/*
* Raspberry Pi emulation (c) 2012 Gregory Estrade
* Upstreaming code cleanup [including bcm2835_*] (c) 2013 Jan Petrous
*
* Rasperry Pi 2 emulation Copyright (c) 2015, Microsoft
* Written by Andrew Baumann
*
* Raspberry Pi 3 emulation Copyright (c) 2018 Zoltán Baldaszti
* Upstream code cleanup (c) 2018 Pekka Enberg
*
* This work is licensed under the terms of the GNU GPL, version 2 or later.
* See the COPYING file in the top-level directory.
*/
#include "qemu/osdep.h"
#include "qemu/units.h"
#include "qemu/cutils.h"
#include "qapi/error.h"
#include "hw/arm/bcm2836.h"
#include "hw/registerfields.h"
#include "qemu/error-report.h"
#include "hw/boards.h"
#include "hw/loader.h"
#include "hw/arm/boot.h"
#include "qom/object.h"
#define SMPBOOT_ADDR 0x300 /* this should leave enough space for ATAGS */
#define MVBAR_ADDR 0x400 /* secure vectors */
#define BOARDSETUP_ADDR (MVBAR_ADDR + 0x20) /* board setup code */
#define FIRMWARE_ADDR_2 0x8000 /* Pi 2 loads kernel.img here by default */
#define FIRMWARE_ADDR_3 0x80000 /* Pi 3 loads kernel.img here by default */
#define SPINTABLE_ADDR 0xd8 /* Pi 3 bootloader spintable */
/* Registered machine type (matches RPi Foundation bootloader and U-Boot) */
#define MACH_TYPE_BCM2708 3138
struct RaspiMachineState {
/*< private >*/
MachineState parent_obj;
/*< public >*/
BCM283XState soc;
struct arm_boot_info binfo;
};
typedef struct RaspiMachineState RaspiMachineState;
struct RaspiMachineClass {
/*< private >*/
MachineClass parent_obj;
/*< public >*/
uint32_t board_rev;
};
typedef struct RaspiMachineClass RaspiMachineClass;
#define TYPE_RASPI_MACHINE MACHINE_TYPE_NAME("raspi-common")
DECLARE_OBJ_CHECKERS(RaspiMachineState, RaspiMachineClass,
RASPI_MACHINE, TYPE_RASPI_MACHINE)
/*
* Board revision codes:
* www.raspberrypi.org/documentation/hardware/raspberrypi/revision-codes/
*/
FIELD(REV_CODE, REVISION, 0, 4);
FIELD(REV_CODE, TYPE, 4, 8);
FIELD(REV_CODE, PROCESSOR, 12, 4);
FIELD(REV_CODE, MANUFACTURER, 16, 4);
FIELD(REV_CODE, MEMORY_SIZE, 20, 3);
FIELD(REV_CODE, STYLE, 23, 1);
typedef enum RaspiProcessorId {
PROCESSOR_ID_BCM2835 = 0,
PROCESSOR_ID_BCM2836 = 1,
PROCESSOR_ID_BCM2837 = 2,
} RaspiProcessorId;
static const struct {
const char *type;
int cores_count;
} soc_property[] = {
[PROCESSOR_ID_BCM2835] = {TYPE_BCM2835, 1},
[PROCESSOR_ID_BCM2836] = {TYPE_BCM2836, BCM283X_NCPUS},
[PROCESSOR_ID_BCM2837] = {TYPE_BCM2837, BCM283X_NCPUS},
};
static uint64_t board_ram_size(uint32_t board_rev)
{
assert(FIELD_EX32(board_rev, REV_CODE, STYLE)); /* Only new style */
return 256 * MiB << FIELD_EX32(board_rev, REV_CODE, MEMORY_SIZE);
}
static RaspiProcessorId board_processor_id(uint32_t board_rev)
{
int proc_id = FIELD_EX32(board_rev, REV_CODE, PROCESSOR);
assert(FIELD_EX32(board_rev, REV_CODE, STYLE)); /* Only new style */
assert(proc_id < ARRAY_SIZE(soc_property) && soc_property[proc_id].type);
return proc_id;
}
static const char *board_soc_type(uint32_t board_rev)
{
return soc_property[board_processor_id(board_rev)].type;
}
static int cores_count(uint32_t board_rev)
{
return soc_property[board_processor_id(board_rev)].cores_count;
}
static const char *board_type(uint32_t board_rev)
{
static const char *types[] = {
"A", "B", "A+", "B+", "2B", "Alpha", "CM1", NULL, "3B", "Zero",
"CM3", NULL, "Zero W", "3B+", "3A+", NULL, "CM3+", "4B",
};
assert(FIELD_EX32(board_rev, REV_CODE, STYLE)); /* Only new style */
int bt = FIELD_EX32(board_rev, REV_CODE, TYPE);
if (bt >= ARRAY_SIZE(types) || !types[bt]) {
return "Unknown";
}
return types[bt];
}
static void write_smpboot(ARMCPU *cpu, const struct arm_boot_info *info)
{
static const uint32_t smpboot[] = {
0xe1a0e00f, /* mov lr, pc */
0xe3a0fe00 + (BOARDSETUP_ADDR >> 4), /* mov pc, BOARDSETUP_ADDR */
0xee100fb0, /* mrc p15, 0, r0, c0, c0, 5;get core ID */
0xe7e10050, /* ubfx r0, r0, #0, #2 ;extract LSB */
0xe59f5014, /* ldr r5, =0x400000CC ;load mbox base */
0xe320f001, /* 1: yield */
0xe7953200, /* ldr r3, [r5, r0, lsl #4] ;read mbox for our core*/
0xe3530000, /* cmp r3, #0 ;spin while zero */
0x0afffffb, /* beq 1b */
0xe7853200, /* str r3, [r5, r0, lsl #4] ;clear mbox */
0xe12fff13, /* bx r3 ;jump to target */
0x400000cc, /* (constant: mailbox 3 read/clear base) */
};
/* check that we don't overrun board setup vectors */
QEMU_BUILD_BUG_ON(SMPBOOT_ADDR + sizeof(smpboot) > MVBAR_ADDR);
/* check that board setup address is correctly relocated */
QEMU_BUILD_BUG_ON((BOARDSETUP_ADDR & 0xf) != 0
|| (BOARDSETUP_ADDR >> 4) >= 0x100);
rom_add_blob_fixed_as("raspi_smpboot", smpboot, sizeof(smpboot),
info->smp_loader_start,
arm_boot_address_space(cpu, info));
}
static void write_smpboot64(ARMCPU *cpu, const struct arm_boot_info *info)
{
AddressSpace *as = arm_boot_address_space(cpu, info);
/* Unlike the AArch32 version we don't need to call the board setup hook.
* The mechanism for doing the spin-table is also entirely different.
* We must have four 64-bit fields at absolute addresses
* 0xd8, 0xe0, 0xe8, 0xf0 in RAM, which are the flag variables for
* our CPUs, and which we must ensure are zero initialized before
* the primary CPU goes into the kernel. We put these variables inside
* a rom blob, so that the reset for ROM contents zeroes them for us.
*/
static const uint32_t smpboot[] = {
0xd2801b05, /* mov x5, 0xd8 */
0xd53800a6, /* mrs x6, mpidr_el1 */
0x924004c6, /* and x6, x6, #0x3 */
0xd503205f, /* spin: wfe */
0xf86678a4, /* ldr x4, [x5,x6,lsl #3] */
0xb4ffffc4, /* cbz x4, spin */
0xd2800000, /* mov x0, #0x0 */
0xd2800001, /* mov x1, #0x0 */
0xd2800002, /* mov x2, #0x0 */
0xd2800003, /* mov x3, #0x0 */
0xd61f0080, /* br x4 */
};
static const uint64_t spintables[] = {
0, 0, 0, 0
};
rom_add_blob_fixed_as("raspi_smpboot", smpboot, sizeof(smpboot),
info->smp_loader_start, as);
rom_add_blob_fixed_as("raspi_spintables", spintables, sizeof(spintables),
SPINTABLE_ADDR, as);
}
static void write_board_setup(ARMCPU *cpu, const struct arm_boot_info *info)
{
arm_write_secure_board_setup_dummy_smc(cpu, info, MVBAR_ADDR);
}
static void reset_secondary(ARMCPU *cpu, const struct arm_boot_info *info)
{
CPUState *cs = CPU(cpu);
cpu_set_pc(cs, info->smp_loader_start);
}
static void setup_boot(MachineState *machine, RaspiProcessorId processor_id,
size_t ram_size)
{
RaspiMachineState *s = RASPI_MACHINE(machine);
int r;
s->binfo.board_id = MACH_TYPE_BCM2708;
s->binfo.ram_size = ram_size;
s->binfo.nb_cpus = machine->smp.cpus;
if (processor_id <= PROCESSOR_ID_BCM2836) {
/*
* The BCM2835 and BCM2836 require some custom setup code to run
* in Secure mode before booting a kernel (to set up the SMC vectors
* so that we get a no-op SMC; this is used by Linux to call the
* firmware for some cache maintenance operations.
* The BCM2837 doesn't need this.
*/
s->binfo.board_setup_addr = BOARDSETUP_ADDR;
s->binfo.write_board_setup = write_board_setup;
s->binfo.secure_board_setup = true;
s->binfo.secure_boot = true;
}
/* BCM2836 and BCM2837 requires SMP setup */
if (processor_id >= PROCESSOR_ID_BCM2836) {
s->binfo.smp_loader_start = SMPBOOT_ADDR;
if (processor_id == PROCESSOR_ID_BCM2836) {
s->binfo.write_secondary_boot = write_smpboot;
} else {
s->binfo.write_secondary_boot = write_smpboot64;
}
s->binfo.secondary_cpu_reset_hook = reset_secondary;
}
/* If the user specified a "firmware" image (e.g. UEFI), we bypass
* the normal Linux boot process
*/
if (machine->firmware) {
hwaddr firmware_addr = processor_id <= PROCESSOR_ID_BCM2836
? FIRMWARE_ADDR_2 : FIRMWARE_ADDR_3;
/* load the firmware image (typically kernel.img) */
r = load_image_targphys(machine->firmware, firmware_addr,
ram_size - firmware_addr);
if (r < 0) {
error_report("Failed to load firmware from %s", machine->firmware);
exit(1);
}
s->binfo.entry = firmware_addr;
s->binfo.firmware_loaded = true;
}
arm_load_kernel(&s->soc.cpu[0].core, machine, &s->binfo);
}
static void raspi_machine_init(MachineState *machine)
{
RaspiMachineClass *mc = RASPI_MACHINE_GET_CLASS(machine);
RaspiMachineState *s = RASPI_MACHINE(machine);
uint32_t board_rev = mc->board_rev;
uint64_t ram_size = board_ram_size(board_rev);
uint32_t vcram_size;
DriveInfo *di;
BlockBackend *blk;
BusState *bus;
DeviceState *carddev;
if (machine->ram_size != ram_size) {
char *size_str = size_to_str(ram_size);
error_report("Invalid RAM size, should be %s", size_str);
g_free(size_str);
exit(1);
}
/* FIXME: Remove when we have custom CPU address space support */
memory_region_add_subregion_overlap(get_system_memory(), 0,
machine->ram, 0);
/* Setup the SOC */
object_initialize_child(OBJECT(machine), "soc", &s->soc,
board_soc_type(board_rev));
object_property_add_const_link(OBJECT(&s->soc), "ram", OBJECT(machine->ram));
object_property_set_int(OBJECT(&s->soc), "board-rev", board_rev,
&error_abort);
qdev_realize(DEVICE(&s->soc), NULL, &error_fatal);
/* Create and plug in the SD cards */
di = drive_get_next(IF_SD);
blk = di ? blk_by_legacy_dinfo(di) : NULL;
bus = qdev_get_child_bus(DEVICE(&s->soc), "sd-bus");
if (bus == NULL) {
error_report("No SD bus found in SOC object");
exit(1);
}
carddev = qdev_new(TYPE_SD_CARD);
qdev_prop_set_drive_err(carddev, "drive", blk, &error_fatal);
qdev_realize_and_unref(carddev, bus, &error_fatal);
vcram_size = object_property_get_uint(OBJECT(&s->soc), "vcram-size",
&error_abort);
setup_boot(machine, board_processor_id(mc->board_rev),
machine->ram_size - vcram_size);
}
static void raspi_machine_class_common_init(MachineClass *mc,
uint32_t board_rev)
{
mc->desc = g_strdup_printf("Raspberry Pi %s (revision 1.%u)",
board_type(board_rev),
FIELD_EX32(board_rev, REV_CODE, REVISION));
mc->init = raspi_machine_init;
mc->block_default_type = IF_SD;
mc->no_parallel = 1;
mc->no_floppy = 1;
mc->no_cdrom = 1;
mc->default_cpus = mc->min_cpus = mc->max_cpus = cores_count(board_rev);
mc->default_ram_size = board_ram_size(board_rev);
mc->default_ram_id = "ram";
};
static void raspi0_machine_class_init(ObjectClass *oc, void *data)
{
MachineClass *mc = MACHINE_CLASS(oc);
RaspiMachineClass *rmc = RASPI_MACHINE_CLASS(oc);
rmc->board_rev = 0x920092; /* Revision 1.2 */
raspi_machine_class_common_init(mc, rmc->board_rev);
};
static void raspi1ap_machine_class_init(ObjectClass *oc, void *data)
{
MachineClass *mc = MACHINE_CLASS(oc);
RaspiMachineClass *rmc = RASPI_MACHINE_CLASS(oc);
rmc->board_rev = 0x900021; /* Revision 1.1 */
raspi_machine_class_common_init(mc, rmc->board_rev);
};
static void raspi2b_machine_class_init(ObjectClass *oc, void *data)
{
MachineClass *mc = MACHINE_CLASS(oc);
RaspiMachineClass *rmc = RASPI_MACHINE_CLASS(oc);
rmc->board_rev = 0xa21041;
raspi_machine_class_common_init(mc, rmc->board_rev);
};
#ifdef TARGET_AARCH64
static void raspi3ap_machine_class_init(ObjectClass *oc, void *data)
{
MachineClass *mc = MACHINE_CLASS(oc);
RaspiMachineClass *rmc = RASPI_MACHINE_CLASS(oc);
rmc->board_rev = 0x9020e0; /* Revision 1.0 */
raspi_machine_class_common_init(mc, rmc->board_rev);
};
static void raspi3b_machine_class_init(ObjectClass *oc, void *data)
{
MachineClass *mc = MACHINE_CLASS(oc);
RaspiMachineClass *rmc = RASPI_MACHINE_CLASS(oc);
rmc->board_rev = 0xa02082;
raspi_machine_class_common_init(mc, rmc->board_rev);
};
#endif /* TARGET_AARCH64 */
static const TypeInfo raspi_machine_types[] = {
{
.name = MACHINE_TYPE_NAME("raspi0"),
.parent = TYPE_RASPI_MACHINE,
.class_init = raspi0_machine_class_init,
}, {
.name = MACHINE_TYPE_NAME("raspi1ap"),
.parent = TYPE_RASPI_MACHINE,
.class_init = raspi1ap_machine_class_init,
}, {
.name = MACHINE_TYPE_NAME("raspi2b"),
.parent = TYPE_RASPI_MACHINE,
.class_init = raspi2b_machine_class_init,
#ifdef TARGET_AARCH64
}, {
.name = MACHINE_TYPE_NAME("raspi3ap"),
.parent = TYPE_RASPI_MACHINE,
.class_init = raspi3ap_machine_class_init,
}, {
.name = MACHINE_TYPE_NAME("raspi3b"),
.parent = TYPE_RASPI_MACHINE,
.class_init = raspi3b_machine_class_init,
#endif
}, {
.name = TYPE_RASPI_MACHINE,
.parent = TYPE_MACHINE,
.instance_size = sizeof(RaspiMachineState),
.class_size = sizeof(RaspiMachineClass),
.abstract = true,
}
};
DEFINE_TYPES(raspi_machine_types)