/*
* Xilinx Display Port
*
* Copyright (C) 2015 : GreenSocs Ltd
* http://www.greensocs.com/ , email: info@greensocs.com
*
* Developed by :
* Frederic Konrad <fred.konrad@greensocs.com>
*
* This program is free software; you can redistribute it and/or modify
* it under the terms of the GNU General Public License as published by
* the Free Software Foundation, either version 2 of the License, or
* (at your option)any later version.
*
* This program is distributed in the hope that it will be useful,
* but WITHOUT ANY WARRANTY; without even the implied warranty of
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
* GNU General Public License for more details.
*
* You should have received a copy of the GNU General Public License along
* with this program; if not, see <http://www.gnu.org/licenses/>.
*
*/
#include "qemu/osdep.h"
#include "qapi/error.h"
#include "qemu/error-report.h"
#include "qemu/log.h"
#include "qemu/module.h"
#include "hw/display/xlnx_dp.h"
#include "hw/irq.h"
#include "migration/vmstate.h"
#ifndef DEBUG_DP
#define DEBUG_DP 0
#endif
#define DPRINTF(fmt, ...) do { \
if (DEBUG_DP) { \
qemu_log("xlnx_dp: " fmt , ## __VA_ARGS__); \
} \
} while (0)
/*
* Register offset for DP.
*/
#define DP_LINK_BW_SET (0x0000 >> 2)
#define DP_LANE_COUNT_SET (0x0004 >> 2)
#define DP_ENHANCED_FRAME_EN (0x0008 >> 2)
#define DP_TRAINING_PATTERN_SET (0x000C >> 2)
#define DP_LINK_QUAL_PATTERN_SET (0x0010 >> 2)
#define DP_SCRAMBLING_DISABLE (0x0014 >> 2)
#define DP_DOWNSPREAD_CTRL (0x0018 >> 2)
#define DP_SOFTWARE_RESET (0x001C >> 2)
#define DP_TRANSMITTER_ENABLE (0x0080 >> 2)
#define DP_MAIN_STREAM_ENABLE (0x0084 >> 2)
#define DP_FORCE_SCRAMBLER_RESET (0x00C0 >> 2)
#define DP_VERSION_REGISTER (0x00F8 >> 2)
#define DP_CORE_ID (0x00FC >> 2)
#define DP_AUX_COMMAND_REGISTER (0x0100 >> 2)
#define AUX_ADDR_ONLY_MASK (0x1000)
#define AUX_COMMAND_MASK (0x0F00)
#define AUX_COMMAND_SHIFT (8)
#define AUX_COMMAND_NBYTES (0x000F)
#define DP_AUX_WRITE_FIFO (0x0104 >> 2)
#define DP_AUX_ADDRESS (0x0108 >> 2)
#define DP_AUX_CLOCK_DIVIDER (0x010C >> 2)
#define DP_TX_USER_FIFO_OVERFLOW (0x0110 >> 2)
#define DP_INTERRUPT_SIGNAL_STATE (0x0130 >> 2)
#define DP_AUX_REPLY_DATA (0x0134 >> 2)
#define DP_AUX_REPLY_CODE (0x0138 >> 2)
#define DP_AUX_REPLY_COUNT (0x013C >> 2)
#define DP_REPLY_DATA_COUNT (0x0148 >> 2)
#define DP_REPLY_STATUS (0x014C >> 2)
#define DP_HPD_DURATION (0x0150 >> 2)
#define DP_MAIN_STREAM_HTOTAL (0x0180 >> 2)
#define DP_MAIN_STREAM_VTOTAL (0x0184 >> 2)
#define DP_MAIN_STREAM_POLARITY (0x0188 >> 2)
#define DP_MAIN_STREAM_HSWIDTH (0x018C >> 2)
#define DP_MAIN_STREAM_VSWIDTH (0x0190 >> 2)
#define DP_MAIN_STREAM_HRES (0x0194 >> 2)
#define DP_MAIN_STREAM_VRES (0x0198 >> 2)
#define DP_MAIN_STREAM_HSTART (0x019C >> 2)
#define DP_MAIN_STREAM_VSTART (0x01A0 >> 2)
#define DP_MAIN_STREAM_MISC0 (0x01A4 >> 2)
#define DP_MAIN_STREAM_MISC1 (0x01A8 >> 2)
#define DP_MAIN_STREAM_M_VID (0x01AC >> 2)
#define DP_MSA_TRANSFER_UNIT_SIZE (0x01B0 >> 2)
#define DP_MAIN_STREAM_N_VID (0x01B4 >> 2)
#define DP_USER_DATA_COUNT_PER_LANE (0x01BC >> 2)
#define DP_MIN_BYTES_PER_TU (0x01C4 >> 2)
#define DP_FRAC_BYTES_PER_TU (0x01C8 >> 2)
#define DP_INIT_WAIT (0x01CC >> 2)
#define DP_PHY_RESET (0x0200 >> 2)
#define DP_PHY_VOLTAGE_DIFF_LANE_0 (0x0220 >> 2)
#define DP_PHY_VOLTAGE_DIFF_LANE_1 (0x0224 >> 2)
#define DP_TRANSMIT_PRBS7 (0x0230 >> 2)
#define DP_PHY_CLOCK_SELECT (0x0234 >> 2)
#define DP_TX_PHY_POWER_DOWN (0x0238 >> 2)
#define DP_PHY_PRECURSOR_LANE_0 (0x023C >> 2)
#define DP_PHY_PRECURSOR_LANE_1 (0x0240 >> 2)
#define DP_PHY_POSTCURSOR_LANE_0 (0x024C >> 2)
#define DP_PHY_POSTCURSOR_LANE_1 (0x0250 >> 2)
#define DP_PHY_STATUS (0x0280 >> 2)
#define DP_TX_AUDIO_CONTROL (0x0300 >> 2)
#define DP_TX_AUD_CTRL (1)
#define DP_TX_AUDIO_CHANNELS (0x0304 >> 2)
#define DP_TX_AUDIO_INFO_DATA(n) ((0x0308 + 4 * n) >> 2)
#define DP_TX_M_AUD (0x0328 >> 2)
#define DP_TX_N_AUD (0x032C >> 2)
#define DP_TX_AUDIO_EXT_DATA(n) ((0x0330 + 4 * n) >> 2)
#define DP_INT_STATUS (0x03A0 >> 2)
#define DP_INT_MASK (0x03A4 >> 2)
#define DP_INT_EN (0x03A8 >> 2)
#define DP_INT_DS (0x03AC >> 2)
/*
* Registers offset for Audio Video Buffer configuration.
*/
#define V_BLEND_OFFSET (0xA000)
#define V_BLEND_BG_CLR_0 (0x0000 >> 2)
#define V_BLEND_BG_CLR_1 (0x0004 >> 2)
#define V_BLEND_BG_CLR_2 (0x0008 >> 2)
#define V_BLEND_SET_GLOBAL_ALPHA_REG (0x000C >> 2)
#define V_BLEND_OUTPUT_VID_FORMAT (0x0014 >> 2)
#define V_BLEND_LAYER0_CONTROL (0x0018 >> 2)
#define V_BLEND_LAYER1_CONTROL (0x001C >> 2)
#define V_BLEND_RGB2YCBCR_COEFF(n) ((0x0020 + 4 * n) >> 2)
#define V_BLEND_IN1CSC_COEFF(n) ((0x0044 + 4 * n) >> 2)
#define V_BLEND_LUMA_IN1CSC_OFFSET (0x0068 >> 2)
#define V_BLEND_CR_IN1CSC_OFFSET (0x006C >> 2)
#define V_BLEND_CB_IN1CSC_OFFSET (0x0070 >> 2)
#define V_BLEND_LUMA_OUTCSC_OFFSET (0x0074 >> 2)
#define V_BLEND_CR_OUTCSC_OFFSET (0x0078 >> 2)
#define V_BLEND_CB_OUTCSC_OFFSET (0x007C >> 2)
#define V_BLEND_IN2CSC_COEFF(n) ((0x0080 + 4 * n) >> 2)
#define V_BLEND_LUMA_IN2CSC_OFFSET (0x00A4 >> 2)
#define V_BLEND_CR_IN2CSC_OFFSET (0x00A8 >> 2)
#define V_BLEND_CB_IN2CSC_OFFSET (0x00AC >> 2)
#define V_BLEND_CHROMA_KEY_ENABLE (0x01D0 >> 2)
#define V_BLEND_CHROMA_KEY_COMP1 (0x01D4 >> 2)
#define V_BLEND_CHROMA_KEY_COMP2 (0x01D8 >> 2)
#define V_BLEND_CHROMA_KEY_COMP3 (0x01DC >> 2)
/*
* Registers offset for Audio Video Buffer configuration.
*/
#define AV_BUF_MANAGER_OFFSET (0xB000)
#define AV_BUF_FORMAT (0x0000 >> 2)
#define AV_BUF_NON_LIVE_LATENCY (0x0008 >> 2)
#define AV_CHBUF0 (0x0010 >> 2)
#define AV_CHBUF1 (0x0014 >> 2)
#define AV_CHBUF2 (0x0018 >> 2)
#define AV_CHBUF3 (0x001C >> 2)
#define AV_CHBUF4 (0x0020 >> 2)
#define AV_CHBUF5 (0x0024 >> 2)
#define AV_BUF_STC_CONTROL (0x002C >> 2)
#define AV_BUF_STC_INIT_VALUE0 (0x0030 >> 2)
#define AV_BUF_STC_INIT_VALUE1 (0x0034 >> 2)
#define AV_BUF_STC_ADJ (0x0038 >> 2)
#define AV_BUF_STC_VIDEO_VSYNC_TS_REG0 (0x003C >> 2)
#define AV_BUF_STC_VIDEO_VSYNC_TS_REG1 (0x0040 >> 2)
#define AV_BUF_STC_EXT_VSYNC_TS_REG0 (0x0044 >> 2)
#define AV_BUF_STC_EXT_VSYNC_TS_REG1 (0x0048 >> 2)
#define AV_BUF_STC_CUSTOM_EVENT_TS_REG0 (0x004C >> 2)
#define AV_BUF_STC_CUSTOM_EVENT_TS_REG1 (0x0050 >> 2)
#define AV_BUF_STC_CUSTOM_EVENT2_TS_REG0 (0x0054 >> 2)
#define AV_BUF_STC_CUSTOM_EVENT2_TS_REG1 (0x0058 >> 2)
#define AV_BUF_STC_SNAPSHOT0 (0x0060 >> 2)
#define AV_BUF_STC_SNAPSHOT1 (0x0064 >> 2)
#define AV_BUF_OUTPUT_AUDIO_VIDEO_SELECT (0x0070 >> 2)
#define AV_BUF_HCOUNT_VCOUNT_INT0 (0x0074 >> 2)
#define AV_BUF_HCOUNT_VCOUNT_INT1 (0x0078 >> 2)
#define AV_BUF_DITHER_CONFIG (0x007C >> 2)
#define AV_BUF_DITHER_CONFIG_MAX (0x008C >> 2)
#define AV_BUF_DITHER_CONFIG_MIN (0x0090 >> 2)
#define AV_BUF_PATTERN_GEN_SELECT (0x0100 >> 2)
#define AV_BUF_AUD_VID_CLK_SOURCE (0x0120 >> 2)
#define AV_BUF_SRST_REG (0x0124 >> 2)
#define AV_BUF_AUDIO_RDY_INTERVAL (0x0128 >> 2)
#define AV_BUF_AUDIO_CH_CONFIG (0x012C >> 2)
#define AV_BUF_GRAPHICS_COMP_SCALE_FACTOR(n)((0x0200 + 4 * n) >> 2)
#define AV_BUF_VIDEO_COMP_SCALE_FACTOR(n) ((0x020C + 4 * n) >> 2)
#define AV_BUF_LIVE_VIDEO_COMP_SF(n) ((0x0218 + 4 * n) >> 2)
#define AV_BUF_LIVE_VID_CONFIG (0x0224 >> 2)
#define AV_BUF_LIVE_GFX_COMP_SF(n) ((0x0228 + 4 * n) >> 2)
#define AV_BUF_LIVE_GFX_CONFIG (0x0234 >> 2)
#define AUDIO_MIXER_REGISTER_OFFSET (0xC000)
#define AUDIO_MIXER_VOLUME_CONTROL (0x0000 >> 2)
#define AUDIO_MIXER_META_DATA (0x0004 >> 2)
#define AUD_CH_STATUS_REG(n) ((0x0008 + 4 * n) >> 2)
#define AUD_CH_A_DATA_REG(n) ((0x0020 + 4 * n) >> 2)
#define AUD_CH_B_DATA_REG(n) ((0x0038 + 4 * n) >> 2)
#define DP_AUDIO_DMA_CHANNEL(n) (4 + n)
#define DP_GRAPHIC_DMA_CHANNEL (3)
#define DP_VIDEO_DMA_CHANNEL (0)
enum DPGraphicFmt {
DP_GRAPHIC_RGBA8888 = 0 << 8,
DP_GRAPHIC_ABGR8888 = 1 << 8,
DP_GRAPHIC_RGB888 = 2 << 8,
DP_GRAPHIC_BGR888 = 3 << 8,
DP_GRAPHIC_RGBA5551 = 4 << 8,
DP_GRAPHIC_RGBA4444 = 5 << 8,
DP_GRAPHIC_RGB565 = 6 << 8,
DP_GRAPHIC_8BPP = 7 << 8,
DP_GRAPHIC_4BPP = 8 << 8,
DP_GRAPHIC_2BPP = 9 << 8,
DP_GRAPHIC_1BPP = 10 << 8,
DP_GRAPHIC_MASK = 0xF << 8
};
enum DPVideoFmt {
DP_NL_VID_CB_Y0_CR_Y1 = 0,
DP_NL_VID_CR_Y0_CB_Y1 = 1,
DP_NL_VID_Y0_CR_Y1_CB = 2,
DP_NL_VID_Y0_CB_Y1_CR = 3,
DP_NL_VID_YV16 = 4,
DP_NL_VID_YV24 = 5,
DP_NL_VID_YV16CL = 6,
DP_NL_VID_MONO = 7,
DP_NL_VID_YV16CL2 = 8,
DP_NL_VID_YUV444 = 9,
DP_NL_VID_RGB888 = 10,
DP_NL_VID_RGBA8880 = 11,
DP_NL_VID_RGB888_10BPC = 12,
DP_NL_VID_YUV444_10BPC = 13,
DP_NL_VID_YV16CL2_10BPC = 14,
DP_NL_VID_YV16CL_10BPC = 15,
DP_NL_VID_YV16_10BPC = 16,
DP_NL_VID_YV24_10BPC = 17,
DP_NL_VID_Y_ONLY_10BPC = 18,
DP_NL_VID_YV16_420 = 19,
DP_NL_VID_YV16CL_420 = 20,
DP_NL_VID_YV16CL2_420 = 21,
DP_NL_VID_YV16_420_10BPC = 22,
DP_NL_VID_YV16CL_420_10BPC = 23,
DP_NL_VID_YV16CL2_420_10BPC = 24,
DP_NL_VID_FMT_MASK = 0x1F
};
typedef enum DPGraphicFmt DPGraphicFmt;
typedef enum DPVideoFmt DPVideoFmt;
static const VMStateDescription vmstate_dp = {
.name = TYPE_XLNX_DP,
.version_id = 1,
.fields = (VMStateField[]){
VMSTATE_UINT32_ARRAY(core_registers, XlnxDPState,
DP_CORE_REG_ARRAY_SIZE),
VMSTATE_UINT32_ARRAY(avbufm_registers, XlnxDPState,
DP_AVBUF_REG_ARRAY_SIZE),
VMSTATE_UINT32_ARRAY(vblend_registers, XlnxDPState,
DP_VBLEND_REG_ARRAY_SIZE),
VMSTATE_UINT32_ARRAY(audio_registers, XlnxDPState,
DP_AUDIO_REG_ARRAY_SIZE),
VMSTATE_END_OF_LIST()
}
};
static void xlnx_dp_update_irq(XlnxDPState *s);
static uint64_t xlnx_dp_audio_read(void *opaque, hwaddr offset, unsigned size)
{
XlnxDPState *s = XLNX_DP(opaque);
offset = offset >> 2;
return s->audio_registers[offset];
}
static void xlnx_dp_audio_write(void *opaque, hwaddr offset, uint64_t value,
unsigned size)
{
XlnxDPState *s = XLNX_DP(opaque);
offset = offset >> 2;
switch (offset) {
case AUDIO_MIXER_META_DATA:
s->audio_registers[offset] = value & 0x00000001;
break;
default:
s->audio_registers[offset] = value;
break;
}
}
static const MemoryRegionOps audio_ops = {
.read = xlnx_dp_audio_read,
.write = xlnx_dp_audio_write,
.endianness = DEVICE_NATIVE_ENDIAN,
};
static inline uint32_t xlnx_dp_audio_get_volume(XlnxDPState *s,
uint8_t channel)
{
switch (channel) {
case 0:
return extract32(s->audio_registers[AUDIO_MIXER_VOLUME_CONTROL], 0, 16);
case 1:
return extract32(s->audio_registers[AUDIO_MIXER_VOLUME_CONTROL], 16,
16);
default:
return 0;
}
}
static inline void xlnx_dp_audio_activate(XlnxDPState *s)
{
bool activated = ((s->core_registers[DP_TX_AUDIO_CONTROL]
& DP_TX_AUD_CTRL) != 0);
AUD_set_active_out(s->amixer_output_stream, activated);
xlnx_dpdma_set_host_data_location(s->dpdma, DP_AUDIO_DMA_CHANNEL(0),
&s->audio_buffer_0);
xlnx_dpdma_set_host_data_location(s->dpdma, DP_AUDIO_DMA_CHANNEL(1),
&s->audio_buffer_1);
}
static inline void xlnx_dp_audio_mix_buffer(XlnxDPState *s)
{
/*
* Audio packets are signed and have this shape:
* | 16 | 16 | 16 | 16 | 16 | 16 | 16 | 16 |
* | R3 | L3 | R2 | L2 | R1 | L1 | R0 | L0 |
*
* Output audio is 16bits saturated.
*/
int i;
if ((s->audio_data_available[0]) && (xlnx_dp_audio_get_volume(s, 0))) {
for (i = 0; i < s->audio_data_available[0] / 2; i++) {
s->temp_buffer[i] = (int64_t)(s->audio_buffer_0[i])
* xlnx_dp_audio_get_volume(s, 0) / 8192;
}
s->byte_left = s->audio_data_available[0];
} else {
memset(s->temp_buffer, 0, s->audio_data_available[1] / 2);
}
if ((s->audio_data_available[1]) && (xlnx_dp_audio_get_volume(s, 1))) {
if ((s->audio_data_available[0] == 0)
|| (s->audio_data_available[1] == s->audio_data_available[0])) {
for (i = 0; i < s->audio_data_available[1] / 2; i++) {
s->temp_buffer[i] += (int64_t)(s->audio_buffer_1[i])
* xlnx_dp_audio_get_volume(s, 1) / 8192;
}
s->byte_left = s->audio_data_available[1];
}
}
for (i = 0; i < s->byte_left / 2; i++) {
s->out_buffer[i] = MAX(-32767, MIN(s->temp_buffer[i], 32767));
}
s->data_ptr = 0;
}
static void xlnx_dp_audio_callback(void *opaque, int avail)
{
/*
* Get some data from the DPDMA and compute these datas.
* Then wait for QEMU's audio subsystem to call this callback.
*/
XlnxDPState *s = XLNX_DP(opaque);
size_t written = 0;
/* If there are already some data don't get more data. */
if (s->byte_left == 0) {
s->audio_data_available[0] = xlnx_dpdma_start_operation(s->dpdma, 4,
true);
s->audio_data_available[1] = xlnx_dpdma_start_operation(s->dpdma, 5,
true);
xlnx_dp_audio_mix_buffer(s);
}
/* Send the buffer through the audio. */
if (s->byte_left <= MAX_QEMU_BUFFER_SIZE) {
if (s->byte_left != 0) {
written = AUD_write(s->amixer_output_stream,
&s->out_buffer[s->data_ptr], s->byte_left);
} else {
int len_to_copy;
/*
* There is nothing to play.. We don't have any data! Fill the
* buffer with zero's and send it.
*/
written = 0;
while (avail) {
len_to_copy = MIN(AUD_CHBUF_MAX_DEPTH, avail);
memset(s->out_buffer, 0, len_to_copy);
avail -= AUD_write(s->amixer_output_stream, s->out_buffer,
len_to_copy);
}
}
} else {
written = AUD_write(s->amixer_output_stream,
&s->out_buffer[s->data_ptr], MAX_QEMU_BUFFER_SIZE);
}
s->byte_left -= written;
s->data_ptr += written;
}
/*
* AUX channel related function.
*/
static void xlnx_dp_aux_clear_rx_fifo(XlnxDPState *s)
{
fifo8_reset(&s->rx_fifo);
}
static void xlnx_dp_aux_push_rx_fifo(XlnxDPState *s, uint8_t *buf, size_t len)
{
DPRINTF("Push %u data in rx_fifo\n", (unsigned)len);
fifo8_push_all(&s->rx_fifo, buf, len);
}
static uint8_t xlnx_dp_aux_pop_rx_fifo(XlnxDPState *s)
{
uint8_t ret;
if (fifo8_is_empty(&s->rx_fifo)) {
qemu_log_mask(LOG_GUEST_ERROR,
"%s: Reading empty RX_FIFO\n",
__func__);
/*
* The datasheet is not clear about the reset value, it seems
* to be unspecified. We choose to return '0'.
*/
ret = 0;
} else {
ret = fifo8_pop(&s->rx_fifo);
DPRINTF("pop 0x%" PRIX8 " from rx_fifo.\n", ret);
}
return ret;
}
static void xlnx_dp_aux_clear_tx_fifo(XlnxDPState *s)
{
fifo8_reset(&s->tx_fifo);
}
static void xlnx_dp_aux_push_tx_fifo(XlnxDPState *s, uint8_t *buf, size_t len)
{
DPRINTF("Push %u data in tx_fifo\n", (unsigned)len);
fifo8_push_all(&s->tx_fifo, buf, len);
}
static uint8_t xlnx_dp_aux_pop_tx_fifo(XlnxDPState *s)
{
uint8_t ret;
if (fifo8_is_empty(&s->tx_fifo)) {
error_report("%s: TX_FIFO underflow", __func__);
abort();
}
ret = fifo8_pop(&s->tx_fifo);
DPRINTF("pop 0x%2.2X from tx_fifo.\n", ret);
return ret;
}
static uint32_t xlnx_dp_aux_get_address(XlnxDPState *s)
{
return s->core_registers[DP_AUX_ADDRESS];
}
/*
* Get command from the register.
*/
static void xlnx_dp_aux_set_command(XlnxDPState *s, uint32_t value)
{
bool address_only = (value & AUX_ADDR_ONLY_MASK) != 0;
AUXCommand cmd = (value & AUX_COMMAND_MASK) >> AUX_COMMAND_SHIFT;
uint8_t nbytes = (value & AUX_COMMAND_NBYTES) + 1;
uint8_t buf[16];
int i;
/*
* When an address_only command is executed nothing happen to the fifo, so
* just make nbytes = 0.
*/
if (address_only) {
nbytes = 0;
}
switch (cmd) {
case READ_AUX:
case READ_I2C:
case READ_I2C_MOT:
s->core_registers[DP_AUX_REPLY_CODE] = aux_request(s->aux_bus, cmd,
xlnx_dp_aux_get_address(s),
nbytes, buf);
s->core_registers[DP_REPLY_DATA_COUNT] = nbytes;
if (s->core_registers[DP_AUX_REPLY_CODE] == AUX_I2C_ACK) {
xlnx_dp_aux_push_rx_fifo(s, buf, nbytes);
}
break;
case WRITE_AUX:
case WRITE_I2C:
case WRITE_I2C_MOT:
for (i = 0; i < nbytes; i++) {
buf[i] = xlnx_dp_aux_pop_tx_fifo(s);
}
s->core_registers[DP_AUX_REPLY_CODE] = aux_request(s->aux_bus, cmd,
xlnx_dp_aux_get_address(s),
nbytes, buf);
xlnx_dp_aux_clear_tx_fifo(s);
break;
case WRITE_I2C_STATUS:
qemu_log_mask(LOG_UNIMP, "xlnx_dp: Write i2c status not implemented\n");
break;
default:
error_report("%s: invalid command: %u", __func__, cmd);
abort();
}
s->core_registers[DP_INTERRUPT_SIGNAL_STATE] |= 0x04;
}
static void xlnx_dp_set_dpdma(const Object *obj, const char *name, Object *val,
Error **errp)
{
XlnxDPState *s = XLNX_DP(obj);
if (s->console) {
DisplaySurface *surface = qemu_console_surface(s->console);
XlnxDPDMAState *dma = XLNX_DPDMA(val);
xlnx_dpdma_set_host_data_location(dma, DP_GRAPHIC_DMA_CHANNEL,
surface_data(surface));
}
}
static inline uint8_t xlnx_dp_global_alpha_value(XlnxDPState *s)
{
return (s->vblend_registers[V_BLEND_SET_GLOBAL_ALPHA_REG] & 0x1FE) >> 1;
}
static inline bool xlnx_dp_global_alpha_enabled(XlnxDPState *s)
{
/*
* If the alpha is totally opaque (255) we consider the alpha is disabled to
* reduce CPU consumption.
*/
return ((xlnx_dp_global_alpha_value(s) != 0xFF) &&
((s->vblend_registers[V_BLEND_SET_GLOBAL_ALPHA_REG] & 0x01) != 0));
}
static void xlnx_dp_recreate_surface(XlnxDPState *s)
{
/*
* Two possibilities, if blending is enabled the console displays
* bout_plane, if not g_plane is displayed.
*/
uint16_t width = s->core_registers[DP_MAIN_STREAM_HRES];
uint16_t height = s->core_registers[DP_MAIN_STREAM_VRES];
DisplaySurface *current_console_surface = qemu_console_surface(s->console);
if ((width != 0) && (height != 0)) {
/*
* As dpy_gfx_replace_surface calls qemu_free_displaysurface on the
* surface we need to be careful and don't free the surface associated
* to the console or double free will happen.
*/
if (s->bout_plane.surface != current_console_surface) {
qemu_free_displaysurface(s->bout_plane.surface);
}
if (s->v_plane.surface != current_console_surface) {
qemu_free_displaysurface(s->v_plane.surface);
}
if (s->g_plane.surface != current_console_surface) {
qemu_free_displaysurface(s->g_plane.surface);
}
s->g_plane.surface
= qemu_create_displaysurface_from(width, height,
s->g_plane.format, 0, NULL);
s->v_plane.surface
= qemu_create_displaysurface_from(width, height,
s->v_plane.format, 0, NULL);
if (xlnx_dp_global_alpha_enabled(s)) {
s->bout_plane.surface =
qemu_create_displaysurface_from(width,
height,
s->g_plane.format,
0, NULL);
dpy_gfx_replace_surface(s->console, s->bout_plane.surface);
} else {
s->bout_plane.surface = NULL;
dpy_gfx_replace_surface(s->console, s->g_plane.surface);
}
xlnx_dpdma_set_host_data_location(s->dpdma, DP_GRAPHIC_DMA_CHANNEL,
surface_data(s->g_plane.surface));
xlnx_dpdma_set_host_data_location(s->dpdma, DP_VIDEO_DMA_CHANNEL,
surface_data(s->v_plane.surface));
}
}
/*
* Change the graphic format of the surface.
*/
static void xlnx_dp_change_graphic_fmt(XlnxDPState *s)
{
switch (s->avbufm_registers[AV_BUF_FORMAT] & DP_GRAPHIC_MASK) {
case DP_GRAPHIC_RGBA8888:
s->g_plane.format = PIXMAN_r8g8b8a8;
break;
case DP_GRAPHIC_ABGR8888:
s->g_plane.format = PIXMAN_a8b8g8r8;
break;
case DP_GRAPHIC_RGB565:
s->g_plane.format = PIXMAN_r5g6b5;
break;
case DP_GRAPHIC_RGB888:
s->g_plane.format = PIXMAN_r8g8b8;
break;
case DP_GRAPHIC_BGR888:
s->g_plane.format = PIXMAN_b8g8r8;
break;
default:
error_report("%s: unsupported graphic format %u", __func__,
s->avbufm_registers[AV_BUF_FORMAT] & DP_GRAPHIC_MASK);
abort();
}
switch (s->avbufm_registers[AV_BUF_FORMAT] & DP_NL_VID_FMT_MASK) {
case 0:
s->v_plane.format = PIXMAN_x8b8g8r8;
break;
case DP_NL_VID_Y0_CB_Y1_CR:
s->v_plane.format = PIXMAN_yuy2;
break;
case DP_NL_VID_RGBA8880:
s->v_plane.format = PIXMAN_x8b8g8r8;
break;
default:
error_report("%s: unsupported video format %u", __func__,
s->avbufm_registers[AV_BUF_FORMAT] & DP_NL_VID_FMT_MASK);
abort();
}
xlnx_dp_recreate_surface(s);
}
static void xlnx_dp_update_irq(XlnxDPState *s)
{
uint32_t flags;
flags = s->core_registers[DP_INT_STATUS] & ~s->core_registers[DP_INT_MASK];
DPRINTF("update IRQ value = %" PRIx32 "\n", flags);
qemu_set_irq(s->irq, flags != 0);
}
static uint64_t xlnx_dp_read(void *opaque, hwaddr offset, unsigned size)
{
XlnxDPState *s = XLNX_DP(opaque);
uint64_t ret = 0;
offset = offset >> 2;
switch (offset) {
case DP_TX_USER_FIFO_OVERFLOW:
/* This register is cleared after a read */
ret = s->core_registers[DP_TX_USER_FIFO_OVERFLOW];
s->core_registers[DP_TX_USER_FIFO_OVERFLOW] = 0;
break;
case DP_AUX_REPLY_DATA:
ret = xlnx_dp_aux_pop_rx_fifo(s);
break;
case DP_INTERRUPT_SIGNAL_STATE:
/*
* XXX: Not sure it is the right thing to do actually.
* The register is not written by the device driver so it's stuck
* to 0x04.
*/
ret = s->core_registers[DP_INTERRUPT_SIGNAL_STATE];
s->core_registers[DP_INTERRUPT_SIGNAL_STATE] &= ~0x04;
break;
case DP_AUX_WRITE_FIFO:
case DP_TX_AUDIO_INFO_DATA(0):
case DP_TX_AUDIO_INFO_DATA(1):
case DP_TX_AUDIO_INFO_DATA(2):
case DP_TX_AUDIO_INFO_DATA(3):
case DP_TX_AUDIO_INFO_DATA(4):
case DP_TX_AUDIO_INFO_DATA(5):
case DP_TX_AUDIO_INFO_DATA(6):
case DP_TX_AUDIO_INFO_DATA(7):
case DP_TX_AUDIO_EXT_DATA(0):
case DP_TX_AUDIO_EXT_DATA(1):
case DP_TX_AUDIO_EXT_DATA(2):
case DP_TX_AUDIO_EXT_DATA(3):
case DP_TX_AUDIO_EXT_DATA(4):
case DP_TX_AUDIO_EXT_DATA(5):
case DP_TX_AUDIO_EXT_DATA(6):
case DP_TX_AUDIO_EXT_DATA(7):
case DP_TX_AUDIO_EXT_DATA(8):
/* write only registers */
ret = 0;
break;
default:
assert(offset <= (0x3AC >> 2));
if (offset == (0x3A8 >> 2) || offset == (0x3AC >> 2)) {
ret = s->core_registers[DP_INT_MASK];
} else {
ret = s->core_registers[offset];
}
break;
}
DPRINTF("core read @%" PRIx64 " = 0x%8.8" PRIX64 "\n", offset << 2, ret);
return ret;
}
static void xlnx_dp_write(void *opaque, hwaddr offset, uint64_t value,
unsigned size)
{
XlnxDPState *s = XLNX_DP(opaque);
DPRINTF("core write @%" PRIx64 " = 0x%8.8" PRIX64 "\n", offset, value);
offset = offset >> 2;
switch (offset) {
/*
* Only special write case are handled.
*/
case DP_LINK_BW_SET:
s->core_registers[offset] = value & 0x000000FF;
break;
case DP_LANE_COUNT_SET:
case DP_MAIN_STREAM_MISC0:
s->core_registers[offset] = value & 0x0000000F;
break;
case DP_TRAINING_PATTERN_SET:
case DP_LINK_QUAL_PATTERN_SET:
case DP_MAIN_STREAM_POLARITY:
case DP_PHY_VOLTAGE_DIFF_LANE_0:
case DP_PHY_VOLTAGE_DIFF_LANE_1:
s->core_registers[offset] = value & 0x00000003;
break;
case DP_ENHANCED_FRAME_EN:
case DP_SCRAMBLING_DISABLE:
case DP_DOWNSPREAD_CTRL:
case DP_MAIN_STREAM_ENABLE:
case DP_TRANSMIT_PRBS7:
s->core_registers[offset] = value & 0x00000001;
break;
case DP_PHY_CLOCK_SELECT:
s->core_registers[offset] = value & 0x00000007;
break;
case DP_SOFTWARE_RESET:
/*
* No need to update this bit as it's read '0'.
*/
/*
* TODO: reset IP.
*/
break;
case DP_TRANSMITTER_ENABLE:
s->core_registers[offset] = value & 0x01;
break;
case DP_FORCE_SCRAMBLER_RESET:
/*
* No need to update this bit as it's read '0'.
*/
/*
* TODO: force a scrambler reset??
*/
break;
case DP_AUX_COMMAND_REGISTER:
s->core_registers[offset] = value & 0x00001F0F;
xlnx_dp_aux_set_command(s, s->core_registers[offset]);
break;
case DP_MAIN_STREAM_HTOTAL:
case DP_MAIN_STREAM_VTOTAL:
case DP_MAIN_STREAM_HSTART:
case DP_MAIN_STREAM_VSTART:
s->core_registers[offset] = value & 0x0000FFFF;
break;
case DP_MAIN_STREAM_HRES:
case DP_MAIN_STREAM_VRES:
s->core_registers[offset] = value & 0x0000FFFF;
xlnx_dp_recreate_surface(s);
break;
case DP_MAIN_STREAM_HSWIDTH:
case DP_MAIN_STREAM_VSWIDTH:
s->core_registers[offset] = value & 0x00007FFF;
break;
case DP_MAIN_STREAM_MISC1:
s->core_registers[offset] = value & 0x00000086;
break;
case DP_MAIN_STREAM_M_VID:
case DP_MAIN_STREAM_N_VID:
s->core_registers[offset] = value & 0x00FFFFFF;
break;
case DP_MSA_TRANSFER_UNIT_SIZE:
case DP_MIN_BYTES_PER_TU:
case DP_INIT_WAIT:
s->core_registers[offset] = value & 0x00000007;
break;
case DP_USER_DATA_COUNT_PER_LANE:
s->core_registers[offset] = value & 0x0003FFFF;
break;
case DP_FRAC_BYTES_PER_TU:
s->core_registers[offset] = value & 0x000003FF;
break;
case DP_PHY_RESET:
s->core_registers[offset] = value & 0x00010003;
/*
* TODO: Reset something?
*/
break;
case DP_TX_PHY_POWER_DOWN:
s->core_registers[offset] = value & 0x0000000F;
/*
* TODO: Power down things?
*/
break;
case DP_AUX_WRITE_FIFO: {
uint8_t c = value;
xlnx_dp_aux_push_tx_fifo(s, &c, 1);
break;
}
case DP_AUX_CLOCK_DIVIDER:
break;
case DP_AUX_REPLY_COUNT:
/*
* Writing to this register clear the counter.
*/
s->core_registers[offset] = 0x00000000;
break;
case DP_AUX_ADDRESS:
s->core_registers[offset] = value & 0x000FFFFF;
break;
case DP_VERSION_REGISTER:
case DP_CORE_ID:
case DP_TX_USER_FIFO_OVERFLOW:
case DP_AUX_REPLY_DATA:
case DP_AUX_REPLY_CODE:
case DP_REPLY_DATA_COUNT:
case DP_REPLY_STATUS:
case DP_HPD_DURATION:
/*
* Write to read only location..
*/
break;
case DP_TX_AUDIO_CONTROL:
s->core_registers[offset] = value & 0x00000001;
xlnx_dp_audio_activate(s);
break;
case DP_TX_AUDIO_CHANNELS:
s->core_registers[offset] = value & 0x00000007;
xlnx_dp_audio_activate(s);
break;
case DP_INT_STATUS:
s->core_registers[DP_INT_STATUS] &= ~value;
xlnx_dp_update_irq(s);
break;
case DP_INT_EN:
s->core_registers[DP_INT_MASK] &= ~value;
xlnx_dp_update_irq(s);
break;
case DP_INT_DS:
s->core_registers[DP_INT_MASK] |= ~value;
xlnx_dp_update_irq(s);
break;
default:
assert(offset <= (0x504C >> 2));
s->core_registers[offset] = value;
break;
}
}
static const MemoryRegionOps dp_ops = {
.read = xlnx_dp_read,
.write = xlnx_dp_write,
.endianness = DEVICE_NATIVE_ENDIAN,
.valid = {
.min_access_size = 4,
.max_access_size = 4,
},
.impl = {
.min_access_size = 4,
.max_access_size = 4,
},
};
/*
* This is to handle Read/Write to the Video Blender.
*/
static void xlnx_dp_vblend_write(void *opaque, hwaddr offset,
uint64_t value, unsigned size)
{
XlnxDPState *s = XLNX_DP(opaque);
bool alpha_was_enabled;
DPRINTF("vblend: write @0x%" HWADDR_PRIX " = 0x%" PRIX32 "\n", offset,
(uint32_t)value);
offset = offset >> 2;
switch (offset) {
case V_BLEND_BG_CLR_0:
case V_BLEND_BG_CLR_1:
case V_BLEND_BG_CLR_2:
s->vblend_registers[offset] = value & 0x00000FFF;
break;
case V_BLEND_SET_GLOBAL_ALPHA_REG:
/*
* A write to this register can enable or disable blending. Thus we need
* to recreate the surfaces.
*/
alpha_was_enabled = xlnx_dp_global_alpha_enabled(s);
s->vblend_registers[offset] = value & 0x000001FF;
if (xlnx_dp_global_alpha_enabled(s) != alpha_was_enabled) {
xlnx_dp_recreate_surface(s);
}
break;
case V_BLEND_OUTPUT_VID_FORMAT:
s->vblend_registers[offset] = value & 0x00000017;
break;
case V_BLEND_LAYER0_CONTROL:
case V_BLEND_LAYER1_CONTROL:
s->vblend_registers[offset] = value & 0x00000103;
break;
case V_BLEND_RGB2YCBCR_COEFF(0):
case V_BLEND_RGB2YCBCR_COEFF(1):
case V_BLEND_RGB2YCBCR_COEFF(2):
case V_BLEND_RGB2YCBCR_COEFF(3):
case V_BLEND_RGB2YCBCR_COEFF(4):
case V_BLEND_RGB2YCBCR_COEFF(5):
case V_BLEND_RGB2YCBCR_COEFF(6):
case V_BLEND_RGB2YCBCR_COEFF(7):
case V_BLEND_RGB2YCBCR_COEFF(8):
case V_BLEND_IN1CSC_COEFF(0):
case V_BLEND_IN1CSC_COEFF(1):
case V_BLEND_IN1CSC_COEFF(2):
case V_BLEND_IN1CSC_COEFF(3):
case V_BLEND_IN1CSC_COEFF(4):
case V_BLEND_IN1CSC_COEFF(5):
case V_BLEND_IN1CSC_COEFF(6):
case V_BLEND_IN1CSC_COEFF(7):
case V_BLEND_IN1CSC_COEFF(8):
case V_BLEND_IN2CSC_COEFF(0):
case V_BLEND_IN2CSC_COEFF(1):
case V_BLEND_IN2CSC_COEFF(2):
case V_BLEND_IN2CSC_COEFF(3):
case V_BLEND_IN2CSC_COEFF(4):
case V_BLEND_IN2CSC_COEFF(5):
case V_BLEND_IN2CSC_COEFF(6):
case V_BLEND_IN2CSC_COEFF(7):
case V_BLEND_IN2CSC_COEFF(8):
s->vblend_registers[offset] = value & 0x0000FFFF;
break;
case V_BLEND_LUMA_IN1CSC_OFFSET:
case V_BLEND_CR_IN1CSC_OFFSET:
case V_BLEND_CB_IN1CSC_OFFSET:
case V_BLEND_LUMA_IN2CSC_OFFSET:
case V_BLEND_CR_IN2CSC_OFFSET:
case V_BLEND_CB_IN2CSC_OFFSET:
case V_BLEND_LUMA_OUTCSC_OFFSET:
case V_BLEND_CR_OUTCSC_OFFSET:
case V_BLEND_CB_OUTCSC_OFFSET:
s->vblend_registers[offset] = value & 0x3FFF7FFF;
break;
case V_BLEND_CHROMA_KEY_ENABLE:
s->vblend_registers[offset] = value & 0x00000003;
break;
case V_BLEND_CHROMA_KEY_COMP1:
case V_BLEND_CHROMA_KEY_COMP2:
case V_BLEND_CHROMA_KEY_COMP3:
s->vblend_registers[offset] = value & 0x0FFF0FFF;
break;
default:
s->vblend_registers[offset] = value;
break;
}
}
static uint64_t xlnx_dp_vblend_read(void *opaque, hwaddr offset,
unsigned size)
{
XlnxDPState *s = XLNX_DP(opaque);
DPRINTF("vblend: read @0x%" HWADDR_PRIX " = 0x%" PRIX32 "\n", offset,
s->vblend_registers[offset >> 2]);
return s->vblend_registers[offset >> 2];
}
static const MemoryRegionOps vblend_ops = {
.read = xlnx_dp_vblend_read,
.write = xlnx_dp_vblend_write,
.endianness = DEVICE_NATIVE_ENDIAN,
.valid = {
.min_access_size = 4,
.max_access_size = 4,
},
.impl = {
.min_access_size = 4,
.max_access_size = 4,
},
};
/*
* This is to handle Read/Write to the Audio Video buffer manager.
*/
static void xlnx_dp_avbufm_write(void *opaque, hwaddr offset, uint64_t value,
unsigned size)
{
XlnxDPState *s = XLNX_DP(opaque);
DPRINTF("avbufm: write @0x%" HWADDR_PRIX " = 0x%" PRIX32 "\n", offset,
(uint32_t)value);
offset = offset >> 2;
switch (offset) {
case AV_BUF_FORMAT:
s->avbufm_registers[offset] = value & 0x00000FFF;
xlnx_dp_change_graphic_fmt(s);
break;
case AV_CHBUF0:
case AV_CHBUF1:
case AV_CHBUF2:
case AV_CHBUF3:
case AV_CHBUF4:
case AV_CHBUF5:
s->avbufm_registers[offset] = value & 0x0000007F;
break;
case AV_BUF_OUTPUT_AUDIO_VIDEO_SELECT:
s->avbufm_registers[offset] = value & 0x0000007F;
break;
case AV_BUF_DITHER_CONFIG:
s->avbufm_registers[offset] = value & 0x000007FF;
break;
case AV_BUF_DITHER_CONFIG_MAX:
case AV_BUF_DITHER_CONFIG_MIN:
s->avbufm_registers[offset] = value & 0x00000FFF;
break;
case AV_BUF_PATTERN_GEN_SELECT:
s->avbufm_registers[offset] = value & 0xFFFFFF03;
break;
case AV_BUF_AUD_VID_CLK_SOURCE:
s->avbufm_registers[offset] = value & 0x00000007;
break;
case AV_BUF_SRST_REG:
s->avbufm_registers[offset] = value & 0x00000002;
break;
case AV_BUF_AUDIO_CH_CONFIG:
s->avbufm_registers[offset] = value & 0x00000003;
break;
case AV_BUF_GRAPHICS_COMP_SCALE_FACTOR(0):
case AV_BUF_GRAPHICS_COMP_SCALE_FACTOR(1):
case AV_BUF_GRAPHICS_COMP_SCALE_FACTOR(2):
case AV_BUF_VIDEO_COMP_SCALE_FACTOR(0):
case AV_BUF_VIDEO_COMP_SCALE_FACTOR(1):
case AV_BUF_VIDEO_COMP_SCALE_FACTOR(2):
s->avbufm_registers[offset] = value & 0x0000FFFF;
break;
case AV_BUF_LIVE_VIDEO_COMP_SF(0):
case AV_BUF_LIVE_VIDEO_COMP_SF(1):
case AV_BUF_LIVE_VIDEO_COMP_SF(2):
case AV_BUF_LIVE_VID_CONFIG:
case AV_BUF_LIVE_GFX_COMP_SF(0):
case AV_BUF_LIVE_GFX_COMP_SF(1):
case AV_BUF_LIVE_GFX_COMP_SF(2):
case AV_BUF_LIVE_GFX_CONFIG:
case AV_BUF_NON_LIVE_LATENCY:
case AV_BUF_STC_CONTROL:
case AV_BUF_STC_INIT_VALUE0:
case AV_BUF_STC_INIT_VALUE1:
case AV_BUF_STC_ADJ:
case AV_BUF_STC_VIDEO_VSYNC_TS_REG0:
case AV_BUF_STC_VIDEO_VSYNC_TS_REG1:
case AV_BUF_STC_EXT_VSYNC_TS_REG0:
case AV_BUF_STC_EXT_VSYNC_TS_REG1:
case AV_BUF_STC_CUSTOM_EVENT_TS_REG0:
case AV_BUF_STC_CUSTOM_EVENT_TS_REG1:
case AV_BUF_STC_CUSTOM_EVENT2_TS_REG0:
case AV_BUF_STC_CUSTOM_EVENT2_TS_REG1:
case AV_BUF_STC_SNAPSHOT0:
case AV_BUF_STC_SNAPSHOT1:
case AV_BUF_HCOUNT_VCOUNT_INT0:
case AV_BUF_HCOUNT_VCOUNT_INT1:
qemu_log_mask(LOG_UNIMP, "avbufm: unimplemented register 0x%04"
PRIx64 "\n",
offset << 2);
break;
default:
s->avbufm_registers[offset] = value;
break;
}
}
static uint64_t xlnx_dp_avbufm_read(void *opaque, hwaddr offset,
unsigned size)
{
XlnxDPState *s = XLNX_DP(opaque);
offset = offset >> 2;
return s->avbufm_registers[offset];
}
static const MemoryRegionOps avbufm_ops = {
.read = xlnx_dp_avbufm_read,
.write = xlnx_dp_avbufm_write,
.endianness = DEVICE_NATIVE_ENDIAN,
.valid = {
.min_access_size = 4,
.max_access_size = 4,
},
.impl = {
.min_access_size = 4,
.max_access_size = 4,
},
};
/*
* This is a global alpha blending using pixman.
* Both graphic and video planes are multiplied with the global alpha
* coefficient and added.
*/
static inline void xlnx_dp_blend_surface(XlnxDPState *s)
{
pixman_fixed_t alpha1[] = { pixman_double_to_fixed(1),
pixman_double_to_fixed(1),
pixman_double_to_fixed(1.0) };
pixman_fixed_t alpha2[] = { pixman_double_to_fixed(1),
pixman_double_to_fixed(1),
pixman_double_to_fixed(1.0) };
if ((surface_width(s->g_plane.surface)
!= surface_width(s->v_plane.surface)) ||
(surface_height(s->g_plane.surface)
!= surface_height(s->v_plane.surface))) {
return;
}
alpha1[2] = pixman_double_to_fixed((double)(xlnx_dp_global_alpha_value(s))
/ 256.0);
alpha2[2] = pixman_double_to_fixed((255.0
- (double)xlnx_dp_global_alpha_value(s))
/ 256.0);
pixman_image_set_filter(s->g_plane.surface->image,
PIXMAN_FILTER_CONVOLUTION, alpha1, 3);
pixman_image_composite(PIXMAN_OP_SRC, s->g_plane.surface->image, 0,
s->bout_plane.surface->image, 0, 0, 0, 0, 0, 0,
surface_width(s->g_plane.surface),
surface_height(s->g_plane.surface));
pixman_image_set_filter(s->v_plane.surface->image,
PIXMAN_FILTER_CONVOLUTION, alpha2, 3);
pixman_image_composite(PIXMAN_OP_ADD, s->v_plane.surface->image, 0,
s->bout_plane.surface->image, 0, 0, 0, 0, 0, 0,
surface_width(s->g_plane.surface),
surface_height(s->g_plane.surface));
}
static void xlnx_dp_update_display(void *opaque)
{
XlnxDPState *s = XLNX_DP(opaque);
if ((s->core_registers[DP_TRANSMITTER_ENABLE] & 0x01) == 0) {
return;
}
s->core_registers[DP_INT_STATUS] |= (1 << 13);
xlnx_dp_update_irq(s);
xlnx_dpdma_trigger_vsync_irq(s->dpdma);
/*
* Trigger the DMA channel.
*/
if (!xlnx_dpdma_start_operation(s->dpdma, 3, false)) {
/*
* An error occurred don't do anything with the data..
* Trigger an underflow interrupt.
*/
s->core_registers[DP_INT_STATUS] |= (1 << 21);
xlnx_dp_update_irq(s);
return;
}
if (xlnx_dp_global_alpha_enabled(s)) {
if (!xlnx_dpdma_start_operation(s->dpdma, 0, false)) {
s->core_registers[DP_INT_STATUS] |= (1 << 21);
xlnx_dp_update_irq(s);
return;
}
xlnx_dp_blend_surface(s);
}
/*
* XXX: We might want to update only what changed.
*/
dpy_gfx_update_full(s->console);
}
static const GraphicHwOps xlnx_dp_gfx_ops = {
.gfx_update = xlnx_dp_update_display,
};
static void xlnx_dp_init(Object *obj)
{
SysBusDevice *sbd = SYS_BUS_DEVICE(obj);
XlnxDPState *s = XLNX_DP(obj);
memory_region_init(&s->container, obj, TYPE_XLNX_DP, 0xC050);
memory_region_init_io(&s->core_iomem, obj, &dp_ops, s, TYPE_XLNX_DP
".core", 0x3AF);
memory_region_add_subregion(&s->container, 0x0000, &s->core_iomem);
memory_region_init_io(&s->vblend_iomem, obj, &vblend_ops, s, TYPE_XLNX_DP
".v_blend", 0x1DF);
memory_region_add_subregion(&s->container, 0xA000, &s->vblend_iomem);
memory_region_init_io(&s->avbufm_iomem, obj, &avbufm_ops, s, TYPE_XLNX_DP
".av_buffer_manager", 0x238);
memory_region_add_subregion(&s->container, 0xB000, &s->avbufm_iomem);
memory_region_init_io(&s->audio_iomem, obj, &audio_ops, s, TYPE_XLNX_DP
".audio", sizeof(s->audio_registers));
memory_region_add_subregion(&s->container, 0xC000, &s->audio_iomem);
sysbus_init_mmio(sbd, &s->container);
sysbus_init_irq(sbd, &s->irq);
object_property_add_link(obj, "dpdma", TYPE_XLNX_DPDMA,
(Object **) &s->dpdma,
xlnx_dp_set_dpdma,
OBJ_PROP_LINK_STRONG);
/*
* Initialize AUX Bus.
*/
s->aux_bus = aux_bus_init(DEVICE(obj), "aux");
/*
* Initialize DPCD and EDID..
*/
s->dpcd = DPCD(qdev_new("dpcd"));
object_property_add_child(OBJECT(s), "dpcd", OBJECT(s->dpcd));
s->edid = I2CDDC(qdev_new("i2c-ddc"));
i2c_slave_set_address(I2C_SLAVE(s->edid), 0x50);
object_property_add_child(OBJECT(s), "edid", OBJECT(s->edid));
fifo8_create(&s->rx_fifo, 16);
fifo8_create(&s->tx_fifo, 16);
}
static void xlnx_dp_finalize(Object *obj)
{
XlnxDPState *s = XLNX_DP(obj);
fifo8_destroy(&s->tx_fifo);
fifo8_destroy(&s->rx_fifo);
}
static void xlnx_dp_realize(DeviceState *dev, Error **errp)
{
XlnxDPState *s = XLNX_DP(dev);
DisplaySurface *surface;
struct audsettings as;
aux_bus_realize(s->aux_bus);
qdev_realize(DEVICE(s->dpcd), BUS(s->aux_bus), &error_fatal);
aux_map_slave(AUX_SLAVE(s->dpcd), 0x0000);
qdev_realize_and_unref(DEVICE(s->edid), BUS(aux_get_i2c_bus(s->aux_bus)),
&error_fatal);
s->console = graphic_console_init(dev, 0, &xlnx_dp_gfx_ops, s);
surface = qemu_console_surface(s->console);
xlnx_dpdma_set_host_data_location(s->dpdma, DP_GRAPHIC_DMA_CHANNEL,
surface_data(surface));
as.freq = 44100;
as.nchannels = 2;
as.fmt = AUDIO_FORMAT_S16;
as.endianness = 0;
AUD_register_card("xlnx_dp.audio", &s->aud_card);
s->amixer_output_stream = AUD_open_out(&s->aud_card,
s->amixer_output_stream,
"xlnx_dp.audio.out",
s,
xlnx_dp_audio_callback,
&as);
AUD_set_volume_out(s->amixer_output_stream, 0, 255, 255);
xlnx_dp_audio_activate(s);
}
static void xlnx_dp_reset(DeviceState *dev)
{
XlnxDPState *s = XLNX_DP(dev);
memset(s->core_registers, 0, sizeof(s->core_registers));
s->core_registers[DP_VERSION_REGISTER] = 0x04010000;
s->core_registers[DP_CORE_ID] = 0x01020000;
s->core_registers[DP_REPLY_STATUS] = 0x00000010;
s->core_registers[DP_MSA_TRANSFER_UNIT_SIZE] = 0x00000040;
s->core_registers[DP_INIT_WAIT] = 0x00000020;
s->core_registers[DP_PHY_RESET] = 0x00010003;
s->core_registers[DP_INT_MASK] = 0xFFFFF03F;
s->core_registers[DP_PHY_STATUS] = 0x00000043;
s->core_registers[DP_INTERRUPT_SIGNAL_STATE] = 0x00000001;
s->vblend_registers[V_BLEND_RGB2YCBCR_COEFF(0)] = 0x00001000;
s->vblend_registers[V_BLEND_RGB2YCBCR_COEFF(4)] = 0x00001000;
s->vblend_registers[V_BLEND_RGB2YCBCR_COEFF(8)] = 0x00001000;
s->vblend_registers[V_BLEND_IN1CSC_COEFF(0)] = 0x00001000;
s->vblend_registers[V_BLEND_IN1CSC_COEFF(4)] = 0x00001000;
s->vblend_registers[V_BLEND_IN1CSC_COEFF(8)] = 0x00001000;
s->vblend_registers[V_BLEND_IN2CSC_COEFF(0)] = 0x00001000;
s->vblend_registers[V_BLEND_IN2CSC_COEFF(4)] = 0x00001000;
s->vblend_registers[V_BLEND_IN2CSC_COEFF(8)] = 0x00001000;
s->avbufm_registers[AV_BUF_NON_LIVE_LATENCY] = 0x00000180;
s->avbufm_registers[AV_BUF_OUTPUT_AUDIO_VIDEO_SELECT] = 0x00000008;
s->avbufm_registers[AV_BUF_DITHER_CONFIG_MAX] = 0x00000FFF;
s->avbufm_registers[AV_BUF_GRAPHICS_COMP_SCALE_FACTOR(0)] = 0x00010101;
s->avbufm_registers[AV_BUF_GRAPHICS_COMP_SCALE_FACTOR(1)] = 0x00010101;
s->avbufm_registers[AV_BUF_GRAPHICS_COMP_SCALE_FACTOR(2)] = 0x00010101;
s->avbufm_registers[AV_BUF_VIDEO_COMP_SCALE_FACTOR(0)] = 0x00010101;
s->avbufm_registers[AV_BUF_VIDEO_COMP_SCALE_FACTOR(1)] = 0x00010101;
s->avbufm_registers[AV_BUF_VIDEO_COMP_SCALE_FACTOR(2)] = 0x00010101;
s->avbufm_registers[AV_BUF_LIVE_VIDEO_COMP_SF(0)] = 0x00010101;
s->avbufm_registers[AV_BUF_LIVE_VIDEO_COMP_SF(1)] = 0x00010101;
s->avbufm_registers[AV_BUF_LIVE_VIDEO_COMP_SF(2)] = 0x00010101;
s->avbufm_registers[AV_BUF_LIVE_GFX_COMP_SF(0)] = 0x00010101;
s->avbufm_registers[AV_BUF_LIVE_GFX_COMP_SF(1)] = 0x00010101;
s->avbufm_registers[AV_BUF_LIVE_GFX_COMP_SF(2)] = 0x00010101;
memset(s->audio_registers, 0, sizeof(s->audio_registers));
s->byte_left = 0;
xlnx_dp_aux_clear_rx_fifo(s);
xlnx_dp_change_graphic_fmt(s);
xlnx_dp_update_irq(s);
}
static void xlnx_dp_class_init(ObjectClass *oc, void *data)
{
DeviceClass *dc = DEVICE_CLASS(oc);
dc->realize = xlnx_dp_realize;
dc->vmsd = &vmstate_dp;
dc->reset = xlnx_dp_reset;
}
static const TypeInfo xlnx_dp_info = {
.name = TYPE_XLNX_DP,
.parent = TYPE_SYS_BUS_DEVICE,
.instance_size = sizeof(XlnxDPState),
.instance_init = xlnx_dp_init,
.instance_finalize = xlnx_dp_finalize,
.class_init = xlnx_dp_class_init,
};
static void xlnx_dp_register_types(void)
{
type_register_static(&xlnx_dp_info);
}
type_init(xlnx_dp_register_types)