/*
* Intel XScale PXA255/270 LCDC emulation.
*
* Copyright (c) 2006 Openedhand Ltd.
* Written by Andrzej Zaborowski <balrog@zabor.org>
*
* This code is licensed under the GPLv2.
*
* Contributions after 2012-01-13 are licensed under the terms of the
* GNU GPL, version 2 or (at your option) any later version.
*/
#include "qemu/osdep.h"
#include "qemu/log.h"
#include "hw/irq.h"
#include "migration/vmstate.h"
#include "ui/console.h"
#include "hw/arm/pxa.h"
#include "ui/pixel_ops.h"
#include "hw/boards.h"
/* FIXME: For graphic_rotate. Should probably be done in common code. */
#include "sysemu/sysemu.h"
#include "framebuffer.h"
struct DMAChannel {
uint32_t branch;
uint8_t up;
uint8_t palette[1024];
uint8_t pbuffer[1024];
void (*redraw)(PXA2xxLCDState *s, hwaddr addr,
int *miny, int *maxy);
uint32_t descriptor;
uint32_t source;
uint32_t id;
uint32_t command;
};
struct PXA2xxLCDState {
MemoryRegion *sysmem;
MemoryRegion iomem;
MemoryRegionSection fbsection;
qemu_irq irq;
int irqlevel;
int invalidated;
QemuConsole *con;
int dest_width;
int xres, yres;
int pal_for;
int transp;
enum {
pxa_lcdc_2bpp = 1,
pxa_lcdc_4bpp = 2,
pxa_lcdc_8bpp = 3,
pxa_lcdc_16bpp = 4,
pxa_lcdc_18bpp = 5,
pxa_lcdc_18pbpp = 6,
pxa_lcdc_19bpp = 7,
pxa_lcdc_19pbpp = 8,
pxa_lcdc_24bpp = 9,
pxa_lcdc_25bpp = 10,
} bpp;
uint32_t control[6];
uint32_t status[2];
uint32_t ovl1c[2];
uint32_t ovl2c[2];
uint32_t ccr;
uint32_t cmdcr;
uint32_t trgbr;
uint32_t tcr;
uint32_t liidr;
uint8_t bscntr;
struct DMAChannel dma_ch[7];
qemu_irq vsync_cb;
int orientation;
};
typedef struct QEMU_PACKED {
uint32_t fdaddr;
uint32_t fsaddr;
uint32_t fidr;
uint32_t ldcmd;
} PXAFrameDescriptor;
#define LCCR0 0x000 /* LCD Controller Control register 0 */
#define LCCR1 0x004 /* LCD Controller Control register 1 */
#define LCCR2 0x008 /* LCD Controller Control register 2 */
#define LCCR3 0x00c /* LCD Controller Control register 3 */
#define LCCR4 0x010 /* LCD Controller Control register 4 */
#define LCCR5 0x014 /* LCD Controller Control register 5 */
#define FBR0 0x020 /* DMA Channel 0 Frame Branch register */
#define FBR1 0x024 /* DMA Channel 1 Frame Branch register */
#define FBR2 0x028 /* DMA Channel 2 Frame Branch register */
#define FBR3 0x02c /* DMA Channel 3 Frame Branch register */
#define FBR4 0x030 /* DMA Channel 4 Frame Branch register */
#define FBR5 0x110 /* DMA Channel 5 Frame Branch register */
#define FBR6 0x114 /* DMA Channel 6 Frame Branch register */
#define LCSR1 0x034 /* LCD Controller Status register 1 */
#define LCSR0 0x038 /* LCD Controller Status register 0 */
#define LIIDR 0x03c /* LCD Controller Interrupt ID register */
#define TRGBR 0x040 /* TMED RGB Seed register */
#define TCR 0x044 /* TMED Control register */
#define OVL1C1 0x050 /* Overlay 1 Control register 1 */
#define OVL1C2 0x060 /* Overlay 1 Control register 2 */
#define OVL2C1 0x070 /* Overlay 2 Control register 1 */
#define OVL2C2 0x080 /* Overlay 2 Control register 2 */
#define CCR 0x090 /* Cursor Control register */
#define CMDCR 0x100 /* Command Control register */
#define PRSR 0x104 /* Panel Read Status register */
#define PXA_LCDDMA_CHANS 7
#define DMA_FDADR 0x00 /* Frame Descriptor Address register */
#define DMA_FSADR 0x04 /* Frame Source Address register */
#define DMA_FIDR 0x08 /* Frame ID register */
#define DMA_LDCMD 0x0c /* Command register */
/* LCD Buffer Strength Control register */
#define BSCNTR 0x04000054
/* Bitfield masks */
#define LCCR0_ENB (1 << 0)
#define LCCR0_CMS (1 << 1)
#define LCCR0_SDS (1 << 2)
#define LCCR0_LDM (1 << 3)
#define LCCR0_SOFM0 (1 << 4)
#define LCCR0_IUM (1 << 5)
#define LCCR0_EOFM0 (1 << 6)
#define LCCR0_PAS (1 << 7)
#define LCCR0_DPD (1 << 9)
#define LCCR0_DIS (1 << 10)
#define LCCR0_QDM (1 << 11)
#define LCCR0_PDD (0xff << 12)
#define LCCR0_BSM0 (1 << 20)
#define LCCR0_OUM (1 << 21)
#define LCCR0_LCDT (1 << 22)
#define LCCR0_RDSTM (1 << 23)
#define LCCR0_CMDIM (1 << 24)
#define LCCR0_OUC (1 << 25)
#define LCCR0_LDDALT (1 << 26)
#define LCCR1_PPL(x) ((x) & 0x3ff)
#define LCCR2_LPP(x) ((x) & 0x3ff)
#define LCCR3_API (15 << 16)
#define LCCR3_BPP(x) ((((x) >> 24) & 7) | (((x) >> 26) & 8))
#define LCCR3_PDFOR(x) (((x) >> 30) & 3)
#define LCCR4_K1(x) (((x) >> 0) & 7)
#define LCCR4_K2(x) (((x) >> 3) & 7)
#define LCCR4_K3(x) (((x) >> 6) & 7)
#define LCCR4_PALFOR(x) (((x) >> 15) & 3)
#define LCCR5_SOFM(ch) (1 << (ch - 1))
#define LCCR5_EOFM(ch) (1 << (ch + 7))
#define LCCR5_BSM(ch) (1 << (ch + 15))
#define LCCR5_IUM(ch) (1 << (ch + 23))
#define OVLC1_EN (1 << 31)
#define CCR_CEN (1 << 31)
#define FBR_BRA (1 << 0)
#define FBR_BINT (1 << 1)
#define FBR_SRCADDR (0xfffffff << 4)
#define LCSR0_LDD (1 << 0)
#define LCSR0_SOF0 (1 << 1)
#define LCSR0_BER (1 << 2)
#define LCSR0_ABC (1 << 3)
#define LCSR0_IU0 (1 << 4)
#define LCSR0_IU1 (1 << 5)
#define LCSR0_OU (1 << 6)
#define LCSR0_QD (1 << 7)
#define LCSR0_EOF0 (1 << 8)
#define LCSR0_BS0 (1 << 9)
#define LCSR0_SINT (1 << 10)
#define LCSR0_RDST (1 << 11)
#define LCSR0_CMDINT (1 << 12)
#define LCSR0_BERCH(x) (((x) & 7) << 28)
#define LCSR1_SOF(ch) (1 << (ch - 1))
#define LCSR1_EOF(ch) (1 << (ch + 7))
#define LCSR1_BS(ch) (1 << (ch + 15))
#define LCSR1_IU(ch) (1 << (ch + 23))
#define LDCMD_LENGTH(x) ((x) & 0x001ffffc)
#define LDCMD_EOFINT (1 << 21)
#define LDCMD_SOFINT (1 << 22)
#define LDCMD_PAL (1 << 26)
/* Size of a pixel in the QEMU UI output surface, in bytes */
#define DEST_PIXEL_WIDTH 4
/* Line drawing code to handle the various possible guest pixel formats */
# define SKIP_PIXEL(to) do { to += deststep; } while (0)
# define COPY_PIXEL(to, from) \
do { \
*(uint32_t *) to = from; \
SKIP_PIXEL(to); \
} while (0)
#if HOST_BIG_ENDIAN
# define SWAP_WORDS 1
#endif
#define FN_2(x) FN(x + 1) FN(x)
#define FN_4(x) FN_2(x + 2) FN_2(x)
static void pxa2xx_draw_line2(void *opaque, uint8_t *dest, const uint8_t *src,
int width, int deststep)
{
uint32_t *palette = opaque;
uint32_t data;
while (width > 0) {
data = *(uint32_t *) src;
#define FN(x) COPY_PIXEL(dest, palette[(data >> ((x) * 2)) & 3]);
#ifdef SWAP_WORDS
FN_4(12)
FN_4(8)
FN_4(4)
FN_4(0)
#else
FN_4(0)
FN_4(4)
FN_4(8)
FN_4(12)
#endif
#undef FN
width -= 16;
src += 4;
}
}
static void pxa2xx_draw_line4(void *opaque, uint8_t *dest, const uint8_t *src,
int width, int deststep)
{
uint32_t *palette = opaque;
uint32_t data;
while (width > 0) {
data = *(uint32_t *) src;
#define FN(x) COPY_PIXEL(dest, palette[(data >> ((x) * 4)) & 0xf]);
#ifdef SWAP_WORDS
FN_2(6)
FN_2(4)
FN_2(2)
FN_2(0)
#else
FN_2(0)
FN_2(2)
FN_2(4)
FN_2(6)
#endif
#undef FN
width -= 8;
src += 4;
}
}
static void pxa2xx_draw_line8(void *opaque, uint8_t *dest, const uint8_t *src,
int width, int deststep)
{
uint32_t *palette = opaque;
uint32_t data;
while (width > 0) {
data = *(uint32_t *) src;
#define FN(x) COPY_PIXEL(dest, palette[(data >> (x)) & 0xff]);
#ifdef SWAP_WORDS
FN(24)
FN(16)
FN(8)
FN(0)
#else
FN(0)
FN(8)
FN(16)
FN(24)
#endif
#undef FN
width -= 4;
src += 4;
}
}
static void pxa2xx_draw_line16(void *opaque, uint8_t *dest, const uint8_t *src,
int width, int deststep)
{
uint32_t data;
unsigned int r, g, b;
while (width > 0) {
data = *(uint32_t *) src;
#ifdef SWAP_WORDS
data = bswap32(data);
#endif
b = (data & 0x1f) << 3;
data >>= 5;
g = (data & 0x3f) << 2;
data >>= 6;
r = (data & 0x1f) << 3;
data >>= 5;
COPY_PIXEL(dest, rgb_to_pixel32(r, g, b));
b = (data & 0x1f) << 3;
data >>= 5;
g = (data & 0x3f) << 2;
data >>= 6;
r = (data & 0x1f) << 3;
COPY_PIXEL(dest, rgb_to_pixel32(r, g, b));
width -= 2;
src += 4;
}
}
static void pxa2xx_draw_line16t(void *opaque, uint8_t *dest, const uint8_t *src,
int width, int deststep)
{
uint32_t data;
unsigned int r, g, b;
while (width > 0) {
data = *(uint32_t *) src;
#ifdef SWAP_WORDS
data = bswap32(data);
#endif
b = (data & 0x1f) << 3;
data >>= 5;
g = (data & 0x1f) << 3;
data >>= 5;
r = (data & 0x1f) << 3;
data >>= 5;
if (data & 1) {
SKIP_PIXEL(dest);
} else {
COPY_PIXEL(dest, rgb_to_pixel32(r, g, b));
}
data >>= 1;
b = (data & 0x1f) << 3;
data >>= 5;
g = (data & 0x1f) << 3;
data >>= 5;
r = (data & 0x1f) << 3;
data >>= 5;
if (data & 1) {
SKIP_PIXEL(dest);
} else {
COPY_PIXEL(dest, rgb_to_pixel32(r, g, b));
}
width -= 2;
src += 4;
}
}
static void pxa2xx_draw_line18(void *opaque, uint8_t *dest, const uint8_t *src,
int width, int deststep)
{
uint32_t data;
unsigned int r, g, b;
while (width > 0) {
data = *(uint32_t *) src;
#ifdef SWAP_WORDS
data = bswap32(data);
#endif
b = (data & 0x3f) << 2;
data >>= 6;
g = (data & 0x3f) << 2;
data >>= 6;
r = (data & 0x3f) << 2;
COPY_PIXEL(dest, rgb_to_pixel32(r, g, b));
width -= 1;
src += 4;
}
}
/* The wicked packed format */
static void pxa2xx_draw_line18p(void *opaque, uint8_t *dest, const uint8_t *src,
int width, int deststep)
{
uint32_t data[3];
unsigned int r, g, b;
while (width > 0) {
data[0] = *(uint32_t *) src;
src += 4;
data[1] = *(uint32_t *) src;
src += 4;
data[2] = *(uint32_t *) src;
src += 4;
#ifdef SWAP_WORDS
data[0] = bswap32(data[0]);
data[1] = bswap32(data[1]);
data[2] = bswap32(data[2]);
#endif
b = (data[0] & 0x3f) << 2;
data[0] >>= 6;
g = (data[0] & 0x3f) << 2;
data[0] >>= 6;
r = (data[0] & 0x3f) << 2;
data[0] >>= 12;
COPY_PIXEL(dest, rgb_to_pixel32(r, g, b));
b = (data[0] & 0x3f) << 2;
data[0] >>= 6;
g = ((data[1] & 0xf) << 4) | (data[0] << 2);
data[1] >>= 4;
r = (data[1] & 0x3f) << 2;
data[1] >>= 12;
COPY_PIXEL(dest, rgb_to_pixel32(r, g, b));
b = (data[1] & 0x3f) << 2;
data[1] >>= 6;
g = (data[1] & 0x3f) << 2;
data[1] >>= 6;
r = ((data[2] & 0x3) << 6) | (data[1] << 2);
data[2] >>= 8;
COPY_PIXEL(dest, rgb_to_pixel32(r, g, b));
b = (data[2] & 0x3f) << 2;
data[2] >>= 6;
g = (data[2] & 0x3f) << 2;
data[2] >>= 6;
r = data[2] << 2;
COPY_PIXEL(dest, rgb_to_pixel32(r, g, b));
width -= 4;
}
}
static void pxa2xx_draw_line19(void *opaque, uint8_t *dest, const uint8_t *src,
int width, int deststep)
{
uint32_t data;
unsigned int r, g, b;
while (width > 0) {
data = *(uint32_t *) src;
#ifdef SWAP_WORDS
data = bswap32(data);
#endif
b = (data & 0x3f) << 2;
data >>= 6;
g = (data & 0x3f) << 2;
data >>= 6;
r = (data & 0x3f) << 2;
data >>= 6;
if (data & 1) {
SKIP_PIXEL(dest);
} else {
COPY_PIXEL(dest, rgb_to_pixel32(r, g, b));
}
width -= 1;
src += 4;
}
}
/* The wicked packed format */
static void pxa2xx_draw_line19p(void *opaque, uint8_t *dest, const uint8_t *src,
int width, int deststep)
{
uint32_t data[3];
unsigned int r, g, b;
while (width > 0) {
data[0] = *(uint32_t *) src;
src += 4;
data[1] = *(uint32_t *) src;
src += 4;
data[2] = *(uint32_t *) src;
src += 4;
# ifdef SWAP_WORDS
data[0] = bswap32(data[0]);
data[1] = bswap32(data[1]);
data[2] = bswap32(data[2]);
# endif
b = (data[0] & 0x3f) << 2;
data[0] >>= 6;
g = (data[0] & 0x3f) << 2;
data[0] >>= 6;
r = (data[0] & 0x3f) << 2;
data[0] >>= 6;
if (data[0] & 1) {
SKIP_PIXEL(dest);
} else {
COPY_PIXEL(dest, rgb_to_pixel32(r, g, b));
}
data[0] >>= 6;
b = (data[0] & 0x3f) << 2;
data[0] >>= 6;
g = ((data[1] & 0xf) << 4) | (data[0] << 2);
data[1] >>= 4;
r = (data[1] & 0x3f) << 2;
data[1] >>= 6;
if (data[1] & 1) {
SKIP_PIXEL(dest);
} else {
COPY_PIXEL(dest, rgb_to_pixel32(r, g, b));
}
data[1] >>= 6;
b = (data[1] & 0x3f) << 2;
data[1] >>= 6;
g = (data[1] & 0x3f) << 2;
data[1] >>= 6;
r = ((data[2] & 0x3) << 6) | (data[1] << 2);
data[2] >>= 2;
if (data[2] & 1) {
SKIP_PIXEL(dest);
} else {
COPY_PIXEL(dest, rgb_to_pixel32(r, g, b));
}
data[2] >>= 6;
b = (data[2] & 0x3f) << 2;
data[2] >>= 6;
g = (data[2] & 0x3f) << 2;
data[2] >>= 6;
r = data[2] << 2;
data[2] >>= 6;
if (data[2] & 1) {
SKIP_PIXEL(dest);
} else {
COPY_PIXEL(dest, rgb_to_pixel32(r, g, b));
}
width -= 4;
}
}
static void pxa2xx_draw_line24(void *opaque, uint8_t *dest, const uint8_t *src,
int width, int deststep)
{
uint32_t data;
unsigned int r, g, b;
while (width > 0) {
data = *(uint32_t *) src;
#ifdef SWAP_WORDS
data = bswap32(data);
#endif
b = data & 0xff;
data >>= 8;
g = data & 0xff;
data >>= 8;
r = data & 0xff;
COPY_PIXEL(dest, rgb_to_pixel32(r, g, b));
width -= 1;
src += 4;
}
}
static void pxa2xx_draw_line24t(void *opaque, uint8_t *dest, const uint8_t *src,
int width, int deststep)
{
uint32_t data;
unsigned int r, g, b;
while (width > 0) {
data = *(uint32_t *) src;
#ifdef SWAP_WORDS
data = bswap32(data);
#endif
b = (data & 0x7f) << 1;
data >>= 7;
g = data & 0xff;
data >>= 8;
r = data & 0xff;
data >>= 8;
if (data & 1) {
SKIP_PIXEL(dest);
} else {
COPY_PIXEL(dest, rgb_to_pixel32(r, g, b));
}
width -= 1;
src += 4;
}
}
static void pxa2xx_draw_line25(void *opaque, uint8_t *dest, const uint8_t *src,
int width, int deststep)
{
uint32_t data;
unsigned int r, g, b;
while (width > 0) {
data = *(uint32_t *) src;
#ifdef SWAP_WORDS
data = bswap32(data);
#endif
b = data & 0xff;
data >>= 8;
g = data & 0xff;
data >>= 8;
r = data & 0xff;
data >>= 8;
if (data & 1) {
SKIP_PIXEL(dest);
} else {
COPY_PIXEL(dest, rgb_to_pixel32(r, g, b));
}
width -= 1;
src += 4;
}
}
/* Overlay planes disabled, no transparency */
static drawfn pxa2xx_draw_fn_32[16] = {
[0 ... 0xf] = NULL,
[pxa_lcdc_2bpp] = pxa2xx_draw_line2,
[pxa_lcdc_4bpp] = pxa2xx_draw_line4,
[pxa_lcdc_8bpp] = pxa2xx_draw_line8,
[pxa_lcdc_16bpp] = pxa2xx_draw_line16,
[pxa_lcdc_18bpp] = pxa2xx_draw_line18,
[pxa_lcdc_18pbpp] = pxa2xx_draw_line18p,
[pxa_lcdc_24bpp] = pxa2xx_draw_line24,
};
/* Overlay planes enabled, transparency used */
static drawfn pxa2xx_draw_fn_32t[16] = {
[0 ... 0xf] = NULL,
[pxa_lcdc_4bpp] = pxa2xx_draw_line4,
[pxa_lcdc_8bpp] = pxa2xx_draw_line8,
[pxa_lcdc_16bpp] = pxa2xx_draw_line16t,
[pxa_lcdc_19bpp] = pxa2xx_draw_line19,
[pxa_lcdc_19pbpp] = pxa2xx_draw_line19p,
[pxa_lcdc_24bpp] = pxa2xx_draw_line24t,
[pxa_lcdc_25bpp] = pxa2xx_draw_line25,
};
#undef COPY_PIXEL
#undef SKIP_PIXEL
#ifdef SWAP_WORDS
# undef SWAP_WORDS
#endif
/* Route internal interrupt lines to the global IC */
static void pxa2xx_lcdc_int_update(PXA2xxLCDState *s)
{
int level = 0;
level |= (s->status[0] & LCSR0_LDD) && !(s->control[0] & LCCR0_LDM);
level |= (s->status[0] & LCSR0_SOF0) && !(s->control[0] & LCCR0_SOFM0);
level |= (s->status[0] & LCSR0_IU0) && !(s->control[0] & LCCR0_IUM);
level |= (s->status[0] & LCSR0_IU1) && !(s->control[5] & LCCR5_IUM(1));
level |= (s->status[0] & LCSR0_OU) && !(s->control[0] & LCCR0_OUM);
level |= (s->status[0] & LCSR0_QD) && !(s->control[0] & LCCR0_QDM);
level |= (s->status[0] & LCSR0_EOF0) && !(s->control[0] & LCCR0_EOFM0);
level |= (s->status[0] & LCSR0_BS0) && !(s->control[0] & LCCR0_BSM0);
level |= (s->status[0] & LCSR0_RDST) && !(s->control[0] & LCCR0_RDSTM);
level |= (s->status[0] & LCSR0_CMDINT) && !(s->control[0] & LCCR0_CMDIM);
level |= (s->status[1] & ~s->control[5]);
qemu_set_irq(s->irq, !!level);
s->irqlevel = level;
}
/* Set Branch Status interrupt high and poke associated registers */
static inline void pxa2xx_dma_bs_set(PXA2xxLCDState *s, int ch)
{
int unmasked;
if (ch == 0) {
s->status[0] |= LCSR0_BS0;
unmasked = !(s->control[0] & LCCR0_BSM0);
} else {
s->status[1] |= LCSR1_BS(ch);
unmasked = !(s->control[5] & LCCR5_BSM(ch));
}
if (unmasked) {
if (s->irqlevel)
s->status[0] |= LCSR0_SINT;
else
s->liidr = s->dma_ch[ch].id;
}
}
/* Set Start Of Frame Status interrupt high and poke associated registers */
static inline void pxa2xx_dma_sof_set(PXA2xxLCDState *s, int ch)
{
int unmasked;
if (!(s->dma_ch[ch].command & LDCMD_SOFINT))
return;
if (ch == 0) {
s->status[0] |= LCSR0_SOF0;
unmasked = !(s->control[0] & LCCR0_SOFM0);
} else {
s->status[1] |= LCSR1_SOF(ch);
unmasked = !(s->control[5] & LCCR5_SOFM(ch));
}
if (unmasked) {
if (s->irqlevel)
s->status[0] |= LCSR0_SINT;
else
s->liidr = s->dma_ch[ch].id;
}
}
/* Set End Of Frame Status interrupt high and poke associated registers */
static inline void pxa2xx_dma_eof_set(PXA2xxLCDState *s, int ch)
{
int unmasked;
if (!(s->dma_ch[ch].command & LDCMD_EOFINT))
return;
if (ch == 0) {
s->status[0] |= LCSR0_EOF0;
unmasked = !(s->control[0] & LCCR0_EOFM0);
} else {
s->status[1] |= LCSR1_EOF(ch);
unmasked = !(s->control[5] & LCCR5_EOFM(ch));
}
if (unmasked) {
if (s->irqlevel)
s->status[0] |= LCSR0_SINT;
else
s->liidr = s->dma_ch[ch].id;
}
}
/* Set Bus Error Status interrupt high and poke associated registers */
static inline void pxa2xx_dma_ber_set(PXA2xxLCDState *s, int ch)
{
s->status[0] |= LCSR0_BERCH(ch) | LCSR0_BER;
if (s->irqlevel)
s->status[0] |= LCSR0_SINT;
else
s->liidr = s->dma_ch[ch].id;
}
/* Load new Frame Descriptors from DMA */
static void pxa2xx_descriptor_load(PXA2xxLCDState *s)
{
PXAFrameDescriptor desc;
hwaddr descptr;
int i;
for (i = 0; i < PXA_LCDDMA_CHANS; i ++) {
s->dma_ch[i].source = 0;
if (!s->dma_ch[i].up)
continue;
if (s->dma_ch[i].branch & FBR_BRA) {
descptr = s->dma_ch[i].branch & FBR_SRCADDR;
if (s->dma_ch[i].branch & FBR_BINT)
pxa2xx_dma_bs_set(s, i);
s->dma_ch[i].branch &= ~FBR_BRA;
} else
descptr = s->dma_ch[i].descriptor;
if (!((descptr >= PXA2XX_SDRAM_BASE && descptr +
sizeof(desc) <= PXA2XX_SDRAM_BASE + current_machine->ram_size) ||
(descptr >= PXA2XX_INTERNAL_BASE && descptr + sizeof(desc) <=
PXA2XX_INTERNAL_BASE + PXA2XX_INTERNAL_SIZE))) {
continue;
}
cpu_physical_memory_read(descptr, &desc, sizeof(desc));
s->dma_ch[i].descriptor = le32_to_cpu(desc.fdaddr);
s->dma_ch[i].source = le32_to_cpu(desc.fsaddr);
s->dma_ch[i].id = le32_to_cpu(desc.fidr);
s->dma_ch[i].command = le32_to_cpu(desc.ldcmd);
}
}
static uint64_t pxa2xx_lcdc_read(void *opaque, hwaddr offset,
unsigned size)
{
PXA2xxLCDState *s = (PXA2xxLCDState *) opaque;
int ch;
switch (offset) {
case LCCR0:
return s->control[0];
case LCCR1:
return s->control[1];
case LCCR2:
return s->control[2];
case LCCR3:
return s->control[3];
case LCCR4:
return s->control[4];
case LCCR5:
return s->control[5];
case OVL1C1:
return s->ovl1c[0];
case OVL1C2:
return s->ovl1c[1];
case OVL2C1:
return s->ovl2c[0];
case OVL2C2:
return s->ovl2c[1];
case CCR:
return s->ccr;
case CMDCR:
return s->cmdcr;
case TRGBR:
return s->trgbr;
case TCR:
return s->tcr;
case 0x200 ... 0x1000: /* DMA per-channel registers */
ch = (offset - 0x200) >> 4;
if (!(ch >= 0 && ch < PXA_LCDDMA_CHANS))
goto fail;
switch (offset & 0xf) {
case DMA_FDADR:
return s->dma_ch[ch].descriptor;
case DMA_FSADR:
return s->dma_ch[ch].source;
case DMA_FIDR:
return s->dma_ch[ch].id;
case DMA_LDCMD:
return s->dma_ch[ch].command;
default:
goto fail;
}
case FBR0:
return s->dma_ch[0].branch;
case FBR1:
return s->dma_ch[1].branch;
case FBR2:
return s->dma_ch[2].branch;
case FBR3:
return s->dma_ch[3].branch;
case FBR4:
return s->dma_ch[4].branch;
case FBR5:
return s->dma_ch[5].branch;
case FBR6:
return s->dma_ch[6].branch;
case BSCNTR:
return s->bscntr;
case PRSR:
return 0;
case LCSR0:
return s->status[0];
case LCSR1:
return s->status[1];
case LIIDR:
return s->liidr;
default:
fail:
qemu_log_mask(LOG_GUEST_ERROR, "%s: Bad offset 0x%" HWADDR_PRIX "\n",
__func__, offset);
}
return 0;
}
static void pxa2xx_lcdc_write(void *opaque, hwaddr offset,
uint64_t value, unsigned size)
{
PXA2xxLCDState *s = (PXA2xxLCDState *) opaque;
int ch;
switch (offset) {
case LCCR0:
/* ACK Quick Disable done */
if ((s->control[0] & LCCR0_ENB) && !(value & LCCR0_ENB))
s->status[0] |= LCSR0_QD;
if (!(s->control[0] & LCCR0_LCDT) && (value & LCCR0_LCDT)) {
qemu_log_mask(LOG_UNIMP,
"%s: internal frame buffer unsupported\n", __func__);
}
if ((s->control[3] & LCCR3_API) &&
(value & LCCR0_ENB) && !(value & LCCR0_LCDT))
s->status[0] |= LCSR0_ABC;
s->control[0] = value & 0x07ffffff;
pxa2xx_lcdc_int_update(s);
s->dma_ch[0].up = !!(value & LCCR0_ENB);
s->dma_ch[1].up = (s->ovl1c[0] & OVLC1_EN) || (value & LCCR0_SDS);
break;
case LCCR1:
s->control[1] = value;
break;
case LCCR2:
s->control[2] = value;
break;
case LCCR3:
s->control[3] = value & 0xefffffff;
s->bpp = LCCR3_BPP(value);
break;
case LCCR4:
s->control[4] = value & 0x83ff81ff;
break;
case LCCR5:
s->control[5] = value & 0x3f3f3f3f;
break;
case OVL1C1:
if (!(s->ovl1c[0] & OVLC1_EN) && (value & OVLC1_EN)) {
qemu_log_mask(LOG_UNIMP, "%s: Overlay 1 not supported\n", __func__);
}
s->ovl1c[0] = value & 0x80ffffff;
s->dma_ch[1].up = (value & OVLC1_EN) || (s->control[0] & LCCR0_SDS);
break;
case OVL1C2:
s->ovl1c[1] = value & 0x000fffff;
break;
case OVL2C1:
if (!(s->ovl2c[0] & OVLC1_EN) && (value & OVLC1_EN)) {
qemu_log_mask(LOG_UNIMP, "%s: Overlay 2 not supported\n", __func__);
}
s->ovl2c[0] = value & 0x80ffffff;
s->dma_ch[2].up = !!(value & OVLC1_EN);
s->dma_ch[3].up = !!(value & OVLC1_EN);
s->dma_ch[4].up = !!(value & OVLC1_EN);
break;
case OVL2C2:
s->ovl2c[1] = value & 0x007fffff;
break;
case CCR:
if (!(s->ccr & CCR_CEN) && (value & CCR_CEN)) {
qemu_log_mask(LOG_UNIMP,
"%s: Hardware cursor unimplemented\n", __func__);
}
s->ccr = value & 0x81ffffe7;
s->dma_ch[5].up = !!(value & CCR_CEN);
break;
case CMDCR:
s->cmdcr = value & 0xff;
break;
case TRGBR:
s->trgbr = value & 0x00ffffff;
break;
case TCR:
s->tcr = value & 0x7fff;
break;
case 0x200 ... 0x1000: /* DMA per-channel registers */
ch = (offset - 0x200) >> 4;
if (!(ch >= 0 && ch < PXA_LCDDMA_CHANS))
goto fail;
switch (offset & 0xf) {
case DMA_FDADR:
s->dma_ch[ch].descriptor = value & 0xfffffff0;
break;
default:
goto fail;
}
break;
case FBR0:
s->dma_ch[0].branch = value & 0xfffffff3;
break;
case FBR1:
s->dma_ch[1].branch = value & 0xfffffff3;
break;
case FBR2:
s->dma_ch[2].branch = value & 0xfffffff3;
break;
case FBR3:
s->dma_ch[3].branch = value & 0xfffffff3;
break;
case FBR4:
s->dma_ch[4].branch = value & 0xfffffff3;
break;
case FBR5:
s->dma_ch[5].branch = value & 0xfffffff3;
break;
case FBR6:
s->dma_ch[6].branch = value & 0xfffffff3;
break;
case BSCNTR:
s->bscntr = value & 0xf;
break;
case PRSR:
break;
case LCSR0:
s->status[0] &= ~(value & 0xfff);
if (value & LCSR0_BER)
s->status[0] &= ~LCSR0_BERCH(7);
break;
case LCSR1:
s->status[1] &= ~(value & 0x3e3f3f);
break;
default:
fail:
qemu_log_mask(LOG_GUEST_ERROR, "%s: Bad offset 0x%" HWADDR_PRIX "\n",
__func__, offset);
}
}
static const MemoryRegionOps pxa2xx_lcdc_ops = {
.read = pxa2xx_lcdc_read,
.write = pxa2xx_lcdc_write,
.endianness = DEVICE_NATIVE_ENDIAN,
};
/* Load new palette for a given DMA channel, convert to internal format */
static void pxa2xx_palette_parse(PXA2xxLCDState *s, int ch, int bpp)
{
DisplaySurface *surface = qemu_console_surface(s->con);
int i, n, format, r, g, b, alpha;
uint32_t *dest;
uint8_t *src;
s->pal_for = LCCR4_PALFOR(s->control[4]);
format = s->pal_for;
switch (bpp) {
case pxa_lcdc_2bpp:
n = 4;
break;
case pxa_lcdc_4bpp:
n = 16;
break;
case pxa_lcdc_8bpp:
n = 256;
break;
default:
return;
}
src = (uint8_t *) s->dma_ch[ch].pbuffer;
dest = (uint32_t *) s->dma_ch[ch].palette;
alpha = r = g = b = 0;
for (i = 0; i < n; i ++) {
switch (format) {
case 0: /* 16 bpp, no transparency */
alpha = 0;
if (s->control[0] & LCCR0_CMS) {
r = g = b = *(uint16_t *) src & 0xff;
}
else {
r = (*(uint16_t *) src & 0xf800) >> 8;
g = (*(uint16_t *) src & 0x07e0) >> 3;
b = (*(uint16_t *) src & 0x001f) << 3;
}
src += 2;
break;
case 1: /* 16 bpp plus transparency */
alpha = *(uint32_t *) src & (1 << 24);
if (s->control[0] & LCCR0_CMS)
r = g = b = *(uint32_t *) src & 0xff;
else {
r = (*(uint32_t *) src & 0xf80000) >> 16;
g = (*(uint32_t *) src & 0x00fc00) >> 8;
b = (*(uint32_t *) src & 0x0000f8);
}
src += 4;
break;
case 2: /* 18 bpp plus transparency */
alpha = *(uint32_t *) src & (1 << 24);
if (s->control[0] & LCCR0_CMS)
r = g = b = *(uint32_t *) src & 0xff;
else {
r = (*(uint32_t *) src & 0xfc0000) >> 16;
g = (*(uint32_t *) src & 0x00fc00) >> 8;
b = (*(uint32_t *) src & 0x0000fc);
}
src += 4;
break;
case 3: /* 24 bpp plus transparency */
alpha = *(uint32_t *) src & (1 << 24);
if (s->control[0] & LCCR0_CMS)
r = g = b = *(uint32_t *) src & 0xff;
else {
r = (*(uint32_t *) src & 0xff0000) >> 16;
g = (*(uint32_t *) src & 0x00ff00) >> 8;
b = (*(uint32_t *) src & 0x0000ff);
}
src += 4;
break;
}
switch (surface_bits_per_pixel(surface)) {
case 8:
*dest = rgb_to_pixel8(r, g, b) | alpha;
break;
case 15:
*dest = rgb_to_pixel15(r, g, b) | alpha;
break;
case 16:
*dest = rgb_to_pixel16(r, g, b) | alpha;
break;
case 24:
*dest = rgb_to_pixel24(r, g, b) | alpha;
break;
case 32:
*dest = rgb_to_pixel32(r, g, b) | alpha;
break;
}
dest ++;
}
}
static inline drawfn pxa2xx_drawfn(PXA2xxLCDState *s)
{
if (s->transp) {
return pxa2xx_draw_fn_32t[s->bpp];
} else {
return pxa2xx_draw_fn_32[s->bpp];
}
}
static void pxa2xx_lcdc_dma0_redraw_rot0(PXA2xxLCDState *s,
hwaddr addr, int *miny, int *maxy)
{
DisplaySurface *surface = qemu_console_surface(s->con);
int src_width, dest_width;
drawfn fn = pxa2xx_drawfn(s);
if (!fn)
return;
src_width = (s->xres + 3) & ~3; /* Pad to a 4 pixels multiple */
if (s->bpp == pxa_lcdc_19pbpp || s->bpp == pxa_lcdc_18pbpp)
src_width *= 3;
else if (s->bpp > pxa_lcdc_16bpp)
src_width *= 4;
else if (s->bpp > pxa_lcdc_8bpp)
src_width *= 2;
dest_width = s->xres * DEST_PIXEL_WIDTH;
*miny = 0;
if (s->invalidated) {
framebuffer_update_memory_section(&s->fbsection, s->sysmem,
addr, s->yres, src_width);
}
framebuffer_update_display(surface, &s->fbsection, s->xres, s->yres,
src_width, dest_width, DEST_PIXEL_WIDTH,
s->invalidated,
fn, s->dma_ch[0].palette, miny, maxy);
}
static void pxa2xx_lcdc_dma0_redraw_rot90(PXA2xxLCDState *s,
hwaddr addr, int *miny, int *maxy)
{
DisplaySurface *surface = qemu_console_surface(s->con);
int src_width, dest_width;
drawfn fn = pxa2xx_drawfn(s);
if (!fn)
return;
src_width = (s->xres + 3) & ~3; /* Pad to a 4 pixels multiple */
if (s->bpp == pxa_lcdc_19pbpp || s->bpp == pxa_lcdc_18pbpp)
src_width *= 3;
else if (s->bpp > pxa_lcdc_16bpp)
src_width *= 4;
else if (s->bpp > pxa_lcdc_8bpp)
src_width *= 2;
dest_width = s->yres * DEST_PIXEL_WIDTH;
*miny = 0;
if (s->invalidated) {
framebuffer_update_memory_section(&s->fbsection, s->sysmem,
addr, s->yres, src_width);
}
framebuffer_update_display(surface, &s->fbsection, s->xres, s->yres,
src_width, DEST_PIXEL_WIDTH, -dest_width,
s->invalidated,
fn, s->dma_ch[0].palette,
miny, maxy);
}
static void pxa2xx_lcdc_dma0_redraw_rot180(PXA2xxLCDState *s,
hwaddr addr, int *miny, int *maxy)
{
DisplaySurface *surface = qemu_console_surface(s->con);
int src_width, dest_width;
drawfn fn = pxa2xx_drawfn(s);
if (!fn) {
return;
}
src_width = (s->xres + 3) & ~3; /* Pad to a 4 pixels multiple */
if (s->bpp == pxa_lcdc_19pbpp || s->bpp == pxa_lcdc_18pbpp) {
src_width *= 3;
} else if (s->bpp > pxa_lcdc_16bpp) {
src_width *= 4;
} else if (s->bpp > pxa_lcdc_8bpp) {
src_width *= 2;
}
dest_width = s->xres * DEST_PIXEL_WIDTH;
*miny = 0;
if (s->invalidated) {
framebuffer_update_memory_section(&s->fbsection, s->sysmem,
addr, s->yres, src_width);
}
framebuffer_update_display(surface, &s->fbsection, s->xres, s->yres,
src_width, -dest_width, -DEST_PIXEL_WIDTH,
s->invalidated,
fn, s->dma_ch[0].palette, miny, maxy);
}
static void pxa2xx_lcdc_dma0_redraw_rot270(PXA2xxLCDState *s,
hwaddr addr, int *miny, int *maxy)
{
DisplaySurface *surface = qemu_console_surface(s->con);
int src_width, dest_width;
drawfn fn = pxa2xx_drawfn(s);
if (!fn) {
return;
}
src_width = (s->xres + 3) & ~3; /* Pad to a 4 pixels multiple */
if (s->bpp == pxa_lcdc_19pbpp || s->bpp == pxa_lcdc_18pbpp) {
src_width *= 3;
} else if (s->bpp > pxa_lcdc_16bpp) {
src_width *= 4;
} else if (s->bpp > pxa_lcdc_8bpp) {
src_width *= 2;
}
dest_width = s->yres * DEST_PIXEL_WIDTH;
*miny = 0;
if (s->invalidated) {
framebuffer_update_memory_section(&s->fbsection, s->sysmem,
addr, s->yres, src_width);
}
framebuffer_update_display(surface, &s->fbsection, s->xres, s->yres,
src_width, -DEST_PIXEL_WIDTH, dest_width,
s->invalidated,
fn, s->dma_ch[0].palette,
miny, maxy);
}
static void pxa2xx_lcdc_resize(PXA2xxLCDState *s)
{
int width, height;
if (!(s->control[0] & LCCR0_ENB))
return;
width = LCCR1_PPL(s->control[1]) + 1;
height = LCCR2_LPP(s->control[2]) + 1;
if (width != s->xres || height != s->yres) {
if (s->orientation == 90 || s->orientation == 270) {
qemu_console_resize(s->con, height, width);
} else {
qemu_console_resize(s->con, width, height);
}
s->invalidated = 1;
s->xres = width;
s->yres = height;
}
}
static void pxa2xx_update_display(void *opaque)
{
PXA2xxLCDState *s = (PXA2xxLCDState *) opaque;
hwaddr fbptr;
int miny, maxy;
int ch;
if (!(s->control[0] & LCCR0_ENB))
return;
pxa2xx_descriptor_load(s);
pxa2xx_lcdc_resize(s);
miny = s->yres;
maxy = 0;
s->transp = s->dma_ch[2].up || s->dma_ch[3].up;
/* Note: With overlay planes the order depends on LCCR0 bit 25. */
for (ch = 0; ch < PXA_LCDDMA_CHANS; ch ++)
if (s->dma_ch[ch].up) {
if (!s->dma_ch[ch].source) {
pxa2xx_dma_ber_set(s, ch);
continue;
}
fbptr = s->dma_ch[ch].source;
if (!((fbptr >= PXA2XX_SDRAM_BASE &&
fbptr <= PXA2XX_SDRAM_BASE + current_machine->ram_size) ||
(fbptr >= PXA2XX_INTERNAL_BASE &&
fbptr <= PXA2XX_INTERNAL_BASE + PXA2XX_INTERNAL_SIZE))) {
pxa2xx_dma_ber_set(s, ch);
continue;
}
if (s->dma_ch[ch].command & LDCMD_PAL) {
cpu_physical_memory_read(fbptr, s->dma_ch[ch].pbuffer,
MAX(LDCMD_LENGTH(s->dma_ch[ch].command),
sizeof(s->dma_ch[ch].pbuffer)));
pxa2xx_palette_parse(s, ch, s->bpp);
} else {
/* Do we need to reparse palette */
if (LCCR4_PALFOR(s->control[4]) != s->pal_for)
pxa2xx_palette_parse(s, ch, s->bpp);
/* ACK frame start */
pxa2xx_dma_sof_set(s, ch);
s->dma_ch[ch].redraw(s, fbptr, &miny, &maxy);
s->invalidated = 0;
/* ACK frame completed */
pxa2xx_dma_eof_set(s, ch);
}
}
if (s->control[0] & LCCR0_DIS) {
/* ACK last frame completed */
s->control[0] &= ~LCCR0_ENB;
s->status[0] |= LCSR0_LDD;
}
if (miny >= 0) {
switch (s->orientation) {
case 0:
dpy_gfx_update(s->con, 0, miny, s->xres, maxy - miny + 1);
break;
case 90:
dpy_gfx_update(s->con, miny, 0, maxy - miny + 1, s->xres);
break;
case 180:
maxy = s->yres - maxy - 1;
miny = s->yres - miny - 1;
dpy_gfx_update(s->con, 0, maxy, s->xres, miny - maxy + 1);
break;
case 270:
maxy = s->yres - maxy - 1;
miny = s->yres - miny - 1;
dpy_gfx_update(s->con, maxy, 0, miny - maxy + 1, s->xres);
break;
}
}
pxa2xx_lcdc_int_update(s);
qemu_irq_raise(s->vsync_cb);
}
static void pxa2xx_invalidate_display(void *opaque)
{
PXA2xxLCDState *s = (PXA2xxLCDState *) opaque;
s->invalidated = 1;
}
static void pxa2xx_lcdc_orientation(void *opaque, int angle)
{
PXA2xxLCDState *s = (PXA2xxLCDState *) opaque;
switch (angle) {
case 0:
s->dma_ch[0].redraw = pxa2xx_lcdc_dma0_redraw_rot0;
break;
case 90:
s->dma_ch[0].redraw = pxa2xx_lcdc_dma0_redraw_rot90;
break;
case 180:
s->dma_ch[0].redraw = pxa2xx_lcdc_dma0_redraw_rot180;
break;
case 270:
s->dma_ch[0].redraw = pxa2xx_lcdc_dma0_redraw_rot270;
break;
}
s->orientation = angle;
s->xres = s->yres = -1;
pxa2xx_lcdc_resize(s);
}
static const VMStateDescription vmstate_dma_channel = {
.name = "dma_channel",
.version_id = 0,
.minimum_version_id = 0,
.fields = (VMStateField[]) {
VMSTATE_UINT32(branch, struct DMAChannel),
VMSTATE_UINT8(up, struct DMAChannel),
VMSTATE_BUFFER(pbuffer, struct DMAChannel),
VMSTATE_UINT32(descriptor, struct DMAChannel),
VMSTATE_UINT32(source, struct DMAChannel),
VMSTATE_UINT32(id, struct DMAChannel),
VMSTATE_UINT32(command, struct DMAChannel),
VMSTATE_END_OF_LIST()
}
};
static int pxa2xx_lcdc_post_load(void *opaque, int version_id)
{
PXA2xxLCDState *s = opaque;
s->bpp = LCCR3_BPP(s->control[3]);
s->xres = s->yres = s->pal_for = -1;
return 0;
}
static const VMStateDescription vmstate_pxa2xx_lcdc = {
.name = "pxa2xx_lcdc",
.version_id = 0,
.minimum_version_id = 0,
.post_load = pxa2xx_lcdc_post_load,
.fields = (VMStateField[]) {
VMSTATE_INT32(irqlevel, PXA2xxLCDState),
VMSTATE_INT32(transp, PXA2xxLCDState),
VMSTATE_UINT32_ARRAY(control, PXA2xxLCDState, 6),
VMSTATE_UINT32_ARRAY(status, PXA2xxLCDState, 2),
VMSTATE_UINT32_ARRAY(ovl1c, PXA2xxLCDState, 2),
VMSTATE_UINT32_ARRAY(ovl2c, PXA2xxLCDState, 2),
VMSTATE_UINT32(ccr, PXA2xxLCDState),
VMSTATE_UINT32(cmdcr, PXA2xxLCDState),
VMSTATE_UINT32(trgbr, PXA2xxLCDState),
VMSTATE_UINT32(tcr, PXA2xxLCDState),
VMSTATE_UINT32(liidr, PXA2xxLCDState),
VMSTATE_UINT8(bscntr, PXA2xxLCDState),
VMSTATE_STRUCT_ARRAY(dma_ch, PXA2xxLCDState, 7, 0,
vmstate_dma_channel, struct DMAChannel),
VMSTATE_END_OF_LIST()
}
};
static const GraphicHwOps pxa2xx_ops = {
.invalidate = pxa2xx_invalidate_display,
.gfx_update = pxa2xx_update_display,
};
PXA2xxLCDState *pxa2xx_lcdc_init(MemoryRegion *sysmem,
hwaddr base, qemu_irq irq)
{
PXA2xxLCDState *s;
s = g_new0(PXA2xxLCDState, 1);
s->invalidated = 1;
s->irq = irq;
s->sysmem = sysmem;
pxa2xx_lcdc_orientation(s, graphic_rotate);
memory_region_init_io(&s->iomem, NULL, &pxa2xx_lcdc_ops, s,
"pxa2xx-lcd-controller", 0x00100000);
memory_region_add_subregion(sysmem, base, &s->iomem);
s->con = graphic_console_init(NULL, 0, &pxa2xx_ops, s);
vmstate_register(NULL, 0, &vmstate_pxa2xx_lcdc, s);
return s;
}
void pxa2xx_lcd_vsync_notifier(PXA2xxLCDState *s, qemu_irq handler)
{
s->vsync_cb = handler;
}