/*
* Xilinx Platform CSU Stream DMA emulation
*
* This implementation is based on
* https://github.com/Xilinx/qemu/blob/master/hw/dma/csu_stream_dma.c
*
* This program is free software; you can redistribute it and/or
* modify it under the terms of the GNU General Public License as
* published by the Free Software Foundation; either version 2 or
* (at your option) version 3 of the License.
*
* This program is distributed in the hope that it will be useful,
* but WITHOUT ANY WARRANTY; without even the implied warranty of
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
* GNU General Public License for more details.
*
* You should have received a copy of the GNU General Public License along
* with this program; if not, see <http://www.gnu.org/licenses/>.
*/
#include "qemu/osdep.h"
#include "qemu/log.h"
#include "qapi/error.h"
#include "hw/hw.h"
#include "hw/irq.h"
#include "hw/qdev-properties.h"
#include "hw/sysbus.h"
#include "migration/vmstate.h"
#include "sysemu/dma.h"
#include "hw/ptimer.h"
#include "hw/stream.h"
#include "hw/register.h"
#include "hw/dma/xlnx_csu_dma.h"
/*
* Ref: UG1087 (v1.7) February 8, 2019
* https://www.xilinx.com/html_docs/registers/ug1087/ug1087-zynq-ultrascale-registers.html
* CSUDMA Module section
*/
REG32(ADDR, 0x0)
FIELD(ADDR, ADDR, 2, 30) /* wo */
REG32(SIZE, 0x4)
FIELD(SIZE, SIZE, 2, 27) /* wo */
FIELD(SIZE, LAST_WORD, 0, 1) /* rw, only exists in SRC */
REG32(STATUS, 0x8)
FIELD(STATUS, DONE_CNT, 13, 3) /* wtc */
FIELD(STATUS, FIFO_LEVEL, 5, 8) /* ro */
FIELD(STATUS, OUTSTANDING, 1, 4) /* ro */
FIELD(STATUS, BUSY, 0, 1) /* ro */
REG32(CTRL, 0xc)
FIELD(CTRL, FIFOTHRESH, 25, 7) /* rw, only exists in DST, reset 0x40 */
FIELD(CTRL, APB_ERR_RESP, 24, 1) /* rw */
FIELD(CTRL, ENDIANNESS, 23, 1) /* rw */
FIELD(CTRL, AXI_BRST_TYPE, 22, 1) /* rw */
FIELD(CTRL, TIMEOUT_VAL, 10, 12) /* rw, reset: 0xFFE */
FIELD(CTRL, FIFO_THRESH, 2, 8) /* rw, reset: 0x80 */
FIELD(CTRL, PAUSE_STRM, 1, 1) /* rw */
FIELD(CTRL, PAUSE_MEM, 0, 1) /* rw */
REG32(CRC, 0x10)
REG32(INT_STATUS, 0x14)
FIELD(INT_STATUS, FIFO_OVERFLOW, 7, 1) /* wtc */
FIELD(INT_STATUS, INVALID_APB, 6, 1) /* wtc */
FIELD(INT_STATUS, THRESH_HIT, 5, 1) /* wtc */
FIELD(INT_STATUS, TIMEOUT_MEM, 4, 1) /* wtc */
FIELD(INT_STATUS, TIMEOUT_STRM, 3, 1) /* wtc */
FIELD(INT_STATUS, AXI_BRESP_ERR, 2, 1) /* wtc, SRC: AXI_RDERR */
FIELD(INT_STATUS, DONE, 1, 1) /* wtc */
FIELD(INT_STATUS, MEM_DONE, 0, 1) /* wtc */
REG32(INT_ENABLE, 0x18)
FIELD(INT_ENABLE, FIFO_OVERFLOW, 7, 1) /* wtc */
FIELD(INT_ENABLE, INVALID_APB, 6, 1) /* wtc */
FIELD(INT_ENABLE, THRESH_HIT, 5, 1) /* wtc */
FIELD(INT_ENABLE, TIMEOUT_MEM, 4, 1) /* wtc */
FIELD(INT_ENABLE, TIMEOUT_STRM, 3, 1) /* wtc */
FIELD(INT_ENABLE, AXI_BRESP_ERR, 2, 1) /* wtc, SRC: AXI_RDERR */
FIELD(INT_ENABLE, DONE, 1, 1) /* wtc */
FIELD(INT_ENABLE, MEM_DONE, 0, 1) /* wtc */
REG32(INT_DISABLE, 0x1c)
FIELD(INT_DISABLE, FIFO_OVERFLOW, 7, 1) /* wtc */
FIELD(INT_DISABLE, INVALID_APB, 6, 1) /* wtc */
FIELD(INT_DISABLE, THRESH_HIT, 5, 1) /* wtc */
FIELD(INT_DISABLE, TIMEOUT_MEM, 4, 1) /* wtc */
FIELD(INT_DISABLE, TIMEOUT_STRM, 3, 1) /* wtc */
FIELD(INT_DISABLE, AXI_BRESP_ERR, 2, 1) /* wtc, SRC: AXI_RDERR */
FIELD(INT_DISABLE, DONE, 1, 1) /* wtc */
FIELD(INT_DISABLE, MEM_DONE, 0, 1) /* wtc */
REG32(INT_MASK, 0x20)
FIELD(INT_MASK, FIFO_OVERFLOW, 7, 1) /* ro, reset: 0x1 */
FIELD(INT_MASK, INVALID_APB, 6, 1) /* ro, reset: 0x1 */
FIELD(INT_MASK, THRESH_HIT, 5, 1) /* ro, reset: 0x1 */
FIELD(INT_MASK, TIMEOUT_MEM, 4, 1) /* ro, reset: 0x1 */
FIELD(INT_MASK, TIMEOUT_STRM, 3, 1) /* ro, reset: 0x1 */
FIELD(INT_MASK, AXI_BRESP_ERR, 2, 1) /* ro, reset: 0x1, SRC: AXI_RDERR */
FIELD(INT_MASK, DONE, 1, 1) /* ro, reset: 0x1 */
FIELD(INT_MASK, MEM_DONE, 0, 1) /* ro, reset: 0x1 */
REG32(CTRL2, 0x24)
FIELD(CTRL2, ARCACHE, 24, 3) /* rw */
FIELD(CTRL2, ROUTE_BIT, 23, 1) /* rw */
FIELD(CTRL2, TIMEOUT_EN, 22, 1) /* rw */
FIELD(CTRL2, TIMEOUT_PRE, 4, 12) /* rw, reset: 0xFFF */
FIELD(CTRL2, MAX_OUTS_CMDS, 0, 4) /* rw, reset: 0x8 */
REG32(ADDR_MSB, 0x28)
FIELD(ADDR_MSB, ADDR_MSB, 0, 17) /* wo */
#define R_CTRL_TIMEOUT_VAL_RESET (0xFFE)
#define R_CTRL_FIFO_THRESH_RESET (0x80)
#define R_CTRL_FIFOTHRESH_RESET (0x40)
#define R_CTRL2_TIMEOUT_PRE_RESET (0xFFF)
#define R_CTRL2_MAX_OUTS_CMDS_RESET (0x8)
#define XLNX_CSU_DMA_ERR_DEBUG (0)
#define XLNX_CSU_DMA_INT_R_MASK (0xff)
/* UG1807: Set the prescaler value for the timeout in clk (~2.5ns) cycles */
#define XLNX_CSU_DMA_TIMER_FREQ (400 * 1000 * 1000)
static bool xlnx_csu_dma_is_paused(XlnxCSUDMA *s)
{
bool paused;
paused = !!(s->regs[R_CTRL] & R_CTRL_PAUSE_STRM_MASK);
paused |= !!(s->regs[R_CTRL] & R_CTRL_PAUSE_MEM_MASK);
return paused;
}
static bool xlnx_csu_dma_get_eop(XlnxCSUDMA *s)
{
return s->r_size_last_word;
}
static bool xlnx_csu_dma_burst_is_fixed(XlnxCSUDMA *s)
{
return !!(s->regs[R_CTRL] & R_CTRL_AXI_BRST_TYPE_MASK);
}
static bool xlnx_csu_dma_timeout_enabled(XlnxCSUDMA *s)
{
return !!(s->regs[R_CTRL2] & R_CTRL2_TIMEOUT_EN_MASK);
}
static void xlnx_csu_dma_update_done_cnt(XlnxCSUDMA *s, int a)
{
int cnt;
/* Increase DONE_CNT */
cnt = ARRAY_FIELD_EX32(s->regs, STATUS, DONE_CNT) + a;
ARRAY_FIELD_DP32(s->regs, STATUS, DONE_CNT, cnt);
}
static void xlnx_csu_dma_data_process(XlnxCSUDMA *s, uint8_t *buf, uint32_t len)
{
uint32_t bswap;
uint32_t i;
bswap = s->regs[R_CTRL] & R_CTRL_ENDIANNESS_MASK;
if (s->is_dst && !bswap) {
/* Fast when ENDIANNESS cleared */
return;
}
for (i = 0; i < len; i += 4) {
uint8_t *b = &buf[i];
union {
uint8_t u8[4];
uint32_t u32;
} v = {
.u8 = { b[0], b[1], b[2], b[3] }
};
if (!s->is_dst) {
s->regs[R_CRC] += v.u32;
}
if (bswap) {
/*
* No point using bswap, we need to writeback
* into a potentially unaligned pointer.
*/
b[0] = v.u8[3];
b[1] = v.u8[2];
b[2] = v.u8[1];
b[3] = v.u8[0];
}
}
}
static void xlnx_csu_dma_update_irq(XlnxCSUDMA *s)
{
qemu_set_irq(s->irq, !!(s->regs[R_INT_STATUS] & ~s->regs[R_INT_MASK]));
}
/* len is in bytes */
static uint32_t xlnx_csu_dma_read(XlnxCSUDMA *s, uint8_t *buf, uint32_t len)
{
hwaddr addr = (hwaddr)s->regs[R_ADDR_MSB] << 32 | s->regs[R_ADDR];
MemTxResult result = MEMTX_OK;
if (xlnx_csu_dma_burst_is_fixed(s)) {
uint32_t i;
for (i = 0; i < len && (result == MEMTX_OK); i += s->width) {
uint32_t mlen = MIN(len - i, s->width);
result = address_space_rw(s->dma_as, addr, s->attr,
buf + i, mlen, false);
}
} else {
result = address_space_rw(s->dma_as, addr, s->attr, buf, len, false);
}
if (result == MEMTX_OK) {
xlnx_csu_dma_data_process(s, buf, len);
} else {
qemu_log_mask(LOG_GUEST_ERROR, "%s: Bad address " TARGET_FMT_plx
" for mem read", __func__, addr);
s->regs[R_INT_STATUS] |= R_INT_STATUS_AXI_BRESP_ERR_MASK;
xlnx_csu_dma_update_irq(s);
}
return len;
}
/* len is in bytes */
static uint32_t xlnx_csu_dma_write(XlnxCSUDMA *s, uint8_t *buf, uint32_t len)
{
hwaddr addr = (hwaddr)s->regs[R_ADDR_MSB] << 32 | s->regs[R_ADDR];
MemTxResult result = MEMTX_OK;
xlnx_csu_dma_data_process(s, buf, len);
if (xlnx_csu_dma_burst_is_fixed(s)) {
uint32_t i;
for (i = 0; i < len && (result == MEMTX_OK); i += s->width) {
uint32_t mlen = MIN(len - i, s->width);
result = address_space_rw(s->dma_as, addr, s->attr,
buf, mlen, true);
buf += mlen;
}
} else {
result = address_space_rw(s->dma_as, addr, s->attr, buf, len, true);
}
if (result != MEMTX_OK) {
qemu_log_mask(LOG_GUEST_ERROR, "%s: Bad address " TARGET_FMT_plx
" for mem write", __func__, addr);
s->regs[R_INT_STATUS] |= R_INT_STATUS_AXI_BRESP_ERR_MASK;
xlnx_csu_dma_update_irq(s);
}
return len;
}
static void xlnx_csu_dma_done(XlnxCSUDMA *s)
{
s->regs[R_STATUS] &= ~R_STATUS_BUSY_MASK;
s->regs[R_INT_STATUS] |= R_INT_STATUS_DONE_MASK;
if (!s->is_dst) {
s->regs[R_INT_STATUS] |= R_INT_STATUS_MEM_DONE_MASK;
}
xlnx_csu_dma_update_done_cnt(s, 1);
}
static uint32_t xlnx_csu_dma_advance(XlnxCSUDMA *s, uint32_t len)
{
uint32_t size = s->regs[R_SIZE];
hwaddr dst = (hwaddr)s->regs[R_ADDR_MSB] << 32 | s->regs[R_ADDR];
assert(len <= size);
size -= len;
s->regs[R_SIZE] = size;
if (!xlnx_csu_dma_burst_is_fixed(s)) {
dst += len;
s->regs[R_ADDR] = (uint32_t) dst;
s->regs[R_ADDR_MSB] = dst >> 32;
}
if (size == 0) {
xlnx_csu_dma_done(s);
}
return size;
}
static void xlnx_csu_dma_src_notify(void *opaque)
{
XlnxCSUDMA *s = XLNX_CSU_DMA(opaque);
unsigned char buf[4 * 1024];
size_t rlen = 0;
ptimer_transaction_begin(s->src_timer);
/* Stop the backpreassure timer */
ptimer_stop(s->src_timer);
while (s->regs[R_SIZE] && !xlnx_csu_dma_is_paused(s) &&
stream_can_push(s->tx_dev, xlnx_csu_dma_src_notify, s)) {
uint32_t plen = MIN(s->regs[R_SIZE], sizeof buf);
bool eop = false;
/* Did we fit it all? */
if (s->regs[R_SIZE] == plen && xlnx_csu_dma_get_eop(s)) {
eop = true;
}
/* DMA transfer */
xlnx_csu_dma_read(s, buf, plen);
rlen = stream_push(s->tx_dev, buf, plen, eop);
xlnx_csu_dma_advance(s, rlen);
}
if (xlnx_csu_dma_timeout_enabled(s) && s->regs[R_SIZE] &&
!stream_can_push(s->tx_dev, xlnx_csu_dma_src_notify, s)) {
uint32_t timeout = ARRAY_FIELD_EX32(s->regs, CTRL, TIMEOUT_VAL);
uint32_t div = ARRAY_FIELD_EX32(s->regs, CTRL2, TIMEOUT_PRE) + 1;
uint32_t freq = XLNX_CSU_DMA_TIMER_FREQ;
freq /= div;
ptimer_set_freq(s->src_timer, freq);
ptimer_set_count(s->src_timer, timeout);
ptimer_run(s->src_timer, 1);
}
ptimer_transaction_commit(s->src_timer);
xlnx_csu_dma_update_irq(s);
}
static uint64_t addr_pre_write(RegisterInfo *reg, uint64_t val)
{
/* Address is word aligned */
return val & R_ADDR_ADDR_MASK;
}
static uint64_t size_pre_write(RegisterInfo *reg, uint64_t val)
{
XlnxCSUDMA *s = XLNX_CSU_DMA(reg->opaque);
if (s->regs[R_SIZE] != 0) {
qemu_log_mask(LOG_GUEST_ERROR,
"%s: Starting DMA while already running.\n", __func__);
}
if (!s->is_dst) {
s->r_size_last_word = !!(val & R_SIZE_LAST_WORD_MASK);
}
/* Size is word aligned */
return val & R_SIZE_SIZE_MASK;
}
static uint64_t size_post_read(RegisterInfo *reg, uint64_t val)
{
XlnxCSUDMA *s = XLNX_CSU_DMA(reg->opaque);
return val | s->r_size_last_word;
}
static void size_post_write(RegisterInfo *reg, uint64_t val)
{
XlnxCSUDMA *s = XLNX_CSU_DMA(reg->opaque);
s->regs[R_STATUS] |= R_STATUS_BUSY_MASK;
/*
* Note that if SIZE is programmed to 0, and the DMA is started,
* the interrupts DONE and MEM_DONE will be asserted.
*/
if (s->regs[R_SIZE] == 0) {
xlnx_csu_dma_done(s);
xlnx_csu_dma_update_irq(s);
return;
}
/* Set SIZE is considered the last step in transfer configuration */
if (!s->is_dst) {
xlnx_csu_dma_src_notify(s);
} else {
if (s->notify) {
s->notify(s->notify_opaque);
}
}
}
static uint64_t status_pre_write(RegisterInfo *reg, uint64_t val)
{
return val & (R_STATUS_DONE_CNT_MASK | R_STATUS_BUSY_MASK);
}
static void ctrl_post_write(RegisterInfo *reg, uint64_t val)
{
XlnxCSUDMA *s = XLNX_CSU_DMA(reg->opaque);
if (!s->is_dst) {
if (!xlnx_csu_dma_is_paused(s)) {
xlnx_csu_dma_src_notify(s);
}
} else {
if (!xlnx_csu_dma_is_paused(s) && s->notify) {
s->notify(s->notify_opaque);
}
}
}
static uint64_t int_status_pre_write(RegisterInfo *reg, uint64_t val)
{
XlnxCSUDMA *s = XLNX_CSU_DMA(reg->opaque);
/* DMA counter decrements when flag 'DONE' is cleared */
if ((val & s->regs[R_INT_STATUS] & R_INT_STATUS_DONE_MASK)) {
xlnx_csu_dma_update_done_cnt(s, -1);
}
return s->regs[R_INT_STATUS] & ~val;
}
static void int_status_post_write(RegisterInfo *reg, uint64_t val)
{
XlnxCSUDMA *s = XLNX_CSU_DMA(reg->opaque);
xlnx_csu_dma_update_irq(s);
}
static uint64_t int_enable_pre_write(RegisterInfo *reg, uint64_t val)
{
XlnxCSUDMA *s = XLNX_CSU_DMA(reg->opaque);
uint32_t v32 = val;
/*
* R_INT_ENABLE doesn't have its own state.
* It is used to indirectly modify R_INT_MASK.
*
* 1: Enable this interrupt field (the mask bit will be cleared to 0)
* 0: No effect
*/
s->regs[R_INT_MASK] &= ~v32;
return 0;
}
static void int_enable_post_write(RegisterInfo *reg, uint64_t val)
{
XlnxCSUDMA *s = XLNX_CSU_DMA(reg->opaque);
xlnx_csu_dma_update_irq(s);
}
static uint64_t int_disable_pre_write(RegisterInfo *reg, uint64_t val)
{
XlnxCSUDMA *s = XLNX_CSU_DMA(reg->opaque);
uint32_t v32 = val;
/*
* R_INT_DISABLE doesn't have its own state.
* It is used to indirectly modify R_INT_MASK.
*
* 1: Disable this interrupt field (the mask bit will be set to 1)
* 0: No effect
*/
s->regs[R_INT_MASK] |= v32;
return 0;
}
static void int_disable_post_write(RegisterInfo *reg, uint64_t val)
{
XlnxCSUDMA *s = XLNX_CSU_DMA(reg->opaque);
xlnx_csu_dma_update_irq(s);
}
static uint64_t addr_msb_pre_write(RegisterInfo *reg, uint64_t val)
{
return val & R_ADDR_MSB_ADDR_MSB_MASK;
}
static const RegisterAccessInfo *xlnx_csu_dma_regs_info[] = {
#define DMACH_REGINFO(NAME, snd) \
(const RegisterAccessInfo []) { \
{ \
.name = #NAME "_ADDR", \
.addr = A_ADDR, \
.pre_write = addr_pre_write \
}, { \
.name = #NAME "_SIZE", \
.addr = A_SIZE, \
.pre_write = size_pre_write, \
.post_write = size_post_write, \
.post_read = size_post_read \
}, { \
.name = #NAME "_STATUS", \
.addr = A_STATUS, \
.pre_write = status_pre_write, \
.w1c = R_STATUS_DONE_CNT_MASK, \
.ro = (R_STATUS_BUSY_MASK \
| R_STATUS_FIFO_LEVEL_MASK \
| R_STATUS_OUTSTANDING_MASK) \
}, { \
.name = #NAME "_CTRL", \
.addr = A_CTRL, \
.post_write = ctrl_post_write, \
.reset = ((R_CTRL_TIMEOUT_VAL_RESET << R_CTRL_TIMEOUT_VAL_SHIFT) \
| (R_CTRL_FIFO_THRESH_RESET << R_CTRL_FIFO_THRESH_SHIFT)\
| (snd ? 0 : R_CTRL_FIFOTHRESH_RESET \
<< R_CTRL_FIFOTHRESH_SHIFT)) \
}, { \
.name = #NAME "_CRC", \
.addr = A_CRC, \
}, { \
.name = #NAME "_INT_STATUS", \
.addr = A_INT_STATUS, \
.pre_write = int_status_pre_write, \
.post_write = int_status_post_write \
}, { \
.name = #NAME "_INT_ENABLE", \
.addr = A_INT_ENABLE, \
.pre_write = int_enable_pre_write, \
.post_write = int_enable_post_write \
}, { \
.name = #NAME "_INT_DISABLE", \
.addr = A_INT_DISABLE, \
.pre_write = int_disable_pre_write, \
.post_write = int_disable_post_write \
}, { \
.name = #NAME "_INT_MASK", \
.addr = A_INT_MASK, \
.ro = ~0, \
.reset = XLNX_CSU_DMA_INT_R_MASK \
}, { \
.name = #NAME "_CTRL2", \
.addr = A_CTRL2, \
.reset = ((R_CTRL2_TIMEOUT_PRE_RESET \
<< R_CTRL2_TIMEOUT_PRE_SHIFT) \
| (R_CTRL2_MAX_OUTS_CMDS_RESET \
<< R_CTRL2_MAX_OUTS_CMDS_SHIFT)) \
}, { \
.name = #NAME "_ADDR_MSB", \
.addr = A_ADDR_MSB, \
.pre_write = addr_msb_pre_write \
} \
}
DMACH_REGINFO(DMA_SRC, true),
DMACH_REGINFO(DMA_DST, false)
};
static const MemoryRegionOps xlnx_csu_dma_ops = {
.read = register_read_memory,
.write = register_write_memory,
.endianness = DEVICE_LITTLE_ENDIAN,
.valid = {
.min_access_size = 4,
.max_access_size = 4,
}
};
static void xlnx_csu_dma_src_timeout_hit(void *opaque)
{
XlnxCSUDMA *s = XLNX_CSU_DMA(opaque);
/* Ignore if the timeout is masked */
if (!xlnx_csu_dma_timeout_enabled(s)) {
return;
}
s->regs[R_INT_STATUS] |= R_INT_STATUS_TIMEOUT_STRM_MASK;
xlnx_csu_dma_update_irq(s);
}
static size_t xlnx_csu_dma_stream_push(StreamSink *obj, uint8_t *buf,
size_t len, bool eop)
{
XlnxCSUDMA *s = XLNX_CSU_DMA(obj);
uint32_t size = s->regs[R_SIZE];
uint32_t mlen = MIN(size, len) & (~3); /* Size is word aligned */
/* Be called when it's DST */
assert(s->is_dst);
if (size == 0 || len <= 0) {
return 0;
}
if (len && (xlnx_csu_dma_is_paused(s) || mlen == 0)) {
qemu_log_mask(LOG_GUEST_ERROR,
"csu-dma: DST channel dropping %zd b of data.\n", len);
s->regs[R_INT_STATUS] |= R_INT_STATUS_FIFO_OVERFLOW_MASK;
return len;
}
if (xlnx_csu_dma_write(s, buf, mlen) != mlen) {
return 0;
}
xlnx_csu_dma_advance(s, mlen);
xlnx_csu_dma_update_irq(s);
return mlen;
}
static bool xlnx_csu_dma_stream_can_push(StreamSink *obj,
StreamCanPushNotifyFn notify,
void *notify_opaque)
{
XlnxCSUDMA *s = XLNX_CSU_DMA(obj);
if (s->regs[R_SIZE] != 0) {
return true;
} else {
s->notify = notify;
s->notify_opaque = notify_opaque;
return false;
}
}
static void xlnx_csu_dma_reset(DeviceState *dev)
{
XlnxCSUDMA *s = XLNX_CSU_DMA(dev);
unsigned int i;
for (i = 0; i < ARRAY_SIZE(s->regs_info); ++i) {
register_reset(&s->regs_info[i]);
}
}
static void xlnx_csu_dma_realize(DeviceState *dev, Error **errp)
{
XlnxCSUDMA *s = XLNX_CSU_DMA(dev);
RegisterInfoArray *reg_array;
reg_array =
register_init_block32(dev, xlnx_csu_dma_regs_info[!!s->is_dst],
XLNX_CSU_DMA_R_MAX,
s->regs_info, s->regs,
&xlnx_csu_dma_ops,
XLNX_CSU_DMA_ERR_DEBUG,
XLNX_CSU_DMA_R_MAX * 4);
memory_region_add_subregion(&s->iomem,
0x0,
®_array->mem);
sysbus_init_mmio(SYS_BUS_DEVICE(dev), &s->iomem);
sysbus_init_irq(SYS_BUS_DEVICE(dev), &s->irq);
if (!s->is_dst && !s->tx_dev) {
error_setg(errp, "zynqmp.csu-dma: Stream not connected");
return;
}
s->src_timer = ptimer_init(xlnx_csu_dma_src_timeout_hit,
s, PTIMER_POLICY_DEFAULT);
if (s->dma_mr) {
s->dma_as = g_malloc0(sizeof(AddressSpace));
address_space_init(s->dma_as, s->dma_mr, NULL);
} else {
s->dma_as = &address_space_memory;
}
s->attr = MEMTXATTRS_UNSPECIFIED;
s->r_size_last_word = 0;
}
static const VMStateDescription vmstate_xlnx_csu_dma = {
.name = TYPE_XLNX_CSU_DMA,
.version_id = 0,
.minimum_version_id = 0,
.minimum_version_id_old = 0,
.fields = (VMStateField[]) {
VMSTATE_PTIMER(src_timer, XlnxCSUDMA),
VMSTATE_UINT16(width, XlnxCSUDMA),
VMSTATE_BOOL(is_dst, XlnxCSUDMA),
VMSTATE_BOOL(r_size_last_word, XlnxCSUDMA),
VMSTATE_UINT32_ARRAY(regs, XlnxCSUDMA, XLNX_CSU_DMA_R_MAX),
VMSTATE_END_OF_LIST(),
}
};
static Property xlnx_csu_dma_properties[] = {
/*
* Ref PG021, Stream Data Width:
* Data width in bits of the AXI S2MM AXI4-Stream Data bus.
* This value must be equal or less than the Memory Map Data Width.
* Valid values are 8, 16, 32, 64, 128, 512 and 1024.
* "dma-width" is the byte value of the "Stream Data Width".
*/
DEFINE_PROP_UINT16("dma-width", XlnxCSUDMA, width, 4),
/*
* The CSU DMA is a two-channel, simple DMA, allowing separate control of
* the SRC (read) channel and DST (write) channel. "is-dst" is used to mark
* which channel the device is connected to.
*/
DEFINE_PROP_BOOL("is-dst", XlnxCSUDMA, is_dst, true),
DEFINE_PROP_END_OF_LIST(),
};
static void xlnx_csu_dma_class_init(ObjectClass *klass, void *data)
{
DeviceClass *dc = DEVICE_CLASS(klass);
StreamSinkClass *ssc = STREAM_SINK_CLASS(klass);
dc->reset = xlnx_csu_dma_reset;
dc->realize = xlnx_csu_dma_realize;
dc->vmsd = &vmstate_xlnx_csu_dma;
device_class_set_props(dc, xlnx_csu_dma_properties);
ssc->push = xlnx_csu_dma_stream_push;
ssc->can_push = xlnx_csu_dma_stream_can_push;
}
static void xlnx_csu_dma_init(Object *obj)
{
XlnxCSUDMA *s = XLNX_CSU_DMA(obj);
memory_region_init(&s->iomem, obj, TYPE_XLNX_CSU_DMA,
XLNX_CSU_DMA_R_MAX * 4);
object_property_add_link(obj, "stream-connected-dma", TYPE_STREAM_SINK,
(Object **)&s->tx_dev,
qdev_prop_allow_set_link_before_realize,
OBJ_PROP_LINK_STRONG);
object_property_add_link(obj, "dma", TYPE_MEMORY_REGION,
(Object **)&s->dma_mr,
qdev_prop_allow_set_link_before_realize,
OBJ_PROP_LINK_STRONG);
}
static const TypeInfo xlnx_csu_dma_info = {
.name = TYPE_XLNX_CSU_DMA,
.parent = TYPE_SYS_BUS_DEVICE,
.instance_size = sizeof(XlnxCSUDMA),
.class_init = xlnx_csu_dma_class_init,
.instance_init = xlnx_csu_dma_init,
.interfaces = (InterfaceInfo[]) {
{ TYPE_STREAM_SINK },
{ }
}
};
static void xlnx_csu_dma_register_types(void)
{
type_register_static(&xlnx_csu_dma_info);
}
type_init(xlnx_csu_dma_register_types)