/*
* Arm SSE (Subsystems for Embedded): IoTKit
*
* Copyright (c) 2018 Linaro Limited
* Written by Peter Maydell
*
* This program is free software; you can redistribute it and/or modify
* it under the terms of the GNU General Public License version 2 or
* (at your option) any later version.
*/
#include "qemu/osdep.h"
#include "qemu/log.h"
#include "qapi/error.h"
#include "trace.h"
#include "hw/sysbus.h"
#include "hw/registerfields.h"
#include "hw/arm/armsse.h"
#include "hw/arm/arm.h"
/* Format of the System Information block SYS_CONFIG register */
typedef enum SysConfigFormat {
IoTKitFormat,
SSE200Format,
} SysConfigFormat;
struct ARMSSEInfo {
const char *name;
int sram_banks;
int num_cpus;
uint32_t sys_version;
SysConfigFormat sys_config_format;
bool has_mhus;
bool has_ppus;
bool has_cachectrl;
bool has_cpusecctrl;
bool has_cpuid;
};
static const ARMSSEInfo armsse_variants[] = {
{
.name = TYPE_IOTKIT,
.sram_banks = 1,
.num_cpus = 1,
.sys_version = 0x41743,
.sys_config_format = IoTKitFormat,
.has_mhus = false,
.has_ppus = false,
.has_cachectrl = false,
.has_cpusecctrl = false,
.has_cpuid = false,
},
{
.name = TYPE_SSE200,
.sram_banks = 4,
.num_cpus = 2,
.sys_version = 0x22041743,
.sys_config_format = SSE200Format,
.has_mhus = true,
.has_ppus = true,
.has_cachectrl = true,
.has_cpusecctrl = true,
.has_cpuid = true,
},
};
static uint32_t armsse_sys_config_value(ARMSSE *s, const ARMSSEInfo *info)
{
/* Return the SYS_CONFIG value for this SSE */
uint32_t sys_config;
switch (info->sys_config_format) {
case IoTKitFormat:
sys_config = 0;
sys_config = deposit32(sys_config, 0, 4, info->sram_banks);
sys_config = deposit32(sys_config, 4, 4, s->sram_addr_width - 12);
break;
case SSE200Format:
sys_config = 0;
sys_config = deposit32(sys_config, 0, 4, info->sram_banks);
sys_config = deposit32(sys_config, 4, 5, s->sram_addr_width);
sys_config = deposit32(sys_config, 24, 4, 2);
if (info->num_cpus > 1) {
sys_config = deposit32(sys_config, 10, 1, 1);
sys_config = deposit32(sys_config, 20, 4, info->sram_banks - 1);
sys_config = deposit32(sys_config, 28, 4, 2);
}
break;
default:
g_assert_not_reached();
}
return sys_config;
}
/* Clock frequency in HZ of the 32KHz "slow clock" */
#define S32KCLK (32 * 1000)
/* Is internal IRQ n shared between CPUs in a multi-core SSE ? */
static bool irq_is_common[32] = {
[0 ... 5] = true,
/* 6, 7: per-CPU MHU interrupts */
[8 ... 12] = true,
/* 13: per-CPU icache interrupt */
/* 14: reserved */
[15 ... 20] = true,
/* 21: reserved */
[22 ... 26] = true,
/* 27: reserved */
/* 28, 29: per-CPU CTI interrupts */
/* 30, 31: reserved */
};
/* Create an alias region of @size bytes starting at @base
* which mirrors the memory starting at @orig.
*/
static void make_alias(ARMSSE *s, MemoryRegion *mr, const char *name,
hwaddr base, hwaddr size, hwaddr orig)
{
memory_region_init_alias(mr, NULL, name, &s->container, orig, size);
/* The alias is even lower priority than unimplemented_device regions */
memory_region_add_subregion_overlap(&s->container, base, mr, -1500);
}
static void irq_status_forwarder(void *opaque, int n, int level)
{
qemu_irq destirq = opaque;
qemu_set_irq(destirq, level);
}
static void nsccfg_handler(void *opaque, int n, int level)
{
ARMSSE *s = ARMSSE(opaque);
s->nsccfg = level;
}
static void armsse_forward_ppc(ARMSSE *s, const char *ppcname, int ppcnum)
{
/* Each of the 4 AHB and 4 APB PPCs that might be present in a
* system using the ARMSSE has a collection of control lines which
* are provided by the security controller and which we want to
* expose as control lines on the ARMSSE device itself, so the
* code using the ARMSSE can wire them up to the PPCs.
*/
SplitIRQ *splitter = &s->ppc_irq_splitter[ppcnum];
DeviceState *armssedev = DEVICE(s);
DeviceState *dev_secctl = DEVICE(&s->secctl);
DeviceState *dev_splitter = DEVICE(splitter);
char *name;
name = g_strdup_printf("%s_nonsec", ppcname);
qdev_pass_gpios(dev_secctl, armssedev, name);
g_free(name);
name = g_strdup_printf("%s_ap", ppcname);
qdev_pass_gpios(dev_secctl, armssedev, name);
g_free(name);
name = g_strdup_printf("%s_irq_enable", ppcname);
qdev_pass_gpios(dev_secctl, armssedev, name);
g_free(name);
name = g_strdup_printf("%s_irq_clear", ppcname);
qdev_pass_gpios(dev_secctl, armssedev, name);
g_free(name);
/* irq_status is a little more tricky, because we need to
* split it so we can send it both to the security controller
* and to our OR gate for the NVIC interrupt line.
* Connect up the splitter's outputs, and create a GPIO input
* which will pass the line state to the input splitter.
*/
name = g_strdup_printf("%s_irq_status", ppcname);
qdev_connect_gpio_out(dev_splitter, 0,
qdev_get_gpio_in_named(dev_secctl,
name, 0));
qdev_connect_gpio_out(dev_splitter, 1,
qdev_get_gpio_in(DEVICE(&s->ppc_irq_orgate), ppcnum));
s->irq_status_in[ppcnum] = qdev_get_gpio_in(dev_splitter, 0);
qdev_init_gpio_in_named_with_opaque(armssedev, irq_status_forwarder,
s->irq_status_in[ppcnum], name, 1);
g_free(name);
}
static void armsse_forward_sec_resp_cfg(ARMSSE *s)
{
/* Forward the 3rd output from the splitter device as a
* named GPIO output of the armsse object.
*/
DeviceState *dev = DEVICE(s);
DeviceState *dev_splitter = DEVICE(&s->sec_resp_splitter);
qdev_init_gpio_out_named(dev, &s->sec_resp_cfg, "sec_resp_cfg", 1);
s->sec_resp_cfg_in = qemu_allocate_irq(irq_status_forwarder,
s->sec_resp_cfg, 1);
qdev_connect_gpio_out(dev_splitter, 2, s->sec_resp_cfg_in);
}
static void armsse_init(Object *obj)
{
ARMSSE *s = ARMSSE(obj);
ARMSSEClass *asc = ARMSSE_GET_CLASS(obj);
const ARMSSEInfo *info = asc->info;
int i;
assert(info->sram_banks <= MAX_SRAM_BANKS);
assert(info->num_cpus <= SSE_MAX_CPUS);
memory_region_init(&s->container, obj, "armsse-container", UINT64_MAX);
for (i = 0; i < info->num_cpus; i++) {
/*
* We put each CPU in its own cluster as they are logically
* distinct and may be configured differently.
*/
char *name;
name = g_strdup_printf("cluster%d", i);
object_initialize_child(obj, name, &s->cluster[i],
sizeof(s->cluster[i]), TYPE_CPU_CLUSTER,
&error_abort, NULL);
qdev_prop_set_uint32(DEVICE(&s->cluster[i]), "cluster-id", i);
g_free(name);
name = g_strdup_printf("armv7m%d", i);
sysbus_init_child_obj(OBJECT(&s->cluster[i]), name,
&s->armv7m[i], sizeof(s->armv7m), TYPE_ARMV7M);
qdev_prop_set_string(DEVICE(&s->armv7m[i]), "cpu-type",
ARM_CPU_TYPE_NAME("cortex-m33"));
g_free(name);
name = g_strdup_printf("arm-sse-cpu-container%d", i);
memory_region_init(&s->cpu_container[i], obj, name, UINT64_MAX);
g_free(name);
if (i > 0) {
name = g_strdup_printf("arm-sse-container-alias%d", i);
memory_region_init_alias(&s->container_alias[i - 1], obj,
name, &s->container, 0, UINT64_MAX);
g_free(name);
}
}
sysbus_init_child_obj(obj, "secctl", &s->secctl, sizeof(s->secctl),
TYPE_IOTKIT_SECCTL);
sysbus_init_child_obj(obj, "apb-ppc0", &s->apb_ppc0, sizeof(s->apb_ppc0),
TYPE_TZ_PPC);
sysbus_init_child_obj(obj, "apb-ppc1", &s->apb_ppc1, sizeof(s->apb_ppc1),
TYPE_TZ_PPC);
for (i = 0; i < info->sram_banks; i++) {
char *name = g_strdup_printf("mpc%d", i);
sysbus_init_child_obj(obj, name, &s->mpc[i],
sizeof(s->mpc[i]), TYPE_TZ_MPC);
g_free(name);
}
object_initialize_child(obj, "mpc-irq-orgate", &s->mpc_irq_orgate,
sizeof(s->mpc_irq_orgate), TYPE_OR_IRQ,
&error_abort, NULL);
for (i = 0; i < IOTS_NUM_EXP_MPC + info->sram_banks; i++) {
char *name = g_strdup_printf("mpc-irq-splitter-%d", i);
SplitIRQ *splitter = &s->mpc_irq_splitter[i];
object_initialize_child(obj, name, splitter, sizeof(*splitter),
TYPE_SPLIT_IRQ, &error_abort, NULL);
g_free(name);
}
sysbus_init_child_obj(obj, "timer0", &s->timer0, sizeof(s->timer0),
TYPE_CMSDK_APB_TIMER);
sysbus_init_child_obj(obj, "timer1", &s->timer1, sizeof(s->timer1),
TYPE_CMSDK_APB_TIMER);
sysbus_init_child_obj(obj, "s32ktimer", &s->s32ktimer, sizeof(s->s32ktimer),
TYPE_CMSDK_APB_TIMER);
sysbus_init_child_obj(obj, "dualtimer", &s->dualtimer, sizeof(s->dualtimer),
TYPE_CMSDK_APB_DUALTIMER);
sysbus_init_child_obj(obj, "s32kwatchdog", &s->s32kwatchdog,
sizeof(s->s32kwatchdog), TYPE_CMSDK_APB_WATCHDOG);
sysbus_init_child_obj(obj, "nswatchdog", &s->nswatchdog,
sizeof(s->nswatchdog), TYPE_CMSDK_APB_WATCHDOG);
sysbus_init_child_obj(obj, "swatchdog", &s->swatchdog,
sizeof(s->swatchdog), TYPE_CMSDK_APB_WATCHDOG);
sysbus_init_child_obj(obj, "armsse-sysctl", &s->sysctl,
sizeof(s->sysctl), TYPE_IOTKIT_SYSCTL);
sysbus_init_child_obj(obj, "armsse-sysinfo", &s->sysinfo,
sizeof(s->sysinfo), TYPE_IOTKIT_SYSINFO);
if (info->has_mhus) {
sysbus_init_child_obj(obj, "mhu0", &s->mhu[0], sizeof(s->mhu[0]),
TYPE_UNIMPLEMENTED_DEVICE);
sysbus_init_child_obj(obj, "mhu1", &s->mhu[1], sizeof(s->mhu[1]),
TYPE_UNIMPLEMENTED_DEVICE);
}
if (info->has_ppus) {
for (i = 0; i < info->num_cpus; i++) {
char *name = g_strdup_printf("CPU%dCORE_PPU", i);
int ppuidx = CPU0CORE_PPU + i;
sysbus_init_child_obj(obj, name, &s->ppu[ppuidx],
sizeof(s->ppu[ppuidx]),
TYPE_UNIMPLEMENTED_DEVICE);
g_free(name);
}
sysbus_init_child_obj(obj, "DBG_PPU", &s->ppu[DBG_PPU],
sizeof(s->ppu[DBG_PPU]),
TYPE_UNIMPLEMENTED_DEVICE);
for (i = 0; i < info->sram_banks; i++) {
char *name = g_strdup_printf("RAM%d_PPU", i);
int ppuidx = RAM0_PPU + i;
sysbus_init_child_obj(obj, name, &s->ppu[ppuidx],
sizeof(s->ppu[ppuidx]),
TYPE_UNIMPLEMENTED_DEVICE);
g_free(name);
}
}
if (info->has_cachectrl) {
for (i = 0; i < info->num_cpus; i++) {
char *name = g_strdup_printf("cachectrl%d", i);
sysbus_init_child_obj(obj, name, &s->cachectrl[i],
sizeof(s->cachectrl[i]),
TYPE_UNIMPLEMENTED_DEVICE);
g_free(name);
}
}
if (info->has_cpusecctrl) {
for (i = 0; i < info->num_cpus; i++) {
char *name = g_strdup_printf("cpusecctrl%d", i);
sysbus_init_child_obj(obj, name, &s->cpusecctrl[i],
sizeof(s->cpusecctrl[i]),
TYPE_UNIMPLEMENTED_DEVICE);
g_free(name);
}
}
if (info->has_cpuid) {
for (i = 0; i < info->num_cpus; i++) {
char *name = g_strdup_printf("cpuid%d", i);
sysbus_init_child_obj(obj, name, &s->cpuid[i],
sizeof(s->cpuid[i]),
TYPE_ARMSSE_CPUID);
g_free(name);
}
}
object_initialize_child(obj, "nmi-orgate", &s->nmi_orgate,
sizeof(s->nmi_orgate), TYPE_OR_IRQ,
&error_abort, NULL);
object_initialize_child(obj, "ppc-irq-orgate", &s->ppc_irq_orgate,
sizeof(s->ppc_irq_orgate), TYPE_OR_IRQ,
&error_abort, NULL);
object_initialize_child(obj, "sec-resp-splitter", &s->sec_resp_splitter,
sizeof(s->sec_resp_splitter), TYPE_SPLIT_IRQ,
&error_abort, NULL);
for (i = 0; i < ARRAY_SIZE(s->ppc_irq_splitter); i++) {
char *name = g_strdup_printf("ppc-irq-splitter-%d", i);
SplitIRQ *splitter = &s->ppc_irq_splitter[i];
object_initialize_child(obj, name, splitter, sizeof(*splitter),
TYPE_SPLIT_IRQ, &error_abort, NULL);
g_free(name);
}
if (info->num_cpus > 1) {
for (i = 0; i < ARRAY_SIZE(s->cpu_irq_splitter); i++) {
if (irq_is_common[i]) {
char *name = g_strdup_printf("cpu-irq-splitter%d", i);
SplitIRQ *splitter = &s->cpu_irq_splitter[i];
object_initialize_child(obj, name, splitter, sizeof(*splitter),
TYPE_SPLIT_IRQ, &error_abort, NULL);
g_free(name);
}
}
}
}
static void armsse_exp_irq(void *opaque, int n, int level)
{
qemu_irq *irqarray = opaque;
qemu_set_irq(irqarray[n], level);
}
static void armsse_mpcexp_status(void *opaque, int n, int level)
{
ARMSSE *s = ARMSSE(opaque);
qemu_set_irq(s->mpcexp_status_in[n], level);
}
static qemu_irq armsse_get_common_irq_in(ARMSSE *s, int irqno)
{
/*
* Return a qemu_irq which can be used to signal IRQ n to
* all CPUs in the SSE.
*/
ARMSSEClass *asc = ARMSSE_GET_CLASS(s);
const ARMSSEInfo *info = asc->info;
assert(irq_is_common[irqno]);
if (info->num_cpus == 1) {
/* Only one CPU -- just connect directly to it */
return qdev_get_gpio_in(DEVICE(&s->armv7m[0]), irqno);
} else {
/* Connect to the splitter which feeds all CPUs */
return qdev_get_gpio_in(DEVICE(&s->cpu_irq_splitter[irqno]), 0);
}
}
static void map_ppu(ARMSSE *s, int ppuidx, const char *name, hwaddr addr)
{
/* Map a PPU unimplemented device stub */
DeviceState *dev = DEVICE(&s->ppu[ppuidx]);
qdev_prop_set_string(dev, "name", name);
qdev_prop_set_uint64(dev, "size", 0x1000);
qdev_init_nofail(dev);
sysbus_mmio_map(SYS_BUS_DEVICE(&s->ppu[ppuidx]), 0, addr);
}
static void armsse_realize(DeviceState *dev, Error **errp)
{
ARMSSE *s = ARMSSE(dev);
ARMSSEClass *asc = ARMSSE_GET_CLASS(dev);
const ARMSSEInfo *info = asc->info;
int i;
MemoryRegion *mr;
Error *err = NULL;
SysBusDevice *sbd_apb_ppc0;
SysBusDevice *sbd_secctl;
DeviceState *dev_apb_ppc0;
DeviceState *dev_apb_ppc1;
DeviceState *dev_secctl;
DeviceState *dev_splitter;
uint32_t addr_width_max;
if (!s->board_memory) {
error_setg(errp, "memory property was not set");
return;
}
if (!s->mainclk_frq) {
error_setg(errp, "MAINCLK property was not set");
return;
}
/* max SRAM_ADDR_WIDTH: 24 - log2(SRAM_NUM_BANK) */
assert(is_power_of_2(info->sram_banks));
addr_width_max = 24 - ctz32(info->sram_banks);
if (s->sram_addr_width < 1 || s->sram_addr_width > addr_width_max) {
error_setg(errp, "SRAM_ADDR_WIDTH must be between 1 and %d",
addr_width_max);
return;
}
/* Handling of which devices should be available only to secure
* code is usually done differently for M profile than for A profile.
* Instead of putting some devices only into the secure address space,
* devices exist in both address spaces but with hard-wired security
* permissions that will cause the CPU to fault for non-secure accesses.
*
* The ARMSSE has an IDAU (Implementation Defined Access Unit),
* which specifies hard-wired security permissions for different
* areas of the physical address space. For the ARMSSE IDAU, the
* top 4 bits of the physical address are the IDAU region ID, and
* if bit 28 (ie the lowest bit of the ID) is 0 then this is an NS
* region, otherwise it is an S region.
*
* The various devices and RAMs are generally all mapped twice,
* once into a region that the IDAU defines as secure and once
* into a non-secure region. They sit behind either a Memory
* Protection Controller (for RAM) or a Peripheral Protection
* Controller (for devices), which allow a more fine grained
* configuration of whether non-secure accesses are permitted.
*
* (The other place that guest software can configure security
* permissions is in the architected SAU (Security Attribution
* Unit), which is entirely inside the CPU. The IDAU can upgrade
* the security attributes for a region to more restrictive than
* the SAU specifies, but cannot downgrade them.)
*
* 0x10000000..0x1fffffff alias of 0x00000000..0x0fffffff
* 0x20000000..0x2007ffff 32KB FPGA block RAM
* 0x30000000..0x3fffffff alias of 0x20000000..0x2fffffff
* 0x40000000..0x4000ffff base peripheral region 1
* 0x40010000..0x4001ffff CPU peripherals (none for ARMSSE)
* 0x40020000..0x4002ffff system control element peripherals
* 0x40080000..0x400fffff base peripheral region 2
* 0x50000000..0x5fffffff alias of 0x40000000..0x4fffffff
*/
memory_region_add_subregion_overlap(&s->container, 0, s->board_memory, -2);
for (i = 0; i < info->num_cpus; i++) {
DeviceState *cpudev = DEVICE(&s->armv7m[i]);
Object *cpuobj = OBJECT(&s->armv7m[i]);
int j;
char *gpioname;
qdev_prop_set_uint32(cpudev, "num-irq", s->exp_numirq + 32);
/*
* In real hardware the initial Secure VTOR is set from the INITSVTOR0
* register in the IoT Kit System Control Register block, and the
* initial value of that is in turn specifiable by the FPGA that
* instantiates the IoT Kit. In QEMU we don't implement this wrinkle,
* and simply set the CPU's init-svtor to the IoT Kit default value.
* In SSE-200 the situation is similar, except that the default value
* is a reset-time signal input. Typically a board using the SSE-200
* will have a system control processor whose boot firmware initializes
* the INITSVTOR* registers before powering up the CPUs in any case,
* so the hardware's default value doesn't matter. QEMU doesn't emulate
* the control processor, so instead we behave in the way that the
* firmware does. All boards currently known about have firmware that
* sets the INITSVTOR0 and INITSVTOR1 registers to 0x10000000, like the
* IoTKit default. We can make this more configurable if necessary.
*/
qdev_prop_set_uint32(cpudev, "init-svtor", 0x10000000);
/*
* Start all CPUs except CPU0 powered down. In real hardware it is
* a configurable property of the SSE-200 which CPUs start powered up
* (via the CPUWAIT0_RST and CPUWAIT1_RST parameters), but since all
* the boards we care about start CPU0 and leave CPU1 powered off,
* we hard-code that for now. We can add QOM properties for this
* later if necessary.
*/
if (i > 0) {
object_property_set_bool(cpuobj, true, "start-powered-off", &err);
if (err) {
error_propagate(errp, err);
return;
}
}
if (i > 0) {
memory_region_add_subregion_overlap(&s->cpu_container[i], 0,
&s->container_alias[i - 1], -1);
} else {
memory_region_add_subregion_overlap(&s->cpu_container[i], 0,
&s->container, -1);
}
object_property_set_link(cpuobj, OBJECT(&s->cpu_container[i]),
"memory", &err);
if (err) {
error_propagate(errp, err);
return;
}
object_property_set_link(cpuobj, OBJECT(s), "idau", &err);
if (err) {
error_propagate(errp, err);
return;
}
object_property_set_bool(cpuobj, true, "realized", &err);
if (err) {
error_propagate(errp, err);
return;
}
/*
* The cluster must be realized after the armv7m container, as
* the container's CPU object is only created on realize, and the
* CPU must exist and have been parented into the cluster before
* the cluster is realized.
*/
object_property_set_bool(OBJECT(&s->cluster[i]),
true, "realized", &err);
if (err) {
error_propagate(errp, err);
return;
}
/* Connect EXP_IRQ/EXP_CPUn_IRQ GPIOs to the NVIC's lines 32 and up */
s->exp_irqs[i] = g_new(qemu_irq, s->exp_numirq);
for (j = 0; j < s->exp_numirq; j++) {
s->exp_irqs[i][j] = qdev_get_gpio_in(cpudev, i + 32);
}
if (i == 0) {
gpioname = g_strdup("EXP_IRQ");
} else {
gpioname = g_strdup_printf("EXP_CPU%d_IRQ", i);
}
qdev_init_gpio_in_named_with_opaque(dev, armsse_exp_irq,
s->exp_irqs[i],
gpioname, s->exp_numirq);
g_free(gpioname);
}
/* Wire up the splitters that connect common IRQs to all CPUs */
if (info->num_cpus > 1) {
for (i = 0; i < ARRAY_SIZE(s->cpu_irq_splitter); i++) {
if (irq_is_common[i]) {
Object *splitter = OBJECT(&s->cpu_irq_splitter[i]);
DeviceState *devs = DEVICE(splitter);
int cpunum;
object_property_set_int(splitter, info->num_cpus,
"num-lines", &err);
if (err) {
error_propagate(errp, err);
return;
}
object_property_set_bool(splitter, true, "realized", &err);
if (err) {
error_propagate(errp, err);
return;
}
for (cpunum = 0; cpunum < info->num_cpus; cpunum++) {
DeviceState *cpudev = DEVICE(&s->armv7m[cpunum]);
qdev_connect_gpio_out(devs, cpunum,
qdev_get_gpio_in(cpudev, i));
}
}
}
}
/* Set up the big aliases first */
make_alias(s, &s->alias1, "alias 1", 0x10000000, 0x10000000, 0x00000000);
make_alias(s, &s->alias2, "alias 2", 0x30000000, 0x10000000, 0x20000000);
/* The 0x50000000..0x5fffffff region is not a pure alias: it has
* a few extra devices that only appear there (generally the
* control interfaces for the protection controllers).
* We implement this by mapping those devices over the top of this
* alias MR at a higher priority.
*/
make_alias(s, &s->alias3, "alias 3", 0x50000000, 0x10000000, 0x40000000);
/* Security controller */
object_property_set_bool(OBJECT(&s->secctl), true, "realized", &err);
if (err) {
error_propagate(errp, err);
return;
}
sbd_secctl = SYS_BUS_DEVICE(&s->secctl);
dev_secctl = DEVICE(&s->secctl);
sysbus_mmio_map(sbd_secctl, 0, 0x50080000);
sysbus_mmio_map(sbd_secctl, 1, 0x40080000);
s->nsc_cfg_in = qemu_allocate_irq(nsccfg_handler, s, 1);
qdev_connect_gpio_out_named(dev_secctl, "nsc_cfg", 0, s->nsc_cfg_in);
/* The sec_resp_cfg output from the security controller must be split into
* multiple lines, one for each of the PPCs within the ARMSSE and one
* that will be an output from the ARMSSE to the system.
*/
object_property_set_int(OBJECT(&s->sec_resp_splitter), 3,
"num-lines", &err);
if (err) {
error_propagate(errp, err);
return;
}
object_property_set_bool(OBJECT(&s->sec_resp_splitter), true,
"realized", &err);
if (err) {
error_propagate(errp, err);
return;
}
dev_splitter = DEVICE(&s->sec_resp_splitter);
qdev_connect_gpio_out_named(dev_secctl, "sec_resp_cfg", 0,
qdev_get_gpio_in(dev_splitter, 0));
/* Each SRAM bank lives behind its own Memory Protection Controller */
for (i = 0; i < info->sram_banks; i++) {
char *ramname = g_strdup_printf("armsse.sram%d", i);
SysBusDevice *sbd_mpc;
uint32_t sram_bank_size = 1 << s->sram_addr_width;
memory_region_init_ram(&s->sram[i], NULL, ramname,
sram_bank_size, &err);
g_free(ramname);
if (err) {
error_propagate(errp, err);
return;
}
object_property_set_link(OBJECT(&s->mpc[i]), OBJECT(&s->sram[i]),
"downstream", &err);
if (err) {
error_propagate(errp, err);
return;
}
object_property_set_bool(OBJECT(&s->mpc[i]), true, "realized", &err);
if (err) {
error_propagate(errp, err);
return;
}
/* Map the upstream end of the MPC into the right place... */
sbd_mpc = SYS_BUS_DEVICE(&s->mpc[i]);
memory_region_add_subregion(&s->container,
0x20000000 + i * sram_bank_size,
sysbus_mmio_get_region(sbd_mpc, 1));
/* ...and its register interface */
memory_region_add_subregion(&s->container, 0x50083000 + i * 0x1000,
sysbus_mmio_get_region(sbd_mpc, 0));
}
/* We must OR together lines from the MPC splitters to go to the NVIC */
object_property_set_int(OBJECT(&s->mpc_irq_orgate),
IOTS_NUM_EXP_MPC + info->sram_banks,
"num-lines", &err);
if (err) {
error_propagate(errp, err);
return;
}
object_property_set_bool(OBJECT(&s->mpc_irq_orgate), true,
"realized", &err);
if (err) {
error_propagate(errp, err);
return;
}
qdev_connect_gpio_out(DEVICE(&s->mpc_irq_orgate), 0,
armsse_get_common_irq_in(s, 9));
/* Devices behind APB PPC0:
* 0x40000000: timer0
* 0x40001000: timer1
* 0x40002000: dual timer
* 0x40003000: MHU0 (SSE-200 only)
* 0x40004000: MHU1 (SSE-200 only)
* We must configure and realize each downstream device and connect
* it to the appropriate PPC port; then we can realize the PPC and
* map its upstream ends to the right place in the container.
*/
qdev_prop_set_uint32(DEVICE(&s->timer0), "pclk-frq", s->mainclk_frq);
object_property_set_bool(OBJECT(&s->timer0), true, "realized", &err);
if (err) {
error_propagate(errp, err);
return;
}
sysbus_connect_irq(SYS_BUS_DEVICE(&s->timer0), 0,
armsse_get_common_irq_in(s, 3));
mr = sysbus_mmio_get_region(SYS_BUS_DEVICE(&s->timer0), 0);
object_property_set_link(OBJECT(&s->apb_ppc0), OBJECT(mr), "port[0]", &err);
if (err) {
error_propagate(errp, err);
return;
}
qdev_prop_set_uint32(DEVICE(&s->timer1), "pclk-frq", s->mainclk_frq);
object_property_set_bool(OBJECT(&s->timer1), true, "realized", &err);
if (err) {
error_propagate(errp, err);
return;
}
sysbus_connect_irq(SYS_BUS_DEVICE(&s->timer1), 0,
armsse_get_common_irq_in(s, 4));
mr = sysbus_mmio_get_region(SYS_BUS_DEVICE(&s->timer1), 0);
object_property_set_link(OBJECT(&s->apb_ppc0), OBJECT(mr), "port[1]", &err);
if (err) {
error_propagate(errp, err);
return;
}
qdev_prop_set_uint32(DEVICE(&s->dualtimer), "pclk-frq", s->mainclk_frq);
object_property_set_bool(OBJECT(&s->dualtimer), true, "realized", &err);
if (err) {
error_propagate(errp, err);
return;
}
sysbus_connect_irq(SYS_BUS_DEVICE(&s->dualtimer), 0,
armsse_get_common_irq_in(s, 5));
mr = sysbus_mmio_get_region(SYS_BUS_DEVICE(&s->dualtimer), 0);
object_property_set_link(OBJECT(&s->apb_ppc0), OBJECT(mr), "port[2]", &err);
if (err) {
error_propagate(errp, err);
return;
}
if (info->has_mhus) {
for (i = 0; i < ARRAY_SIZE(s->mhu); i++) {
char *name = g_strdup_printf("MHU%d", i);
char *port = g_strdup_printf("port[%d]", i + 3);
qdev_prop_set_string(DEVICE(&s->mhu[i]), "name", name);
qdev_prop_set_uint64(DEVICE(&s->mhu[i]), "size", 0x1000);
object_property_set_bool(OBJECT(&s->mhu[i]), true,
"realized", &err);
if (err) {
error_propagate(errp, err);
return;
}
mr = sysbus_mmio_get_region(SYS_BUS_DEVICE(&s->mhu[i]), 0);
object_property_set_link(OBJECT(&s->apb_ppc0), OBJECT(mr),
port, &err);
if (err) {
error_propagate(errp, err);
return;
}
g_free(name);
g_free(port);
}
}
object_property_set_bool(OBJECT(&s->apb_ppc0), true, "realized", &err);
if (err) {
error_propagate(errp, err);
return;
}
sbd_apb_ppc0 = SYS_BUS_DEVICE(&s->apb_ppc0);
dev_apb_ppc0 = DEVICE(&s->apb_ppc0);
mr = sysbus_mmio_get_region(sbd_apb_ppc0, 0);
memory_region_add_subregion(&s->container, 0x40000000, mr);
mr = sysbus_mmio_get_region(sbd_apb_ppc0, 1);
memory_region_add_subregion(&s->container, 0x40001000, mr);
mr = sysbus_mmio_get_region(sbd_apb_ppc0, 2);
memory_region_add_subregion(&s->container, 0x40002000, mr);
if (info->has_mhus) {
mr = sysbus_mmio_get_region(sbd_apb_ppc0, 3);
memory_region_add_subregion(&s->container, 0x40003000, mr);
mr = sysbus_mmio_get_region(sbd_apb_ppc0, 4);
memory_region_add_subregion(&s->container, 0x40004000, mr);
}
for (i = 0; i < IOTS_APB_PPC0_NUM_PORTS; i++) {
qdev_connect_gpio_out_named(dev_secctl, "apb_ppc0_nonsec", i,
qdev_get_gpio_in_named(dev_apb_ppc0,
"cfg_nonsec", i));
qdev_connect_gpio_out_named(dev_secctl, "apb_ppc0_ap", i,
qdev_get_gpio_in_named(dev_apb_ppc0,
"cfg_ap", i));
}
qdev_connect_gpio_out_named(dev_secctl, "apb_ppc0_irq_enable", 0,
qdev_get_gpio_in_named(dev_apb_ppc0,
"irq_enable", 0));
qdev_connect_gpio_out_named(dev_secctl, "apb_ppc0_irq_clear", 0,
qdev_get_gpio_in_named(dev_apb_ppc0,
"irq_clear", 0));
qdev_connect_gpio_out(dev_splitter, 0,
qdev_get_gpio_in_named(dev_apb_ppc0,
"cfg_sec_resp", 0));
/* All the PPC irq lines (from the 2 internal PPCs and the 8 external
* ones) are sent individually to the security controller, and also
* ORed together to give a single combined PPC interrupt to the NVIC.
*/
object_property_set_int(OBJECT(&s->ppc_irq_orgate),
NUM_PPCS, "num-lines", &err);
if (err) {
error_propagate(errp, err);
return;
}
object_property_set_bool(OBJECT(&s->ppc_irq_orgate), true,
"realized", &err);
if (err) {
error_propagate(errp, err);
return;
}
qdev_connect_gpio_out(DEVICE(&s->ppc_irq_orgate), 0,
armsse_get_common_irq_in(s, 10));
/*
* 0x40010000 .. 0x4001ffff (and the 0x5001000... secure-only alias):
* private per-CPU region (all these devices are SSE-200 only):
* 0x50010000: L1 icache control registers
* 0x50011000: CPUSECCTRL (CPU local security control registers)
* 0x4001f000 and 0x5001f000: CPU_IDENTITY register block
*/
if (info->has_cachectrl) {
for (i = 0; i < info->num_cpus; i++) {
char *name = g_strdup_printf("cachectrl%d", i);
MemoryRegion *mr;
qdev_prop_set_string(DEVICE(&s->cachectrl[i]), "name", name);
g_free(name);
qdev_prop_set_uint64(DEVICE(&s->cachectrl[i]), "size", 0x1000);
object_property_set_bool(OBJECT(&s->cachectrl[i]), true,
"realized", &err);
if (err) {
error_propagate(errp, err);
return;
}
mr = sysbus_mmio_get_region(SYS_BUS_DEVICE(&s->cachectrl[i]), 0);
memory_region_add_subregion(&s->cpu_container[i], 0x50010000, mr);
}
}
if (info->has_cpusecctrl) {
for (i = 0; i < info->num_cpus; i++) {
char *name = g_strdup_printf("CPUSECCTRL%d", i);
MemoryRegion *mr;
qdev_prop_set_string(DEVICE(&s->cpusecctrl[i]), "name", name);
g_free(name);
qdev_prop_set_uint64(DEVICE(&s->cpusecctrl[i]), "size", 0x1000);
object_property_set_bool(OBJECT(&s->cpusecctrl[i]), true,
"realized", &err);
if (err) {
error_propagate(errp, err);
return;
}
mr = sysbus_mmio_get_region(SYS_BUS_DEVICE(&s->cpusecctrl[i]), 0);
memory_region_add_subregion(&s->cpu_container[i], 0x50011000, mr);
}
}
if (info->has_cpuid) {
for (i = 0; i < info->num_cpus; i++) {
MemoryRegion *mr;
qdev_prop_set_uint32(DEVICE(&s->cpuid[i]), "CPUID", i);
object_property_set_bool(OBJECT(&s->cpuid[i]), true,
"realized", &err);
if (err) {
error_propagate(errp, err);
return;
}
mr = sysbus_mmio_get_region(SYS_BUS_DEVICE(&s->cpuid[i]), 0);
memory_region_add_subregion(&s->cpu_container[i], 0x4001F000, mr);
}
}
/* 0x40020000 .. 0x4002ffff : ARMSSE system control peripheral region */
/* Devices behind APB PPC1:
* 0x4002f000: S32K timer
*/
qdev_prop_set_uint32(DEVICE(&s->s32ktimer), "pclk-frq", S32KCLK);
object_property_set_bool(OBJECT(&s->s32ktimer), true, "realized", &err);
if (err) {
error_propagate(errp, err);
return;
}
sysbus_connect_irq(SYS_BUS_DEVICE(&s->s32ktimer), 0,
armsse_get_common_irq_in(s, 2));
mr = sysbus_mmio_get_region(SYS_BUS_DEVICE(&s->s32ktimer), 0);
object_property_set_link(OBJECT(&s->apb_ppc1), OBJECT(mr), "port[0]", &err);
if (err) {
error_propagate(errp, err);
return;
}
object_property_set_bool(OBJECT(&s->apb_ppc1), true, "realized", &err);
if (err) {
error_propagate(errp, err);
return;
}
mr = sysbus_mmio_get_region(SYS_BUS_DEVICE(&s->apb_ppc1), 0);
memory_region_add_subregion(&s->container, 0x4002f000, mr);
dev_apb_ppc1 = DEVICE(&s->apb_ppc1);
qdev_connect_gpio_out_named(dev_secctl, "apb_ppc1_nonsec", 0,
qdev_get_gpio_in_named(dev_apb_ppc1,
"cfg_nonsec", 0));
qdev_connect_gpio_out_named(dev_secctl, "apb_ppc1_ap", 0,
qdev_get_gpio_in_named(dev_apb_ppc1,
"cfg_ap", 0));
qdev_connect_gpio_out_named(dev_secctl, "apb_ppc1_irq_enable", 0,
qdev_get_gpio_in_named(dev_apb_ppc1,
"irq_enable", 0));
qdev_connect_gpio_out_named(dev_secctl, "apb_ppc1_irq_clear", 0,
qdev_get_gpio_in_named(dev_apb_ppc1,
"irq_clear", 0));
qdev_connect_gpio_out(dev_splitter, 1,
qdev_get_gpio_in_named(dev_apb_ppc1,
"cfg_sec_resp", 0));
object_property_set_int(OBJECT(&s->sysinfo), info->sys_version,
"SYS_VERSION", &err);
if (err) {
error_propagate(errp, err);
return;
}
object_property_set_int(OBJECT(&s->sysinfo),
armsse_sys_config_value(s, info),
"SYS_CONFIG", &err);
if (err) {
error_propagate(errp, err);
return;
}
object_property_set_bool(OBJECT(&s->sysinfo), true, "realized", &err);
if (err) {
error_propagate(errp, err);
return;
}
/* System information registers */
sysbus_mmio_map(SYS_BUS_DEVICE(&s->sysinfo), 0, 0x40020000);
/* System control registers */
object_property_set_bool(OBJECT(&s->sysctl), true, "realized", &err);
if (err) {
error_propagate(errp, err);
return;
}
sysbus_mmio_map(SYS_BUS_DEVICE(&s->sysctl), 0, 0x50021000);
if (info->has_ppus) {
/* CPUnCORE_PPU for each CPU */
for (i = 0; i < info->num_cpus; i++) {
char *name = g_strdup_printf("CPU%dCORE_PPU", i);
map_ppu(s, CPU0CORE_PPU + i, name, 0x50023000 + i * 0x2000);
/*
* We don't support CPU debug so don't create the
* CPU0DEBUG_PPU at 0x50024000 and 0x50026000.
*/
g_free(name);
}
map_ppu(s, DBG_PPU, "DBG_PPU", 0x50029000);
for (i = 0; i < info->sram_banks; i++) {
char *name = g_strdup_printf("RAM%d_PPU", i);
map_ppu(s, RAM0_PPU + i, name, 0x5002a000 + i * 0x1000);
g_free(name);
}
}
/* This OR gate wires together outputs from the secure watchdogs to NMI */
object_property_set_int(OBJECT(&s->nmi_orgate), 2, "num-lines", &err);
if (err) {
error_propagate(errp, err);
return;
}
object_property_set_bool(OBJECT(&s->nmi_orgate), true, "realized", &err);
if (err) {
error_propagate(errp, err);
return;
}
qdev_connect_gpio_out(DEVICE(&s->nmi_orgate), 0,
qdev_get_gpio_in_named(DEVICE(&s->armv7m), "NMI", 0));
qdev_prop_set_uint32(DEVICE(&s->s32kwatchdog), "wdogclk-frq", S32KCLK);
object_property_set_bool(OBJECT(&s->s32kwatchdog), true, "realized", &err);
if (err) {
error_propagate(errp, err);
return;
}
sysbus_connect_irq(SYS_BUS_DEVICE(&s->s32kwatchdog), 0,
qdev_get_gpio_in(DEVICE(&s->nmi_orgate), 0));
sysbus_mmio_map(SYS_BUS_DEVICE(&s->s32kwatchdog), 0, 0x5002e000);
/* 0x40080000 .. 0x4008ffff : ARMSSE second Base peripheral region */
qdev_prop_set_uint32(DEVICE(&s->nswatchdog), "wdogclk-frq", s->mainclk_frq);
object_property_set_bool(OBJECT(&s->nswatchdog), true, "realized", &err);
if (err) {
error_propagate(errp, err);
return;
}
sysbus_connect_irq(SYS_BUS_DEVICE(&s->nswatchdog), 0,
armsse_get_common_irq_in(s, 1));
sysbus_mmio_map(SYS_BUS_DEVICE(&s->nswatchdog), 0, 0x40081000);
qdev_prop_set_uint32(DEVICE(&s->swatchdog), "wdogclk-frq", s->mainclk_frq);
object_property_set_bool(OBJECT(&s->swatchdog), true, "realized", &err);
if (err) {
error_propagate(errp, err);
return;
}
sysbus_connect_irq(SYS_BUS_DEVICE(&s->swatchdog), 0,
qdev_get_gpio_in(DEVICE(&s->nmi_orgate), 1));
sysbus_mmio_map(SYS_BUS_DEVICE(&s->swatchdog), 0, 0x50081000);
for (i = 0; i < ARRAY_SIZE(s->ppc_irq_splitter); i++) {
Object *splitter = OBJECT(&s->ppc_irq_splitter[i]);
object_property_set_int(splitter, 2, "num-lines", &err);
if (err) {
error_propagate(errp, err);
return;
}
object_property_set_bool(splitter, true, "realized", &err);
if (err) {
error_propagate(errp, err);
return;
}
}
for (i = 0; i < IOTS_NUM_AHB_EXP_PPC; i++) {
char *ppcname = g_strdup_printf("ahb_ppcexp%d", i);
armsse_forward_ppc(s, ppcname, i);
g_free(ppcname);
}
for (i = 0; i < IOTS_NUM_APB_EXP_PPC; i++) {
char *ppcname = g_strdup_printf("apb_ppcexp%d", i);
armsse_forward_ppc(s, ppcname, i + IOTS_NUM_AHB_EXP_PPC);
g_free(ppcname);
}
for (i = NUM_EXTERNAL_PPCS; i < NUM_PPCS; i++) {
/* Wire up IRQ splitter for internal PPCs */
DeviceState *devs = DEVICE(&s->ppc_irq_splitter[i]);
char *gpioname = g_strdup_printf("apb_ppc%d_irq_status",
i - NUM_EXTERNAL_PPCS);
TZPPC *ppc = (i == NUM_EXTERNAL_PPCS) ? &s->apb_ppc0 : &s->apb_ppc1;
qdev_connect_gpio_out(devs, 0,
qdev_get_gpio_in_named(dev_secctl, gpioname, 0));
qdev_connect_gpio_out(devs, 1,
qdev_get_gpio_in(DEVICE(&s->ppc_irq_orgate), i));
qdev_connect_gpio_out_named(DEVICE(ppc), "irq", 0,
qdev_get_gpio_in(devs, 0));
g_free(gpioname);
}
/* Wire up the splitters for the MPC IRQs */
for (i = 0; i < IOTS_NUM_EXP_MPC + info->sram_banks; i++) {
SplitIRQ *splitter = &s->mpc_irq_splitter[i];
DeviceState *dev_splitter = DEVICE(splitter);
object_property_set_int(OBJECT(splitter), 2, "num-lines", &err);
if (err) {
error_propagate(errp, err);
return;
}
object_property_set_bool(OBJECT(splitter), true, "realized", &err);
if (err) {
error_propagate(errp, err);
return;
}
if (i < IOTS_NUM_EXP_MPC) {
/* Splitter input is from GPIO input line */
s->mpcexp_status_in[i] = qdev_get_gpio_in(dev_splitter, 0);
qdev_connect_gpio_out(dev_splitter, 0,
qdev_get_gpio_in_named(dev_secctl,
"mpcexp_status", i));
} else {
/* Splitter input is from our own MPC */
qdev_connect_gpio_out_named(DEVICE(&s->mpc[i - IOTS_NUM_EXP_MPC]),
"irq", 0,
qdev_get_gpio_in(dev_splitter, 0));
qdev_connect_gpio_out(dev_splitter, 0,
qdev_get_gpio_in_named(dev_secctl,
"mpc_status", 0));
}
qdev_connect_gpio_out(dev_splitter, 1,
qdev_get_gpio_in(DEVICE(&s->mpc_irq_orgate), i));
}
/* Create GPIO inputs which will pass the line state for our
* mpcexp_irq inputs to the correct splitter devices.
*/
qdev_init_gpio_in_named(dev, armsse_mpcexp_status, "mpcexp_status",
IOTS_NUM_EXP_MPC);
armsse_forward_sec_resp_cfg(s);
/* Forward the MSC related signals */
qdev_pass_gpios(dev_secctl, dev, "mscexp_status");
qdev_pass_gpios(dev_secctl, dev, "mscexp_clear");
qdev_pass_gpios(dev_secctl, dev, "mscexp_ns");
qdev_connect_gpio_out_named(dev_secctl, "msc_irq", 0,
armsse_get_common_irq_in(s, 11));
/*
* Expose our container region to the board model; this corresponds
* to the AHB Slave Expansion ports which allow bus master devices
* (eg DMA controllers) in the board model to make transactions into
* devices in the ARMSSE.
*/
sysbus_init_mmio(SYS_BUS_DEVICE(s), &s->container);
system_clock_scale = NANOSECONDS_PER_SECOND / s->mainclk_frq;
}
static void armsse_idau_check(IDAUInterface *ii, uint32_t address,
int *iregion, bool *exempt, bool *ns, bool *nsc)
{
/*
* For ARMSSE systems the IDAU responses are simple logical functions
* of the address bits. The NSC attribute is guest-adjustable via the
* NSCCFG register in the security controller.
*/
ARMSSE *s = ARMSSE(ii);
int region = extract32(address, 28, 4);
*ns = !(region & 1);
*nsc = (region == 1 && (s->nsccfg & 1)) || (region == 3 && (s->nsccfg & 2));
/* 0xe0000000..0xe00fffff and 0xf0000000..0xf00fffff are exempt */
*exempt = (address & 0xeff00000) == 0xe0000000;
*iregion = region;
}
static const VMStateDescription armsse_vmstate = {
.name = "iotkit",
.version_id = 1,
.minimum_version_id = 1,
.fields = (VMStateField[]) {
VMSTATE_UINT32(nsccfg, ARMSSE),
VMSTATE_END_OF_LIST()
}
};
static Property armsse_properties[] = {
DEFINE_PROP_LINK("memory", ARMSSE, board_memory, TYPE_MEMORY_REGION,
MemoryRegion *),
DEFINE_PROP_UINT32("EXP_NUMIRQ", ARMSSE, exp_numirq, 64),
DEFINE_PROP_UINT32("MAINCLK", ARMSSE, mainclk_frq, 0),
DEFINE_PROP_UINT32("SRAM_ADDR_WIDTH", ARMSSE, sram_addr_width, 15),
DEFINE_PROP_END_OF_LIST()
};
static void armsse_reset(DeviceState *dev)
{
ARMSSE *s = ARMSSE(dev);
s->nsccfg = 0;
}
static void armsse_class_init(ObjectClass *klass, void *data)
{
DeviceClass *dc = DEVICE_CLASS(klass);
IDAUInterfaceClass *iic = IDAU_INTERFACE_CLASS(klass);
ARMSSEClass *asc = ARMSSE_CLASS(klass);
dc->realize = armsse_realize;
dc->vmsd = &armsse_vmstate;
dc->props = armsse_properties;
dc->reset = armsse_reset;
iic->check = armsse_idau_check;
asc->info = data;
}
static const TypeInfo armsse_info = {
.name = TYPE_ARMSSE,
.parent = TYPE_SYS_BUS_DEVICE,
.instance_size = sizeof(ARMSSE),
.instance_init = armsse_init,
.abstract = true,
.interfaces = (InterfaceInfo[]) {
{ TYPE_IDAU_INTERFACE },
{ }
}
};
static void armsse_register_types(void)
{
int i;
type_register_static(&armsse_info);
for (i = 0; i < ARRAY_SIZE(armsse_variants); i++) {
TypeInfo ti = {
.name = armsse_variants[i].name,
.parent = TYPE_ARMSSE,
.class_init = armsse_class_init,
.class_data = (void *)&armsse_variants[i],
};
type_register(&ti);
}
}
type_init(armsse_register_types);