elif defined(__s390__) && !defined(__s390x__)
# define GETPC() \
(((uintptr_t)__builtin_return_address(0) & 0x7fffffffUL) - 1)
#elif defined(__arm__)
/* Thumb return addresses have the low bit set, so we need to subtract two.
This is still safe in ARM mode because instructions are 4 bytes. */
# define GETPC() ((uintptr_t)__builtin_return_address(0) - 2)
#else
# define GETPC() ((uintptr_t)__builtin_return_address(0) - 1)
#endif
#if !defined(CONFIG_USER_ONLY)
struct MemoryRegion *iotlb_to_region(target_phys_addr_t index);
uint64_t io_mem_read(struct MemoryRegion *mr, target_phys_addr_t addr,
unsigned size);
void io_mem_write(struct MemoryRegion *mr, target_phys_addr_t addr,
uint64_t value, unsigned size);
void tlb_fill(CPUArchState *env1, target_ulong addr, int is_write, int mmu_idx,
uintptr_t retaddr);
#include "softmmu_defs.h"
#define ACCESS_TYPE (NB_MMU_MODES + 1)
#define MEMSUFFIX _code
#ifndef CONFIG_TCG_PASS_AREG0
#define env cpu_single_env
#endif
#define DATA_SIZE 1
#include "softmmu_header.h"
#define DATA_SIZE 2
#include "softmmu_header.h"
#define DATA_SIZE 4
#include "softmmu_header.h"
#define DATA_SIZE 8
#include "softmmu_header.h"
#undef ACCESS_TYPE
#undef MEMSUFFIX
#undef env
#endif
#if defined(CONFIG_USER_ONLY)
static inline tb_page_addr_t get_page_addr_code(CPUArchState *env1, target_ulong addr)
{
return addr;
}
#else
/* cputlb.c */
tb_page_addr_t get_page_addr_code(CPUArchState *env1, target_ulong addr);
#endif
typedef void (CPUDebugExcpHandler)(CPUArchState *env);
void cpu_set_debug_excp_handler(CPUDebugExcpHandler *handler);
/* vl.c */
extern int singlestep;
/* cpu-exec.c */
extern volatile sig_atomic_t exit_request;
/* Deterministic execution requires that IO only be performed on the last
instruction of a TB so that interrupts take effect immediately. */
static inline int can_do_io(CPUArchState *env)
{
if (!use_icount) {
return 1;
}
/* If not executing code then assume we are ok. */
if (!env->current_tb) {
return 1;
}
return env->can_do_io != 0;
}
#endif