/*
* QEMU PowerMac CUDA device support
*
* Copyright (c) 2004-2007 Fabrice Bellard
* Copyright (c) 2007 Jocelyn Mayer
*
* Permission is hereby granted, free of charge, to any person obtaining a copy
* of this software and associated documentation files (the "Software"), to deal
* in the Software without restriction, including without limitation the rights
* to use, copy, modify, merge, publish, distribute, sublicense, and/or sell
* copies of the Software, and to permit persons to whom the Software is
* furnished to do so, subject to the following conditions:
*
* The above copyright notice and this permission notice shall be included in
* all copies or substantial portions of the Software.
*
* THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
* IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
* FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL
* THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
* LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM,
* OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN
* THE SOFTWARE.
*/
#include "hw.h"
#include "ppc_mac.h"
#include "qemu-timer.h"
#include "sysemu.h"
/* XXX: implement all timer modes */
/* debug CUDA */
//#define DEBUG_CUDA
/* debug CUDA packets */
//#define DEBUG_CUDA_PACKET
#ifdef DEBUG_CUDA
#define CUDA_DPRINTF(fmt, args...) \
do { printf("CUDA: " fmt , ##args); } while (0)
#else
#define CUDA_DPRINTF(fmt, args...)
#endif
/* Bits in B data register: all active low */
#define TREQ 0x08 /* Transfer request (input) */
#define TACK 0x10 /* Transfer acknowledge (output) */
#define TIP 0x20 /* Transfer in progress (output) */
/* Bits in ACR */
#define SR_CTRL 0x1c /* Shift register control bits */
#define SR_EXT 0x0c /* Shift on external clock */
#define SR_OUT 0x10 /* Shift out if 1 */
/* Bits in IFR and IER */
#define IER_SET 0x80 /* set bits in IER */
#define IER_CLR 0 /* clear bits in IER */
#define SR_INT 0x04 /* Shift register full/empty */
#define T1_INT 0x40 /* Timer 1 interrupt */
#define T2_INT 0x20 /* Timer 2 interrupt */
/* Bits in ACR */
#define T1MODE 0xc0 /* Timer 1 mode */
#define T1MODE_CONT 0x40 /* continuous interrupts */
/* commands (1st byte) */
#define ADB_PACKET 0
#define CUDA_PACKET 1
#define ERROR_PACKET 2
#define TIMER_PACKET 3
#define POWER_PACKET 4
#define MACIIC_PACKET 5
#define PMU_PACKET 6
/* CUDA commands (2nd byte) */
#define CUDA_WARM_START 0x0
#define CUDA_AUTOPOLL 0x1
#define CUDA_GET_6805_ADDR 0x2
#define CUDA_GET_TIME 0x3
#define CUDA_GET_PRAM 0x7
#define CUDA_SET_6805_ADDR 0x8
#define CUDA_SET_TIME 0x9
#define CUDA_POWERDOWN 0xa
#define CUDA_POWERUP_TIME 0xb
#define CUDA_SET_PRAM 0xc
#define CUDA_MS_RESET 0xd
#define CUDA_SEND_DFAC 0xe
#define CUDA_BATTERY_SWAP_SENSE 0x10
#define CUDA_RESET_SYSTEM 0x11
#define CUDA_SET_IPL 0x12
#define CUDA_FILE_SERVER_FLAG 0x13
#define CUDA_SET_AUTO_RATE 0x14
#define CUDA_GET_AUTO_RATE 0x16
#define CUDA_SET_DEVICE_LIST 0x19
#define CUDA_GET_DEVICE_LIST 0x1a
#define CUDA_SET_ONE_SECOND_MODE 0x1b
#define CUDA_SET_POWER_MESSAGES 0x21
#define CUDA_GET_SET_IIC 0x22
#define CUDA_WAKEUP 0x23
#define CUDA_TIMER_TICKLE 0x24
#define CUDA_COMBINED_FORMAT_IIC 0x25
#define CUDA_TIMER_FREQ (4700000 / 6)
#define CUDA_ADB_POLL_FREQ 50
/* CUDA returns time_t's offset from Jan 1, 1904, not 1970 */
#define RTC_OFFSET 2082844800
typedef struct CUDATimer {
int index;
uint16_t latch;
uint16_t counter_value; /* counter value at load time */
int64_t load_time;
int64_t next_irq_time;
QEMUTimer *timer;
} CUDATimer;
typedef struct CUDAState {
/* cuda registers */
uint8_t b; /* B-side data */
uint8_t a; /* A-side data */
uint8_t dirb; /* B-side direction (1=output) */
uint8_t dira; /* A-side direction (1=output) */
uint8_t sr; /* Shift register */
uint8_t acr; /* Auxiliary control register */
uint8_t pcr; /* Peripheral control register */
uint8_t ifr; /* Interrupt flag register */
uint8_t ier; /* Interrupt enable register */
uint8_t anh; /* A-side data, no handshake */
CUDATimer timers[2];
uint32_t tick_offset;
uint8_t last_b; /* last value of B register */
uint8_t last_acr; /* last value of B register */
int data_in_size;
int data_in_index;
int data_out_index;
qemu_irq irq;
uint8_t autopoll;
uint8_t data_in[128];
uint8_t data_out[16];
QEMUTimer *adb_poll_timer;
} CUDAState;
static CUDAState cuda_state;
ADBBusState adb_bus;
static void cuda_update(CUDAState *s);
static void cuda_receive_packet_from_host(CUDAState *s,
const uint8_t *data, int len);
static void cuda_timer_update(CUDAState *s, CUDATimer *ti,
int64_t current_time);
static void cuda_update_irq(CUDAState *s)
{
if (s->ifr & s->ier & (SR_INT | T1_INT)) {
qemu_irq_raise(s->irq);
} else {
qemu_irq_lower(s->irq);
}
}
static unsigned int get_counter(CUDATimer *s)
{
int64_t d;
unsigned int counter;
d = muldiv64(qemu_get_clock(vm_clock) - s->load_time,
CUDA_TIMER_FREQ, ticks_per_sec);
if (s->index == 0) {
/* the timer goes down from latch to -1 (period of latch + 2) */
if (d <= (s->counter_value + 1)) {
counter = (s->counter_value - d) & 0xffff;
} else {
counter = (d - (s->counter_value + 1)) % (s->latch + 2);
counter = (s->latch - counter) & 0xffff;
}
} else {
counter = (s->counter_value - d) & 0xffff;
}
return counter;
}
static void set_counter(CUDAState *s, CUDATimer *ti, unsigned int val)
{
CUDA_DPRINTF("T%d.counter=%d\n", 1 + (ti->timer == NULL), val);
ti->load_time = qemu_get_clock(vm_clock);
ti->counter_value = val;
cuda_timer_update(s, ti, ti->load_time);
}
static int64_t get_next_irq_time(CUDATimer *s, int64_t current_time)
{
int64_t d, next_time;
unsigned int counter;
/* current counter value */
d = muldiv64(current_time - s->load_time,
CUDA_TIMER_FREQ, ticks_per_sec);
/* the timer goes down from latch to -1 (period of latch + 2) */
if (d <= (s->counter_value + 1)) {
counter = (s->counter_value - d) & 0xffff;
} else {
counter = (d - (s->counter_value + 1)) % (s->latch + 2);
counter = (s->latch - counter) & 0xffff;
}
/* Note: we consider the irq is raised on 0 */
if (counter == 0xffff) {
next_time = d + s->latch + 1;
} else if (counter == 0) {
next_time = d + s->latch + 2;
} else {
next_time = d + counter;
}
CUDA_DPRINTF("latch=%d counter=%" PRId64 " delta_next=%" PRId64 "\n",
s->latch, d, next_time - d);
next_time = muldiv64(next_time, ticks_per_sec, CUDA_TIMER_FREQ) +
s->load_time;
if (next_time <= current_time)
next_time = current_time + 1;
return next_time;
}
static void cuda_timer_update(CUDAState *s, CUDATimer *ti,
int64_t current_time)
{
if (!ti->timer)
return;
if ((s->acr & T1MODE) != T1MODE_CONT) {
qemu_del_timer(ti->timer);
} else {
ti->next_irq_time = get_next_irq_time(ti, current_time);
qemu_mod_timer(ti->timer, ti->next_irq_time);
}
}
static void cuda_timer1(void *opaque)
{
CUDAState *s = opaque;
CUDATimer *ti = &s->timers[0];
cuda_timer_update(s, ti, ti->next_irq_time);
s->ifr |= T1_INT;
cuda_update_irq(s);
}
static uint32_t cuda_readb(void *opaque, target_phys_addr_t addr)
{
CUDAState *s = opaque;
uint32_t val;
addr = (addr >> 9) & 0xf;
switch(addr) {
case 0:
val = s->b;
break;
case 1:
val = s->a;
break;
case 2:
val = s->dirb;
break;
case 3:
val = s->dira;
break;
case 4:
val = get_counter(&s->timers[0]) & 0xff;
s->ifr &= ~T1_INT;
cuda_update_irq(s);
break;
case 5:
val = get_counter(&s->timers[0]) >> 8;
cuda_update_irq(s);
break;
case 6:
val = s->timers[0].latch & 0xff;
break;
case 7:
/* XXX: check this */
val = (s->timers[0].latch >> 8) & 0xff;
break;
case 8:
val = get_counter(&s->timers[1]) & 0xff;
s->ifr &= ~T2_INT;
break;
case 9:
val = get_counter(&s->timers[1]) >> 8;
break;
case 10:
val = s->sr;
s->ifr &= ~SR_INT;
cuda_update_irq(s);
break;
case 11:
val = s->acr;
break;
case 12:
val = s->pcr;
break;
case 13:
val = s->ifr;
if (s->ifr & s->ier)
val |= 0x80;
break;
case 14:
val = s->ier | 0x80;
break;
default:
case 15:
val = s->anh;
break;
}
if (addr != 13 || val != 0)
CUDA_DPRINTF("read: reg=0x%x val=%02x\n", (int)addr, val);
return val;
}
static void cuda_writeb(void *opaque, target_phys_addr_t addr, uint32_t val)
{
CUDAState *s = opaque;
addr = (addr >> 9) & 0xf;
CUDA_DPRINTF("write: reg=0x%x val=%02x\n", (int)addr, val);
switch(addr) {
case 0:
s->b = val;
cuda_update(s);
break;
case 1:
s->a = val;
break;
case 2:
s->dirb = val;
break;
case 3:
s->dira = val;
break;
case 4:
s->timers[0].latch = (s->timers[0].latch & 0xff00) | val;
cuda_timer_update(s, &s->timers[0], qemu_get_clock(vm_clock));
break;
case 5:
s->timers[0].latch = (s->timers[0].latch & 0xff) | (val << 8);
s->ifr &= ~T1_INT;
set_counter(s, &s->timers[0], s->timers[0].latch);
break;
case 6:
s->timers[0].latch = (s->timers[0].latch & 0xff00) | val;
cuda_timer_update(s, &s->timers[0], qemu_get_clock(vm_clock));
break;
case 7:
s->timers[0].latch = (s->timers[0].latch & 0xff) | (val << 8);
s->ifr &= ~T1_INT;
cuda_timer_update(s, &s->timers[0], qemu_get_clock(vm_clock));
break;
case 8:
s->timers[1].latch = val;
set_counter(s, &s->timers[1], val);
break;
case 9:
set_counter(s, &s->timers[1], (val << 8) | s->timers[1].latch);
break;
case 10:
s->sr = val;
break;
case 11:
s->acr = val;
cuda_timer_update(s, &s->timers[0], qemu_get_clock(vm_clock));
cuda_update(s);
break;
case 12:
s->pcr = val;
break;
case 13:
/* reset bits */
s->ifr &= ~val;
cuda_update_irq(s);
break;
case 14:
if (val & IER_SET) {
/* set bits */
s->ier |= val & 0x7f;
} else {
/* reset bits */
s->ier &= ~val;
}
cuda_update_irq(s);
break;
default:
case 15:
s->anh = val;
break;
}
}
/* NOTE: TIP and TREQ are negated */
static void cuda_update(CUDAState *s)
{
int packet_received, len;
packet_received = 0;
if (!(s->b & TIP)) {
/* transfer requested from host */
if (s->acr & SR_OUT) {
/* data output */
if ((s->b & (TACK | TIP)) != (s->last_b & (TACK | TIP))) {
if (s->data_out_index < sizeof(s->data_out)) {
CUDA_DPRINTF("send: %02x\n", s->sr);
s->data_out[s->data_out_index++] = s->sr;
s->ifr |= SR_INT;
cuda_update_irq(s);
}
}
} else {
if (s->data_in_index < s->data_in_size) {
/* data input */
if ((s->b & (TACK | TIP)) != (s->last_b & (TACK | TIP))) {
s->sr = s->data_in[s->data_in_index++];
CUDA_DPRINTF("recv: %02x\n", s->sr);
/* indicate end of transfer */
if (s->data_in_index >= s->data_in_size) {
s->b = (s->b | TREQ);
}
s->ifr |= SR_INT;
cuda_update_irq(s);
}
}
}
} else {
/* no transfer requested: handle sync case */
if ((s->last_b & TIP) && (s->b & TACK) != (s->last_b & TACK)) {
/* update TREQ state each time TACK change state */
if (s->b & TACK)
s->b = (s->b | TREQ);
else
s->b = (s->b & ~TREQ);
s->ifr |= SR_INT;
cuda_update_irq(s);
} else {
if (!(s->last_b & TIP)) {
/* handle end of host to cuda transfer */
packet_received = (s->data_out_index > 0);
/* always an IRQ at the end of transfer */
s->ifr |= SR_INT;
cuda_update_irq(s);
}
/* signal if there is data to read */
if (s->data_in_index < s->data_in_size) {
s->b = (s->b & ~TREQ);
}
}
}
s->last_acr = s->acr;
s->last_b = s->b;
/* NOTE: cuda_receive_packet_from_host() can call cuda_update()
recursively */
if (packet_received) {
len = s->data_out_index;
s->data_out_index = 0;
cuda_receive_packet_from_host(s, s->data_out, len);
}
}
static void cuda_send_packet_to_host(CUDAState *s,
const uint8_t *data, int len)
{
#ifdef DEBUG_CUDA_PACKET
{
int i;
printf("cuda_send_packet_to_host:\n");
for(i = 0; i < len; i++)
printf(" %02x", data[i]);
printf("\n");
}
#endif
memcpy(s->data_in, data, len);
s->data_in_size = len;
s->data_in_index = 0;
cuda_update(s);
s->ifr |= SR_INT;
cuda_update_irq(s);
}
static void cuda_adb_poll(void *opaque)
{
CUDAState *s = opaque;
uint8_t obuf[ADB_MAX_OUT_LEN + 2];
int olen;
olen = adb_poll(&adb_bus, obuf + 2);
if (olen > 0) {
obuf[0] = ADB_PACKET;
obuf[1] = 0x40; /* polled data */
cuda_send_packet_to_host(s, obuf, olen + 2);
}
qemu_mod_timer(s->adb_poll_timer,
qemu_get_clock(vm_clock) +
(ticks_per_sec / CUDA_ADB_POLL_FREQ));
}
static void cuda_receive_packet(CUDAState *s,
const uint8_t *data, int len)
{
uint8_t obuf[16];
int autopoll;
uint32_t ti;
switch(data[0]) {
case CUDA_AUTOPOLL:
autopoll = (data[1] != 0);
if (autopoll != s->autopoll) {
s->autopoll = autopoll;
if (autopoll) {
qemu_mod_timer(s->adb_poll_timer,
qemu_get_clock(vm_clock) +
(ticks_per_sec / CUDA_ADB_POLL_FREQ));
} else {
qemu_del_timer(s->adb_poll_timer);
}
}
obuf[0] = CUDA_PACKET;
obuf[1] = data[1];
cuda_send_packet_to_host(s, obuf, 2);
break;
case CUDA_SET_TIME:
ti = (((uint32_t)data[1]) << 24) + (((uint32_t)data[2]) << 16) + (((uint32_t)data[3]) << 8) + data[4];
s->tick_offset = ti - (qemu_get_clock(vm_clock) / ticks_per_sec);
obuf[0] = CUDA_PACKET;
obuf[1] = 0;
obuf[2] = 0;
cuda_send_packet_to_host(s, obuf, 3);
break;
case CUDA_GET_TIME:
ti = s->tick_offset + (qemu_get_clock(vm_clock) / ticks_per_sec);
obuf[0] = CUDA_PACKET;
obuf[1] = 0;
obuf[2] = 0;
obuf[3] = ti >> 24;
obuf[4] = ti >> 16;
obuf[5] = ti >> 8;
obuf[6] = ti;
cuda_send_packet_to_host(s, obuf, 7);
break;
case CUDA_FILE_SERVER_FLAG:
case CUDA_SET_DEVICE_LIST:
case CUDA_SET_AUTO_RATE:
case CUDA_SET_POWER_MESSAGES:
obuf[0] = CUDA_PACKET;
obuf[1] = 0;
cuda_send_packet_to_host(s, obuf, 2);
break;
case CUDA_POWERDOWN:
obuf[0] = CUDA_PACKET;
obuf[1] = 0;
cuda_send_packet_to_host(s, obuf, 2);
qemu_system_shutdown_request();
break;
case CUDA_RESET_SYSTEM:
obuf[0] = CUDA_PACKET;
obuf[1] = 0;
cuda_send_packet_to_host(s, obuf, 2);
qemu_system_reset_request();
break;
default:
break;
}
}
static void cuda_receive_packet_from_host(CUDAState *s,
const uint8_t *data, int len)
{
#ifdef DEBUG_CUDA_PACKET
{
int i;
printf("cuda_receive_packet_from_host:\n");
for(i = 0; i < len; i++)
printf(" %02x", data[i]);
printf("\n");
}
#endif
switch(data[0]) {
case ADB_PACKET:
{
uint8_t obuf[ADB_MAX_OUT_LEN + 2];
int olen;
olen = adb_request(&adb_bus, obuf + 2, data + 1, len - 1);
if (olen > 0) {
obuf[0] = ADB_PACKET;
obuf[1] = 0x00;
} else {
/* error */
obuf[0] = ADB_PACKET;
obuf[1] = -olen;
olen = 0;
}
cuda_send_packet_to_host(s, obuf, olen + 2);
}
break;
case CUDA_PACKET:
cuda_receive_packet(s, data + 1, len - 1);
break;
}
}
static void cuda_writew (void *opaque, target_phys_addr_t addr, uint32_t value)
{
}
static void cuda_writel (void *opaque, target_phys_addr_t addr, uint32_t value)
{
}
static uint32_t cuda_readw (void *opaque, target_phys_addr_t addr)
{
return 0;
}
static uint32_t cuda_readl (void *opaque, target_phys_addr_t addr)
{
return 0;
}
static CPUWriteMemoryFunc *cuda_write[] = {
&cuda_writeb,
&cuda_writew,
&cuda_writel,
};
static CPUReadMemoryFunc *cuda_read[] = {
&cuda_readb,
&cuda_readw,
&cuda_readl,
};
static void cuda_save_timer(QEMUFile *f, CUDATimer *s)
{
qemu_put_be16s(f, &s->latch);
qemu_put_be16s(f, &s->counter_value);
qemu_put_sbe64s(f, &s->load_time);
qemu_put_sbe64s(f, &s->next_irq_time);
if (s->timer)
qemu_put_timer(f, s->timer);
}
static void cuda_save(QEMUFile *f, void *opaque)
{
CUDAState *s = (CUDAState *)opaque;
qemu_put_ubyte(f, s->b);
qemu_put_ubyte(f, s->a);
qemu_put_ubyte(f, s->dirb);
qemu_put_ubyte(f, s->dira);
qemu_put_ubyte(f, s->sr);
qemu_put_ubyte(f, s->acr);
qemu_put_ubyte(f, s->pcr);
qemu_put_ubyte(f, s->ifr);
qemu_put_ubyte(f, s->ier);
qemu_put_ubyte(f, s->anh);
qemu_put_sbe32s(f, &s->data_in_size);
qemu_put_sbe32s(f, &s->data_in_index);
qemu_put_sbe32s(f, &s->data_out_index);
qemu_put_ubyte(f, s->autopoll);
qemu_put_buffer(f, s->data_in, sizeof(s->data_in));
qemu_put_buffer(f, s->data_out, sizeof(s->data_out));
qemu_put_be32s(f, &s->tick_offset);
cuda_save_timer(f, &s->timers[0]);
cuda_save_timer(f, &s->timers[1]);
}
static void cuda_load_timer(QEMUFile *f, CUDATimer *s)
{
qemu_get_be16s(f, &s->latch);
qemu_get_be16s(f, &s->counter_value);
qemu_get_sbe64s(f, &s->load_time);
qemu_get_sbe64s(f, &s->next_irq_time);
if (s->timer)
qemu_get_timer(f, s->timer);
}
static int cuda_load(QEMUFile *f, void *opaque, int version_id)
{
CUDAState *s = (CUDAState *)opaque;
if (version_id != 1)
return -EINVAL;
s->b = qemu_get_ubyte(f);
s->a = qemu_get_ubyte(f);
s->dirb = qemu_get_ubyte(f);
s->dira = qemu_get_ubyte(f);
s->sr = qemu_get_ubyte(f);
s->acr = qemu_get_ubyte(f);
s->pcr = qemu_get_ubyte(f);
s->ifr = qemu_get_ubyte(f);
s->ier = qemu_get_ubyte(f);
s->anh = qemu_get_ubyte(f);
qemu_get_sbe32s(f, &s->data_in_size);
qemu_get_sbe32s(f, &s->data_in_index);
qemu_get_sbe32s(f, &s->data_out_index);
s->autopoll = qemu_get_ubyte(f);
qemu_get_buffer(f, s->data_in, sizeof(s->data_in));
qemu_get_buffer(f, s->data_out, sizeof(s->data_out));
qemu_get_be32s(f, &s->tick_offset);
cuda_load_timer(f, &s->timers[0]);
cuda_load_timer(f, &s->timers[1]);
return 0;
}
static void cuda_reset(void *opaque)
{
CUDAState *s = opaque;
s->b = 0;
s->a = 0;
s->dirb = 0;
s->dira = 0;
s->sr = 0;
s->acr = 0;
s->pcr = 0;
s->ifr = 0;
s->ier = 0;
// s->ier = T1_INT | SR_INT;
s->anh = 0;
s->data_in_size = 0;
s->data_in_index = 0;
s->data_out_index = 0;
s->autopoll = 0;
s->timers[0].latch = 0xffff;
set_counter(s, &s->timers[0], 0xffff);
s->timers[1].latch = 0;
set_counter(s, &s->timers[1], 0xffff);
}
void cuda_init (int *cuda_mem_index, qemu_irq irq)
{
struct tm tm;
CUDAState *s = &cuda_state;
s->irq = irq;
s->timers[0].index = 0;
s->timers[0].timer = qemu_new_timer(vm_clock, cuda_timer1, s);
s->timers[1].index = 1;
qemu_get_timedate(&tm, RTC_OFFSET);
s->tick_offset = mktimegm(&tm);
s->adb_poll_timer = qemu_new_timer(vm_clock, cuda_adb_poll, s);
*cuda_mem_index = cpu_register_io_memory(0, cuda_read, cuda_write, s);
register_savevm("cuda", -1, 1, cuda_save, cuda_load, s);
qemu_register_reset(cuda_reset, s);
cuda_reset(s);
}