/*
* QEMU Floppy disk emulator (Intel 82078)
*
* Copyright (c) 2003, 2007 Jocelyn Mayer
* Copyright (c) 2008 Hervé Poussineau
*
* Permission is hereby granted, free of charge, to any person obtaining a copy
* of this software and associated documentation files (the "Software"), to deal
* in the Software without restriction, including without limitation the rights
* to use, copy, modify, merge, publish, distribute, sublicense, and/or sell
* copies of the Software, and to permit persons to whom the Software is
* furnished to do so, subject to the following conditions:
*
* The above copyright notice and this permission notice shall be included in
* all copies or substantial portions of the Software.
*
* THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
* IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
* FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL
* THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
* LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM,
* OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN
* THE SOFTWARE.
*/
/*
* The controller is used in Sun4m systems in a slightly different
* way. There are changes in DOR register and DMA is not available.
*/
#include "hw.h"
#include "fdc.h"
#include "block.h"
#include "qemu-timer.h"
#include "isa.h"
/********************************************************/
/* debug Floppy devices */
//#define DEBUG_FLOPPY
#ifdef DEBUG_FLOPPY
#define FLOPPY_DPRINTF(fmt, args...) \
do { printf("FLOPPY: " fmt , ##args); } while (0)
#else
#define FLOPPY_DPRINTF(fmt, args...)
#endif
#define FLOPPY_ERROR(fmt, args...) \
do { printf("FLOPPY ERROR: %s: " fmt, __func__ , ##args); } while (0)
/********************************************************/
/* Floppy drive emulation */
#define GET_CUR_DRV(fdctrl) ((fdctrl)->cur_drv)
#define SET_CUR_DRV(fdctrl, drive) ((fdctrl)->cur_drv = (drive))
/* Will always be a fixed parameter for us */
#define FD_SECTOR_LEN 512
#define FD_SECTOR_SC 2 /* Sector size code */
#define FD_RESET_SENSEI_COUNT 4 /* Number of sense interrupts on RESET */
/* Floppy disk drive emulation */
typedef enum fdisk_type_t {
FDRIVE_DISK_288 = 0x01, /* 2.88 MB disk */
FDRIVE_DISK_144 = 0x02, /* 1.44 MB disk */
FDRIVE_DISK_720 = 0x03, /* 720 kB disk */
FDRIVE_DISK_USER = 0x04, /* User defined geometry */
FDRIVE_DISK_NONE = 0x05, /* No disk */
} fdisk_type_t;
typedef enum fdrive_type_t {
FDRIVE_DRV_144 = 0x00, /* 1.44 MB 3"5 drive */
FDRIVE_DRV_288 = 0x01, /* 2.88 MB 3"5 drive */
FDRIVE_DRV_120 = 0x02, /* 1.2 MB 5"25 drive */
FDRIVE_DRV_NONE = 0x03, /* No drive connected */
} fdrive_type_t;
typedef enum fdisk_flags_t {
FDISK_DBL_SIDES = 0x01,
} fdisk_flags_t;
typedef struct fdrive_t {
BlockDriverState *bs;
/* Drive status */
fdrive_type_t drive;
uint8_t perpendicular; /* 2.88 MB access mode */
/* Position */
uint8_t head;
uint8_t track;
uint8_t sect;
/* Media */
fdisk_flags_t flags;
uint8_t last_sect; /* Nb sector per track */
uint8_t max_track; /* Nb of tracks */
uint16_t bps; /* Bytes per sector */
uint8_t ro; /* Is read-only */
} fdrive_t;
static void fd_init (fdrive_t *drv, BlockDriverState *bs)
{
/* Drive */
drv->bs = bs;
drv->drive = FDRIVE_DRV_NONE;
drv->perpendicular = 0;
/* Disk */
drv->last_sect = 0;
drv->max_track = 0;
}
static int _fd_sector (uint8_t head, uint8_t track,
uint8_t sect, uint8_t last_sect)
{
return (((track * 2) + head) * last_sect) + sect - 1;
}
/* Returns current position, in sectors, for given drive */
static int fd_sector (fdrive_t *drv)
{
return _fd_sector(drv->head, drv->track, drv->sect, drv->last_sect);
}
/* Seek to a new position:
* returns 0 if already on right track
* returns 1 if track changed
* returns 2 if track is invalid
* returns 3 if sector is invalid
* returns 4 if seek is disabled
*/
static int fd_seek (fdrive_t *drv, uint8_t head, uint8_t track, uint8_t sect,
int enable_seek)
{
uint32_t sector;
int ret;
if (track > drv->max_track ||
(head != 0 && (drv->flags & FDISK_DBL_SIDES) == 0)) {
FLOPPY_DPRINTF("try to read %d %02x %02x (max=%d %d %02x %02x)\n",
head, track, sect, 1,
(drv->flags & FDISK_DBL_SIDES) == 0 ? 0 : 1,
drv->max_track, drv->last_sect);
return 2;
}
if (sect > drv->last_sect) {
FLOPPY_DPRINTF("try to read %d %02x %02x (max=%d %d %02x %02x)\n",
head, track, sect, 1,
(drv->flags & FDISK_DBL_SIDES) == 0 ? 0 : 1,
drv->max_track, drv->last_sect);
return 3;
}
sector = _fd_sector(head, track, sect, drv->last_sect);
ret = 0;
if (sector != fd_sector(drv)) {
#if 0
if (!enable_seek) {
FLOPPY_ERROR("no implicit seek %d %02x %02x (max=%d %02x %02x)\n",
head, track, sect, 1, drv->max_track, drv->last_sect);
return 4;
}
#endif
drv->head = head;
if (drv->track != track)
ret = 1;
drv->track = track;
drv->sect = sect;
}
return ret;
}
/* Set drive back to track 0 */
static void fd_recalibrate (fdrive_t *drv)
{
FLOPPY_DPRINTF("recalibrate\n");
drv->head = 0;
drv->track = 0;
drv->sect = 1;
}
/* Recognize floppy formats */
typedef struct fd_format_t {
fdrive_type_t drive;
fdisk_type_t disk;
uint8_t last_sect;
uint8_t max_track;
uint8_t max_head;
const char *str;
} fd_format_t;
static const fd_format_t fd_formats[] = {
/* First entry is default format */
/* 1.44 MB 3"1/2 floppy disks */
{ FDRIVE_DRV_144, FDRIVE_DISK_144, 18, 80, 1, "1.44 MB 3\"1/2", },
{ FDRIVE_DRV_144, FDRIVE_DISK_144, 20, 80, 1, "1.6 MB 3\"1/2", },
{ FDRIVE_DRV_144, FDRIVE_DISK_144, 21, 80, 1, "1.68 MB 3\"1/2", },
{ FDRIVE_DRV_144, FDRIVE_DISK_144, 21, 82, 1, "1.72 MB 3\"1/2", },
{ FDRIVE_DRV_144, FDRIVE_DISK_144, 21, 83, 1, "1.74 MB 3\"1/2", },
{ FDRIVE_DRV_144, FDRIVE_DISK_144, 22, 80, 1, "1.76 MB 3\"1/2", },
{ FDRIVE_DRV_144, FDRIVE_DISK_144, 23, 80, 1, "1.84 MB 3\"1/2", },
{ FDRIVE_DRV_144, FDRIVE_DISK_144, 24, 80, 1, "1.92 MB 3\"1/2", },
/* 2.88 MB 3"1/2 floppy disks */
{ FDRIVE_DRV_288, FDRIVE_DISK_288, 36, 80, 1, "2.88 MB 3\"1/2", },
{ FDRIVE_DRV_288, FDRIVE_DISK_288, 39, 80, 1, "3.12 MB 3\"1/2", },
{ FDRIVE_DRV_288, FDRIVE_DISK_288, 40, 80, 1, "3.2 MB 3\"1/2", },
{ FDRIVE_DRV_288, FDRIVE_DISK_288, 44, 80, 1, "3.52 MB 3\"1/2", },
{ FDRIVE_DRV_288, FDRIVE_DISK_288, 48, 80, 1, "3.84 MB 3\"1/2", },
/* 720 kB 3"1/2 floppy disks */
{ FDRIVE_DRV_144, FDRIVE_DISK_720, 9, 80, 1, "720 kB 3\"1/2", },
{ FDRIVE_DRV_144, FDRIVE_DISK_720, 10, 80, 1, "800 kB 3\"1/2", },
{ FDRIVE_DRV_144, FDRIVE_DISK_720, 10, 82, 1, "820 kB 3\"1/2", },
{ FDRIVE_DRV_144, FDRIVE_DISK_720, 10, 83, 1, "830 kB 3\"1/2", },
{ FDRIVE_DRV_144, FDRIVE_DISK_720, 13, 80, 1, "1.04 MB 3\"1/2", },
{ FDRIVE_DRV_144, FDRIVE_DISK_720, 14, 80, 1, "1.12 MB 3\"1/2", },
/* 1.2 MB 5"1/4 floppy disks */
{ FDRIVE_DRV_120, FDRIVE_DISK_288, 15, 80, 1, "1.2 kB 5\"1/4", },
{ FDRIVE_DRV_120, FDRIVE_DISK_288, 18, 80, 1, "1.44 MB 5\"1/4", },
{ FDRIVE_DRV_120, FDRIVE_DISK_288, 18, 82, 1, "1.48 MB 5\"1/4", },
{ FDRIVE_DRV_120, FDRIVE_DISK_288, 18, 83, 1, "1.49 MB 5\"1/4", },
{ FDRIVE_DRV_120, FDRIVE_DISK_288, 20, 80, 1, "1.6 MB 5\"1/4", },
/* 720 kB 5"1/4 floppy disks */
{ FDRIVE_DRV_120, FDRIVE_DISK_288, 9, 80, 1, "720 kB 5\"1/4", },
{ FDRIVE_DRV_120, FDRIVE_DISK_288, 11, 80, 1, "880 kB 5\"1/4", },
/* 360 kB 5"1/4 floppy disks */
{ FDRIVE_DRV_120, FDRIVE_DISK_288, 9, 40, 1, "360 kB 5\"1/4", },
{ FDRIVE_DRV_120, FDRIVE_DISK_288, 9, 40, 0, "180 kB 5\"1/4", },
{ FDRIVE_DRV_120, FDRIVE_DISK_288, 10, 41, 1, "410 kB 5\"1/4", },
{ FDRIVE_DRV_120, FDRIVE_DISK_288, 10, 42, 1, "420 kB 5\"1/4", },
/* 320 kB 5"1/4 floppy disks */
{ FDRIVE_DRV_120, FDRIVE_DISK_288, 8, 40, 1, "320 kB 5\"1/4", },
{ FDRIVE_DRV_120, FDRIVE_DISK_288, 8, 40, 0, "160 kB 5\"1/4", },
/* 360 kB must match 5"1/4 better than 3"1/2... */
{ FDRIVE_DRV_144, FDRIVE_DISK_720, 9, 80, 0, "360 kB 3\"1/2", },
/* end */
{ FDRIVE_DRV_NONE, FDRIVE_DISK_NONE, -1, -1, 0, NULL, },
};
/* Revalidate a disk drive after a disk change */
static void fd_revalidate (fdrive_t *drv)
{
const fd_format_t *parse;
uint64_t nb_sectors, size;
int i, first_match, match;
int nb_heads, max_track, last_sect, ro;
FLOPPY_DPRINTF("revalidate\n");
if (drv->bs != NULL && bdrv_is_inserted(drv->bs)) {
ro = bdrv_is_read_only(drv->bs);
bdrv_get_geometry_hint(drv->bs, &nb_heads, &max_track, &last_sect);
if (nb_heads != 0 && max_track != 0 && last_sect != 0) {
FLOPPY_DPRINTF("User defined disk (%d %d %d)",
nb_heads - 1, max_track, last_sect);
} else {
bdrv_get_geometry(drv->bs, &nb_sectors);
match = -1;
first_match = -1;
for (i = 0;; i++) {
parse = &fd_formats[i];
if (parse->drive == FDRIVE_DRV_NONE)
break;
if (drv->drive == parse->drive ||
drv->drive == FDRIVE_DRV_NONE) {
size = (parse->max_head + 1) * parse->max_track *
parse->last_sect;
if (nb_sectors == size) {
match = i;
break;
}
if (first_match == -1)
first_match = i;
}
}
if (match == -1) {
if (first_match == -1)
match = 1;
else
match = first_match;
parse = &fd_formats[match];
}
nb_heads = parse->max_head + 1;
max_track = parse->max_track;
last_sect = parse->last_sect;
drv->drive = parse->drive;
FLOPPY_DPRINTF("%s floppy disk (%d h %d t %d s) %s\n", parse->str,
nb_heads, max_track, last_sect, ro ? "ro" : "rw");
}
if (nb_heads == 1) {
drv->flags &= ~FDISK_DBL_SIDES;
} else {
drv->flags |= FDISK_DBL_SIDES;
}
drv->max_track = max_track;
drv->last_sect = last_sect;
drv->ro = ro;
} else {
FLOPPY_DPRINTF("No disk in drive\n");
drv->last_sect = 0;
drv->max_track = 0;
drv->flags &= ~FDISK_DBL_SIDES;
}
}
/********************************************************/
/* Intel 82078 floppy disk controller emulation */
static void fdctrl_reset (fdctrl_t *fdctrl, int do_irq);
static void fdctrl_reset_fifo (fdctrl_t *fdctrl);
static int fdctrl_transfer_handler (void *opaque, int nchan,
int dma_pos, int dma_len);
static void fdctrl_raise_irq (fdctrl_t *fdctrl, uint8_t status0);
static uint32_t fdctrl_read_statusA (fdctrl_t *fdctrl);
static uint32_t fdctrl_read_statusB (fdctrl_t *fdctrl);
static uint32_t fdctrl_read_dor (fdctrl_t *fdctrl);
static void fdctrl_write_dor (fdctrl_t *fdctrl, uint32_t value);
static uint32_t fdctrl_read_tape (fdctrl_t *fdctrl);
static void fdctrl_write_tape (fdctrl_t *fdctrl, uint32_t value);
static uint32_t fdctrl_read_main_status (fdctrl_t *fdctrl);
static void fdctrl_write_rate (fdctrl_t *fdctrl, uint32_t value);
static uint32_t fdctrl_read_data (fdctrl_t *fdctrl);
static void fdctrl_write_data (fdctrl_t *fdctrl, uint32_t value);
static uint32_t fdctrl_read_dir (fdctrl_t *fdctrl);
enum {
FD_DIR_WRITE = 0,
FD_DIR_READ = 1,
FD_DIR_SCANE = 2,
FD_DIR_SCANL = 3,
FD_DIR_SCANH = 4,
};
enum {
FD_STATE_MULTI = 0x01, /* multi track flag */
FD_STATE_FORMAT = 0x02, /* format flag */
FD_STATE_SEEK = 0x04, /* seek flag */
};
enum {
FD_REG_SRA = 0x00,
FD_REG_SRB = 0x01,
FD_REG_DOR = 0x02,
FD_REG_TDR = 0x03,
FD_REG_MSR = 0x04,
FD_REG_DSR = 0x04,
FD_REG_FIFO = 0x05,
FD_REG_DIR = 0x07,
};
enum {
FD_CMD_READ_TRACK = 0x02,
FD_CMD_SPECIFY = 0x03,
FD_CMD_SENSE_DRIVE_STATUS = 0x04,
FD_CMD_WRITE = 0x05,
FD_CMD_READ = 0x06,
FD_CMD_RECALIBRATE = 0x07,
FD_CMD_SENSE_INTERRUPT_STATUS = 0x08,
FD_CMD_WRITE_DELETED = 0x09,
FD_CMD_READ_ID = 0x0a,
FD_CMD_READ_DELETED = 0x0c,
FD_CMD_FORMAT_TRACK = 0x0d,
FD_CMD_DUMPREG = 0x0e,
FD_CMD_SEEK = 0x0f,
FD_CMD_VERSION = 0x10,
FD_CMD_SCAN_EQUAL = 0x11,
FD_CMD_PERPENDICULAR_MODE = 0x12,
FD_CMD_CONFIGURE = 0x13,
FD_CMD_LOCK = 0x14,
FD_CMD_VERIFY = 0x16,
FD_CMD_POWERDOWN_MODE = 0x17,
FD_CMD_PART_ID = 0x18,
FD_CMD_SCAN_LOW_OR_EQUAL = 0x19,
FD_CMD_SCAN_HIGH_OR_EQUAL = 0x1d,
FD_CMD_SAVE = 0x2c,
FD_CMD_OPTION = 0x33,
FD_CMD_RESTORE = 0x4c,
FD_CMD_DRIVE_SPECIFICATION_COMMAND = 0x8e,
FD_CMD_RELATIVE_SEEK_OUT = 0x8f,
FD_CMD_FORMAT_AND_WRITE = 0xcd,
FD_CMD_RELATIVE_SEEK_IN = 0xcf,
};
enum {
FD_CONFIG_PRETRK = 0xff, /* Pre-compensation set to track 0 */
FD_CONFIG_FIFOTHR = 0x0f, /* FIFO threshold set to 1 byte */
FD_CONFIG_POLL = 0x10, /* Poll enabled */
FD_CONFIG_EFIFO = 0x20, /* FIFO disabled */
FD_CONFIG_EIS = 0x40, /* No implied seeks */
};
enum {
FD_SR0_EQPMT = 0x10,
FD_SR0_SEEK = 0x20,
FD_SR0_ABNTERM = 0x40,
FD_SR0_INVCMD = 0x80,
FD_SR0_RDYCHG = 0xc0,
};
enum {
FD_SR1_EC = 0x80, /* End of cylinder */
};
enum {
FD_SR2_SNS = 0x04, /* Scan not satisfied */
FD_SR2_SEH = 0x08, /* Scan equal hit */
};
enum {
FD_SRA_DIR = 0x01,
FD_SRA_nWP = 0x02,
FD_SRA_nINDX = 0x04,
FD_SRA_HDSEL = 0x08,
FD_SRA_nTRK0 = 0x10,
FD_SRA_STEP = 0x20,
FD_SRA_nDRV2 = 0x40,
FD_SRA_INTPEND = 0x80,
};
enum {
FD_SRB_MTR0 = 0x01,
FD_SRB_MTR1 = 0x02,
FD_SRB_WGATE = 0x04,
FD_SRB_RDATA = 0x08,
FD_SRB_WDATA = 0x10,
FD_SRB_DR0 = 0x20,
};
enum {
#if MAX_FD == 4
FD_DOR_SELMASK = 0x03,
#else
FD_DOR_SELMASK = 0x01,
#endif
FD_DOR_nRESET = 0x04,
FD_DOR_DMAEN = 0x08,
FD_DOR_MOTEN0 = 0x10,
FD_DOR_MOTEN1 = 0x20,
FD_DOR_MOTEN2 = 0x40,
FD_DOR_MOTEN3 = 0x80,
};
enum {
#if MAX_FD == 4
FD_TDR_BOOTSEL = 0x0c,
#else
FD_TDR_BOOTSEL = 0x04,
#endif
};
enum {
FD_DSR_DRATEMASK= 0x03,
FD_DSR_PWRDOWN = 0x40,
FD_DSR_SWRESET = 0x80,
};
enum {
FD_MSR_DRV0BUSY = 0x01,
FD_MSR_DRV1BUSY = 0x02,
FD_MSR_DRV2BUSY = 0x04,
FD_MSR_DRV3BUSY = 0x08,
FD_MSR_CMDBUSY = 0x10,
FD_MSR_NONDMA = 0x20,
FD_MSR_DIO = 0x40,
FD_MSR_RQM = 0x80,
};
enum {
FD_DIR_DSKCHG = 0x80,
};
#define FD_MULTI_TRACK(state) ((state) & FD_STATE_MULTI)
#define FD_DID_SEEK(state) ((state) & FD_STATE_SEEK)
#define FD_FORMAT_CMD(state) ((state) & FD_STATE_FORMAT)
struct fdctrl_t {
/* Controller's identification */
uint8_t version;
/* HW */
qemu_irq irq;
int dma_chann;
target_phys_addr_t io_base;
/* Controller state */
QEMUTimer *result_timer;
uint8_t sra;
uint8_t srb;
uint8_t dor;
uint8_t tdr;
uint8_t dsr;
uint8_t msr;
uint8_t cur_drv;
uint8_t status0;
uint8_t status1;
uint8_t status2;
/* Command FIFO */
uint8_t *fifo;
uint32_t data_pos;
uint32_t data_len;
uint8_t data_state;
uint8_t data_dir;
uint8_t eot; /* last wanted sector */
/* States kept only to be returned back */
/* Timers state */
uint8_t timer0;
uint8_t timer1;
/* precompensation */
uint8_t precomp_trk;
uint8_t config;
uint8_t lock;
/* Power down config (also with status regB access mode */
uint8_t pwrd;
/* Sun4m quirks? */
int sun4m;
/* Floppy drives */
fdrive_t drives[MAX_FD];
int reset_sensei;
};
static uint32_t fdctrl_read (void *opaque, uint32_t reg)
{
fdctrl_t *fdctrl = opaque;
uint32_t retval;
switch (reg) {
case FD_REG_SRA:
retval = fdctrl_read_statusA(fdctrl);
break;
case FD_REG_SRB:
retval = fdctrl_read_statusB(fdctrl);
break;
case FD_REG_DOR:
retval = fdctrl_read_dor(fdctrl);
break;
case FD_REG_TDR:
retval = fdctrl_read_tape(fdctrl);
break;
case FD_REG_MSR:
retval = fdctrl_read_main_status(fdctrl);
break;
case FD_REG_FIFO:
retval = fdctrl_read_data(fdctrl);
break;
case FD_REG_DIR:
retval = fdctrl_read_dir(fdctrl);
break;
default:
retval = (uint32_t)(-1);
break;
}
FLOPPY_DPRINTF("read reg%d: 0x%02x\n", reg & 7, retval);
return retval;
}
static void fdctrl_write (void *opaque, uint32_t reg, uint32_t value)
{
fdctrl_t *fdctrl = opaque;
FLOPPY_DPRINTF("write reg%d: 0x%02x\n", reg & 7, value);
switch (reg) {
case FD_REG_DOR:
fdctrl_write_dor(fdctrl, value);
break;
case FD_REG_TDR:
fdctrl_write_tape(fdctrl, value);
break;
case FD_REG_DSR:
fdctrl_write_rate(fdctrl, value);
break;
case FD_REG_FIFO:
fdctrl_write_data(fdctrl, value);
break;
default:
break;
}
}
static uint32_t fdctrl_read_port (void *opaque, uint32_t reg)
{
return fdctrl_read(opaque, reg & 7);
}
static void fdctrl_write_port (void *opaque, uint32_t reg, uint32_t value)
{
fdctrl_write(opaque, reg & 7, value);
}
static uint32_t fdctrl_read_mem (void *opaque, target_phys_addr_t reg)
{
return fdctrl_read(opaque, (uint32_t)reg);
}
static void fdctrl_write_mem (void *opaque,
target_phys_addr_t reg, uint32_t value)
{
fdctrl_write(opaque, (uint32_t)reg, value);
}
static CPUReadMemoryFunc *fdctrl_mem_read[3] = {
fdctrl_read_mem,
fdctrl_read_mem,
fdctrl_read_mem,
};
static CPUWriteMemoryFunc *fdctrl_mem_write[3] = {
fdctrl_write_mem,
fdctrl_write_mem,
fdctrl_write_mem,
};
static CPUReadMemoryFunc *fdctrl_mem_read_strict[3] = {
fdctrl_read_mem,
NULL,
NULL,
};
static CPUWriteMemoryFunc *fdctrl_mem_write_strict[3] = {
fdctrl_write_mem,
NULL,
NULL,
};
static void fd_save (QEMUFile *f, fdrive_t *fd)
{
qemu_put_8s(f, &fd->head);
qemu_put_8s(f, &fd->track);
qemu_put_8s(f, &fd->sect);
}
static void fdc_save (QEMUFile *f, void *opaque)
{
fdctrl_t *s = opaque;
uint8_t tmp;
int i;
uint8_t dor = s->dor | GET_CUR_DRV(s);
/* Controller state */
qemu_put_8s(f, &s->sra);
qemu_put_8s(f, &s->srb);
qemu_put_8s(f, &dor);
qemu_put_8s(f, &s->tdr);
qemu_put_8s(f, &s->dsr);
qemu_put_8s(f, &s->msr);
qemu_put_8s(f, &s->status0);
qemu_put_8s(f, &s->status1);
qemu_put_8s(f, &s->status2);
/* Command FIFO */
qemu_put_buffer(f, s->fifo, FD_SECTOR_LEN);
qemu_put_be32s(f, &s->data_pos);
qemu_put_be32s(f, &s->data_len);
qemu_put_8s(f, &s->data_state);
qemu_put_8s(f, &s->data_dir);
qemu_put_8s(f, &s->eot);
/* States kept only to be returned back */
qemu_put_8s(f, &s->timer0);
qemu_put_8s(f, &s->timer1);
qemu_put_8s(f, &s->precomp_trk);
qemu_put_8s(f, &s->config);
qemu_put_8s(f, &s->lock);
qemu_put_8s(f, &s->pwrd);
tmp = MAX_FD;
qemu_put_8s(f, &tmp);
for (i = 0; i < MAX_FD; i++)
fd_save(f, &s->drives[i]);
}
static int fd_load (QEMUFile *f, fdrive_t *fd)
{
qemu_get_8s(f, &fd->head);
qemu_get_8s(f, &fd->track);
qemu_get_8s(f, &fd->sect);
return 0;
}
static int fdc_load (QEMUFile *f, void *opaque, int version_id)
{
fdctrl_t *s = opaque;
int i, ret = 0;
uint8_t n;
if (version_id != 2)
return -EINVAL;
/* Controller state */
qemu_get_8s(f, &s->sra);
qemu_get_8s(f, &s->srb);
qemu_get_8s(f, &s->dor);
SET_CUR_DRV(s, s->dor & FD_DOR_SELMASK);
s->dor &= ~FD_DOR_SELMASK;
qemu_get_8s(f, &s->tdr);
qemu_get_8s(f, &s->dsr);
qemu_get_8s(f, &s->msr);
qemu_get_8s(f, &s->status0);
qemu_get_8s(f, &s->status1);
qemu_get_8s(f, &s->status2);
/* Command FIFO */
qemu_get_buffer(f, s->fifo, FD_SECTOR_LEN);
qemu_get_be32s(f, &s->data_pos);
qemu_get_be32s(f, &s->data_len);
qemu_get_8s(f, &s->data_state);
qemu_get_8s(f, &s->data_dir);
qemu_get_8s(f, &s->eot);
/* States kept only to be returned back */
qemu_get_8s(f, &s->timer0);
qemu_get_8s(f, &s->timer1);
qemu_get_8s(f, &s->precomp_trk);
qemu_get_8s(f, &s->config);
qemu_get_8s(f, &s->lock);
qemu_get_8s(f, &s->pwrd);
qemu_get_8s(f, &n);
if (n > MAX_FD)
return -EINVAL;
for (i = 0; i < n; i++) {
ret = fd_load(f, &s->drives[i]);
if (ret != 0)
break;
}
return ret;
}
static void fdctrl_external_reset(void *opaque)
{
fdctrl_t *s = opaque;
fdctrl_reset(s, 0);
}
static void fdctrl_handle_tc(void *opaque, int irq, int level)
{
//fdctrl_t *s = opaque;
if (level) {
// XXX
FLOPPY_DPRINTF("TC pulsed\n");
}
}
/* XXX: may change if moved to bdrv */
int fdctrl_get_drive_type(fdctrl_t *fdctrl, int drive_num)
{
return fdctrl->drives[drive_num].drive;
}
/* Change IRQ state */
static void fdctrl_reset_irq (fdctrl_t *fdctrl)
{
if (!(fdctrl->sra & FD_SRA_INTPEND))
return;
FLOPPY_DPRINTF("Reset interrupt\n");
qemu_set_irq(fdctrl->irq, 0);
fdctrl->sra &= ~FD_SRA_INTPEND;
}
static void fdctrl_raise_irq (fdctrl_t *fdctrl, uint8_t status0)
{
/* Sparc mutation */
if (fdctrl->sun4m && (fdctrl->msr & FD_MSR_CMDBUSY)) {
/* XXX: not sure */
fdctrl->msr &= ~FD_MSR_CMDBUSY;
fdctrl->msr |= FD_MSR_RQM | FD_MSR_DIO;
fdctrl->status0 = status0;
return;
}
if (!(fdctrl->sra & FD_SRA_INTPEND)) {
qemu_set_irq(fdctrl->irq, 1);
fdctrl->sra |= FD_SRA_INTPEND;
}
fdctrl->reset_sensei = 0;
fdctrl->status0 = status0;
FLOPPY_DPRINTF("Set interrupt status to 0x%02x\n", fdctrl->status0);
}
/* Reset controller */
static void fdctrl_reset (fdctrl_t *fdctrl, int do_irq)
{
int i;
FLOPPY_DPRINTF("reset controller\n");
fdctrl_reset_irq(fdctrl);
/* Initialise controller */
fdctrl->sra = 0;
fdctrl->srb = 0xc0;
if (!fdctrl->drives[1].bs)
fdctrl->sra |= FD_SRA_nDRV2;
fdctrl->cur_drv = 0;
fdctrl->dor = FD_DOR_nRESET;
fdctrl->dor |= (fdctrl->dma_chann != -1) ? FD_DOR_DMAEN : 0;
fdctrl->msr = FD_MSR_RQM;
/* FIFO state */
fdctrl->data_pos = 0;
fdctrl->data_len = 0;
fdctrl->data_state = 0;
fdctrl->data_dir = FD_DIR_WRITE;
for (i = 0; i < MAX_FD; i++)
fd_recalibrate(&fdctrl->drives[i]);
fdctrl_reset_fifo(fdctrl);
if (do_irq) {
fdctrl_raise_irq(fdctrl, FD_SR0_RDYCHG);
fdctrl->reset_sensei = FD_RESET_SENSEI_COUNT;
}
}
static inline fdrive_t *drv0 (fdctrl_t *fdctrl)
{
return &fdctrl->drives[(fdctrl->tdr & FD_TDR_BOOTSEL) >> 2];
}
static inline fdrive_t *drv1 (fdctrl_t *fdctrl)
{
if ((fdctrl->tdr & FD_TDR_BOOTSEL) < (1 << 2))
return &fdctrl->drives[1];
else
return &fdctrl->drives[0];
}
#if MAX_FD == 4
static inline fdrive_t *drv2 (fdctrl_t *fdctrl)
{
if ((fdctrl->tdr & FD_TDR_BOOTSEL) < (2 << 2))
return &fdctrl->drives[2];
else
return &fdctrl->drives[1];
}
static inline fdrive_t *drv3 (fdctrl_t *fdctrl)
{
if ((fdctrl->tdr & FD_TDR_BOOTSEL) < (3 << 2))
return &fdctrl->drives[3];
else
return &fdctrl->drives[2];
}
#endif
static fdrive_t *get_cur_drv (fdctrl_t *fdctrl)
{
switch (fdctrl->cur_drv) {
case 0: return drv0(fdctrl);
case 1: return drv1(fdctrl);
#if MAX_FD == 4
case 2: return drv2(fdctrl);
case 3: return drv3(fdctrl);
#endif
default: return NULL;
}
}
/* Status A register : 0x00 (read-only) */
static uint32_t fdctrl_read_statusA (fdctrl_t *fdctrl)
{
uint32_t retval = fdctrl->sra;
FLOPPY_DPRINTF("status register A: 0x%02x\n", retval);
return retval;
}
/* Status B register : 0x01 (read-only) */
static uint32_t fdctrl_read_statusB (fdctrl_t *fdctrl)
{
uint32_t retval = fdctrl->srb;
FLOPPY_DPRINTF("status register B: 0x%02x\n", retval);
return retval;
}
/* Digital output register : 0x02 */
static uint32_t fdctrl_read_dor (fdctrl_t *fdctrl)
{
uint32_t retval = fdctrl->dor;
/* Selected drive */
retval |= fdctrl->cur_drv;
FLOPPY_DPRINTF("digital output register: 0x%02x\n", retval);
return retval;
}
static void fdctrl_write_dor (fdctrl_t *fdctrl, uint32_t value)
{
FLOPPY_DPRINTF("digital output register set to 0x%02x\n", value);
/* Motors */
if (value & FD_DOR_MOTEN0)
fdctrl->srb |= FD_SRB_MTR0;
else
fdctrl->srb &= ~FD_SRB_MTR0;
if (value & FD_DOR_MOTEN1)
fdctrl->srb |= FD_SRB_MTR1;
else
fdctrl->srb &= ~FD_SRB_MTR1;
/* Drive */
if (value & 1)
fdctrl->srb |= FD_SRB_DR0;
else
fdctrl->srb &= ~FD_SRB_DR0;
/* Reset */
if (!(value & FD_DOR_nRESET)) {
if (fdctrl->dor & FD_DOR_nRESET) {
FLOPPY_DPRINTF("controller enter RESET state\n");
}
} else {
if (!(fdctrl->dor & FD_DOR_nRESET)) {
FLOPPY_DPRINTF("controller out of RESET state\n");
fdctrl_reset(fdctrl, 1);
fdctrl->dsr &= ~FD_DSR_PWRDOWN;
}
}
/* Selected drive */
fdctrl->cur_drv = value & FD_DOR_SELMASK;
fdctrl->dor = value;
}
/* Tape drive register : 0x03 */
static uint32_t fdctrl_read_tape (fdctrl_t *fdctrl)
{
uint32_t retval = fdctrl->tdr;
FLOPPY_DPRINTF("tape drive register: 0x%02x\n", retval);
return retval;
}
static void fdctrl_write_tape (fdctrl_t *fdctrl, uint32_t value)
{
/* Reset mode */
if (!(fdctrl->dor & FD_DOR_nRESET)) {
FLOPPY_DPRINTF("Floppy controller in RESET state !\n");
return;
}
FLOPPY_DPRINTF("tape drive register set to 0x%02x\n", value);
/* Disk boot selection indicator */
fdctrl->tdr = value & FD_TDR_BOOTSEL;
/* Tape indicators: never allow */
}
/* Main status register : 0x04 (read) */
static uint32_t fdctrl_read_main_status (fdctrl_t *fdctrl)
{
uint32_t retval = fdctrl->msr;
fdctrl->dsr &= ~FD_DSR_PWRDOWN;
fdctrl->dor |= FD_DOR_nRESET;
FLOPPY_DPRINTF("main status register: 0x%02x\n", retval);
return retval;
}
/* Data select rate register : 0x04 (write) */
static void fdctrl_write_rate (fdctrl_t *fdctrl, uint32_t value)
{
/* Reset mode */
if (!(fdctrl->dor & FD_DOR_nRESET)) {
FLOPPY_DPRINTF("Floppy controller in RESET state !\n");
return;
}
FLOPPY_DPRINTF("select rate register set to 0x%02x\n", value);
/* Reset: autoclear */
if (value & FD_DSR_SWRESET) {
fdctrl->dor &= ~FD_DOR_nRESET;
fdctrl_reset(fdctrl, 1);
fdctrl->dor |= FD_DOR_nRESET;
}
if (value & FD_DSR_PWRDOWN) {
fdctrl_reset(fdctrl, 1);
}
fdctrl->dsr = value;
}
static int fdctrl_media_changed(fdrive_t *drv)
{
int ret;
if (!drv->bs)
return 0;
ret = bdrv_media_changed(drv->bs);
if (ret) {
fd_revalidate(drv);
}
return ret;
}
/* Digital input register : 0x07 (read-only) */
static uint32_t fdctrl_read_dir (fdctrl_t *fdctrl)
{
uint32_t retval = 0;
if (fdctrl_media_changed(drv0(fdctrl))
|| fdctrl_media_changed(drv1(fdctrl))
#if MAX_FD == 4
|| fdctrl_media_changed(drv2(fdctrl))
|| fdctrl_media_changed(drv3(fdctrl))
#endif
)
retval |= FD_DIR_DSKCHG;
if (retval != 0)
FLOPPY_DPRINTF("Floppy digital input register: 0x%02x\n", retval);
return retval;
}
/* FIFO state control */
static void fdctrl_reset_fifo (fdctrl_t *fdctrl)
{
fdctrl->data_dir = FD_DIR_WRITE;
fdctrl->data_pos = 0;
fdctrl->msr &= ~(FD_MSR_CMDBUSY | FD_MSR_DIO);
}
/* Set FIFO status for the host to read */
static void fdctrl_set_fifo (fdctrl_t *fdctrl, int fifo_len, int do_irq)
{
fdctrl->data_dir = FD_DIR_READ;
fdctrl->data_len = fifo_len;
fdctrl->data_pos = 0;
fdctrl->msr |= FD_MSR_CMDBUSY | FD_MSR_RQM | FD_MSR_DIO;
if (do_irq)
fdctrl_raise_irq(fdctrl, 0x00);
}
/* Set an error: unimplemented/unknown command */
static void fdctrl_unimplemented (fdctrl_t *fdctrl, int direction)
{
FLOPPY_ERROR("unimplemented command 0x%02x\n", fdctrl->fifo[0]);
fdctrl->fifo[0] = FD_SR0_INVCMD;
fdctrl_set_fifo(fdctrl, 1, 0);
}
/* Seek to next sector */
static int fdctrl_seek_to_next_sect (fdctrl_t *fdctrl, fdrive_t *cur_drv)
{
FLOPPY_DPRINTF("seek to next sector (%d %02x %02x => %d)\n",
cur_drv->head, cur_drv->track, cur_drv->sect,
fd_sector(cur_drv));
/* XXX: cur_drv->sect >= cur_drv->last_sect should be an
error in fact */
if (cur_drv->sect >= cur_drv->last_sect ||
cur_drv->sect == fdctrl->eot) {
cur_drv->sect = 1;
if (FD_MULTI_TRACK(fdctrl->data_state)) {
if (cur_drv->head == 0 &&
(cur_drv->flags & FDISK_DBL_SIDES) != 0) {
cur_drv->head = 1;
} else {
cur_drv->head = 0;
cur_drv->track++;
if ((cur_drv->flags & FDISK_DBL_SIDES) == 0)
return 0;
}
} else {
cur_drv->track++;
return 0;
}
FLOPPY_DPRINTF("seek to next track (%d %02x %02x => %d)\n",
cur_drv->head, cur_drv->track,
cur_drv->sect, fd_sector(cur_drv));
} else {
cur_drv->sect++;
}
return 1;
}
/* Callback for transfer end (stop or abort) */
static void fdctrl_stop_transfer (fdctrl_t *fdctrl, uint8_t status0,
uint8_t status1, uint8_t status2)
{
fdrive_t *cur_drv;
cur_drv = get_cur_drv(fdctrl);
FLOPPY_DPRINTF("transfer status: %02x %02x %02x (%02x)\n",
status0, status1, status2,
status0 | (cur_drv->head << 2) | GET_CUR_DRV(fdctrl));
fdctrl->fifo[0] = status0 | (cur_drv->head << 2) | GET_CUR_DRV(fdctrl);
fdctrl->fifo[1] = status1;
fdctrl->fifo[2] = status2;
fdctrl->fifo[3] = cur_drv->track;
fdctrl->fifo[4] = cur_drv->head;
fdctrl->fifo[5] = cur_drv->sect;
fdctrl->fifo[6] = FD_SECTOR_SC;
fdctrl->data_dir = FD_DIR_READ;
if (!(fdctrl->msr & FD_MSR_NONDMA)) {
DMA_release_DREQ(fdctrl->dma_chann);
}
fdctrl->msr |= FD_MSR_RQM | FD_MSR_DIO;
fdctrl->msr &= ~FD_MSR_NONDMA;
fdctrl_set_fifo(fdctrl, 7, 1);
}
/* Prepare a data transfer (either DMA or FIFO) */
static void fdctrl_start_transfer (fdctrl_t *fdctrl, int direction)
{
fdrive_t *cur_drv;
uint8_t kh, kt, ks;
int did_seek = 0;
SET_CUR_DRV(fdctrl, fdctrl->fifo[1] & FD_DOR_SELMASK);
cur_drv = get_cur_drv(fdctrl);
kt = fdctrl->fifo[2];
kh = fdctrl->fifo[3];
ks = fdctrl->fifo[4];
FLOPPY_DPRINTF("Start transfer at %d %d %02x %02x (%d)\n",
GET_CUR_DRV(fdctrl), kh, kt, ks,
_fd_sector(kh, kt, ks, cur_drv->last_sect));
switch (fd_seek(cur_drv, kh, kt, ks, fdctrl->config & FD_CONFIG_EIS)) {
case 2:
/* sect too big */
fdctrl_stop_transfer(fdctrl, FD_SR0_ABNTERM, 0x00, 0x00);
fdctrl->fifo[3] = kt;
fdctrl->fifo[4] = kh;
fdctrl->fifo[5] = ks;
return;
case 3:
/* track too big */
fdctrl_stop_transfer(fdctrl, FD_SR0_ABNTERM, FD_SR1_EC, 0x00);
fdctrl->fifo[3] = kt;
fdctrl->fifo[4] = kh;
fdctrl->fifo[5] = ks;
return;
case 4:
/* No seek enabled */
fdctrl_stop_transfer(fdctrl, FD_SR0_ABNTERM, 0x00, 0x00);
fdctrl->fifo[3] = kt;
fdctrl->fifo[4] = kh;
fdctrl->fifo[5] = ks;
return;
case 1:
did_seek = 1;
break;
default:
break;
}
/* Set the FIFO state */
fdctrl->data_dir = direction;
fdctrl->data_pos = 0;
fdctrl->msr |= FD_MSR_CMDBUSY;
if (fdctrl->fifo[0] & 0x80)
fdctrl->data_state |= FD_STATE_MULTI;
else
fdctrl->data_state &= ~FD_STATE_MULTI;
if (did_seek)
fdctrl->data_state |= FD_STATE_SEEK;
else
fdctrl->data_state &= ~FD_STATE_SEEK;
if (fdctrl->fifo[5] == 00) {
fdctrl->data_len = fdctrl->fifo[8];
} else {
int tmp;
fdctrl->data_len = 128 << (fdctrl->fifo[5] > 7 ? 7 : fdctrl->fifo[5]);
tmp = (fdctrl->fifo[6] - ks + 1);
if (fdctrl->fifo[0] & 0x80)
tmp += fdctrl->fifo[6];
fdctrl->data_len *= tmp;
}
fdctrl->eot = fdctrl->fifo[6];
if (fdctrl->dor & FD_DOR_DMAEN) {
int dma_mode;
/* DMA transfer are enabled. Check if DMA channel is well programmed */
dma_mode = DMA_get_channel_mode(fdctrl->dma_chann);
dma_mode = (dma_mode >> 2) & 3;
FLOPPY_DPRINTF("dma_mode=%d direction=%d (%d - %d)\n",
dma_mode, direction,
(128 << fdctrl->fifo[5]) *
(cur_drv->last_sect - ks + 1), fdctrl->data_len);
if (((direction == FD_DIR_SCANE || direction == FD_DIR_SCANL ||
direction == FD_DIR_SCANH) && dma_mode == 0) ||
(direction == FD_DIR_WRITE && dma_mode == 2) ||
(direction == FD_DIR_READ && dma_mode == 1)) {
/* No access is allowed until DMA transfer has completed */
fdctrl->msr &= ~FD_MSR_RQM;
/* Now, we just have to wait for the DMA controller to
* recall us...
*/
DMA_hold_DREQ(fdctrl->dma_chann);
DMA_schedule(fdctrl->dma_chann);
return;
} else {
FLOPPY_ERROR("dma_mode=%d direction=%d\n", dma_mode, direction);
}
}
FLOPPY_DPRINTF("start non-DMA transfer\n");
fdctrl->msr |= FD_MSR_NONDMA;
if (direction != FD_DIR_WRITE)
fdctrl->msr |= FD_MSR_DIO;
/* IO based transfer: calculate len */
fdctrl_raise_irq(fdctrl, 0x00);
return;
}
/* Prepare a transfer of deleted data */
static void fdctrl_start_transfer_del (fdctrl_t *fdctrl, int direction)
{
FLOPPY_ERROR("fdctrl_start_transfer_del() unimplemented\n");
/* We don't handle deleted data,
* so we don't return *ANYTHING*
*/
fdctrl_stop_transfer(fdctrl, FD_SR0_ABNTERM | FD_SR0_SEEK, 0x00, 0x00);
}
/* handlers for DMA transfers */
static int fdctrl_transfer_handler (void *opaque, int nchan,
int dma_pos, int dma_len)
{
fdctrl_t *fdctrl;
fdrive_t *cur_drv;
int len, start_pos, rel_pos;
uint8_t status0 = 0x00, status1 = 0x00, status2 = 0x00;
fdctrl = opaque;
if (fdctrl->msr & FD_MSR_RQM) {
FLOPPY_DPRINTF("Not in DMA transfer mode !\n");
return 0;
}
cur_drv = get_cur_drv(fdctrl);
if (fdctrl->data_dir == FD_DIR_SCANE || fdctrl->data_dir == FD_DIR_SCANL ||
fdctrl->data_dir == FD_DIR_SCANH)
status2 = FD_SR2_SNS;
if (dma_len > fdctrl->data_len)
dma_len = fdctrl->data_len;
if (cur_drv->bs == NULL) {
if (fdctrl->data_dir == FD_DIR_WRITE)
fdctrl_stop_transfer(fdctrl, FD_SR0_ABNTERM | FD_SR0_SEEK, 0x00, 0x00);
else
fdctrl_stop_transfer(fdctrl, FD_SR0_ABNTERM, 0x00, 0x00);
len = 0;
goto transfer_error;
}
rel_pos = fdctrl->data_pos % FD_SECTOR_LEN;
for (start_pos = fdctrl->data_pos; fdctrl->data_pos < dma_len;) {
len = dma_len - fdctrl->data_pos;
if (len + rel_pos > FD_SECTOR_LEN)
len = FD_SECTOR_LEN - rel_pos;
FLOPPY_DPRINTF("copy %d bytes (%d %d %d) %d pos %d %02x "
"(%d-0x%08x 0x%08x)\n", len, dma_len, fdctrl->data_pos,
fdctrl->data_len, GET_CUR_DRV(fdctrl), cur_drv->head,
cur_drv->track, cur_drv->sect, fd_sector(cur_drv),
fd_sector(cur_drv) * FD_SECTOR_LEN);
if (fdctrl->data_dir != FD_DIR_WRITE ||
len < FD_SECTOR_LEN || rel_pos != 0) {
/* READ & SCAN commands and realign to a sector for WRITE */
if (bdrv_read(cur_drv->bs, fd_sector(cur_drv),
fdctrl->fifo, 1) < 0) {
FLOPPY_DPRINTF("Floppy: error getting sector %d\n",
fd_sector(cur_drv));
/* Sure, image size is too small... */
memset(fdctrl->fifo, 0, FD_SECTOR_LEN);
}
}
switch (fdctrl->data_dir) {
case FD_DIR_READ:
/* READ commands */
DMA_write_memory (nchan, fdctrl->fifo + rel_pos,
fdctrl->data_pos, len);
break;
case FD_DIR_WRITE:
/* WRITE commands */
DMA_read_memory (nchan, fdctrl->fifo + rel_pos,
fdctrl->data_pos, len);
if (bdrv_write(cur_drv->bs, fd_sector(cur_drv),
fdctrl->fifo, 1) < 0) {
FLOPPY_ERROR("writing sector %d\n", fd_sector(cur_drv));
fdctrl_stop_transfer(fdctrl, FD_SR0_ABNTERM | FD_SR0_SEEK, 0x00, 0x00);
goto transfer_error;
}
break;
default:
/* SCAN commands */
{
uint8_t tmpbuf[FD_SECTOR_LEN];
int ret;
DMA_read_memory (nchan, tmpbuf, fdctrl->data_pos, len);
ret = memcmp(tmpbuf, fdctrl->fifo + rel_pos, len);
if (ret == 0) {
status2 = FD_SR2_SEH;
goto end_transfer;
}
if ((ret < 0 && fdctrl->data_dir == FD_DIR_SCANL) ||
(ret > 0 && fdctrl->data_dir == FD_DIR_SCANH)) {
status2 = 0x00;
goto end_transfer;
}
}
break;
}
fdctrl->data_pos += len;
rel_pos = fdctrl->data_pos % FD_SECTOR_LEN;
if (rel_pos == 0) {
/* Seek to next sector */
if (!fdctrl_seek_to_next_sect(fdctrl, cur_drv))
break;
}
}
end_transfer:
len = fdctrl->data_pos - start_pos;
FLOPPY_DPRINTF("end transfer %d %d %d\n",
fdctrl->data_pos, len, fdctrl->data_len);
if (fdctrl->data_dir == FD_DIR_SCANE ||
fdctrl->data_dir == FD_DIR_SCANL ||
fdctrl->data_dir == FD_DIR_SCANH)
status2 = FD_SR2_SEH;
if (FD_DID_SEEK(fdctrl->data_state))
status0 |= FD_SR0_SEEK;
fdctrl->data_len -= len;
fdctrl_stop_transfer(fdctrl, status0, status1, status2);
transfer_error:
return len;
}
/* Data register : 0x05 */
static uint32_t fdctrl_read_data (fdctrl_t *fdctrl)
{
fdrive_t *cur_drv;
uint32_t retval = 0;
int pos;
cur_drv = get_cur_drv(fdctrl);
fdctrl->dsr &= ~FD_DSR_PWRDOWN;
if (!(fdctrl->msr & FD_MSR_RQM) || !(fdctrl->msr & FD_MSR_DIO)) {
FLOPPY_ERROR("controller not ready for reading\n");
return 0;
}
pos = fdctrl->data_pos;
if (fdctrl->msr & FD_MSR_NONDMA) {
pos %= FD_SECTOR_LEN;
if (pos == 0) {
if (fdctrl->data_pos != 0)
if (!fdctrl_seek_to_next_sect(fdctrl, cur_drv)) {
FLOPPY_DPRINTF("error seeking to next sector %d\n",
fd_sector(cur_drv));
return 0;
}
if (bdrv_read(cur_drv->bs, fd_sector(cur_drv), fdctrl->fifo, 1) < 0) {
FLOPPY_DPRINTF("error getting sector %d\n",
fd_sector(cur_drv));
/* Sure, image size is too small... */
memset(fdctrl->fifo, 0, FD_SECTOR_LEN);
}
}
}
retval = fdctrl->fifo[pos];
if (++fdctrl->data_pos == fdctrl->data_len) {
fdctrl->data_pos = 0;
/* Switch from transfer mode to status mode
* then from status mode to command mode
*/
if (fdctrl->msr & FD_MSR_NONDMA) {
fdctrl_stop_transfer(fdctrl, FD_SR0_SEEK, 0x00, 0x00);
} else {
fdctrl_reset_fifo(fdctrl);
fdctrl_reset_irq(fdctrl);
}
}
FLOPPY_DPRINTF("data register: 0x%02x\n", retval);
return retval;
}
static void fdctrl_format_sector (fdctrl_t *fdctrl)
{
fdrive_t *cur_drv;
uint8_t kh, kt, ks;
SET_CUR_DRV(fdctrl, fdctrl->fifo[1] & FD_DOR_SELMASK);
cur_drv = get_cur_drv(fdctrl);
kt = fdctrl->fifo[6];
kh = fdctrl->fifo[7];
ks = fdctrl->fifo[8];
FLOPPY_DPRINTF("format sector at %d %d %02x %02x (%d)\n",
GET_CUR_DRV(fdctrl), kh, kt, ks,
_fd_sector(kh, kt, ks, cur_drv->last_sect));
switch (fd_seek(cur_drv, kh, kt, ks, fdctrl->config & FD_CONFIG_EIS)) {
case 2:
/* sect too big */
fdctrl_stop_transfer(fdctrl, FD_SR0_ABNTERM, 0x00, 0x00);
fdctrl->fifo[3] = kt;
fdctrl->fifo[4] = kh;
fdctrl->fifo[5] = ks;
return;
case 3:
/* track too big */
fdctrl_stop_transfer(fdctrl, FD_SR0_ABNTERM, FD_SR1_EC, 0x00);
fdctrl->fifo[3] = kt;
fdctrl->fifo[4] = kh;
fdctrl->fifo[5] = ks;
return;
case 4:
/* No seek enabled */
fdctrl_stop_transfer(fdctrl, FD_SR0_ABNTERM, 0x00, 0x00);
fdctrl->fifo[3] = kt;
fdctrl->fifo[4] = kh;
fdctrl->fifo[5] = ks;
return;
case 1:
fdctrl->data_state |= FD_STATE_SEEK;
break;
default:
break;
}
memset(fdctrl->fifo, 0, FD_SECTOR_LEN);
if (cur_drv->bs == NULL ||
bdrv_write(cur_drv->bs, fd_sector(cur_drv), fdctrl->fifo, 1) < 0) {
FLOPPY_ERROR("formatting sector %d\n", fd_sector(cur_drv));
fdctrl_stop_transfer(fdctrl, FD_SR0_ABNTERM | FD_SR0_SEEK, 0x00, 0x00);
} else {
if (cur_drv->sect == cur_drv->last_sect) {
fdctrl->data_state &= ~FD_STATE_FORMAT;
/* Last sector done */
if (FD_DID_SEEK(fdctrl->data_state))
fdctrl_stop_transfer(fdctrl, FD_SR0_SEEK, 0x00, 0x00);
else
fdctrl_stop_transfer(fdctrl, 0x00, 0x00, 0x00);
} else {
/* More to do */
fdctrl->data_pos = 0;
fdctrl->data_len = 4;
}
}
}
static void fdctrl_handle_lock (fdctrl_t *fdctrl, int direction)
{
fdctrl->lock = (fdctrl->fifo[0] & 0x80) ? 1 : 0;
fdctrl->fifo[0] = fdctrl->lock << 4;
fdctrl_set_fifo(fdctrl, 1, fdctrl->lock);
}
static void fdctrl_handle_dumpreg (fdctrl_t *fdctrl, int direction)
{
fdrive_t *cur_drv = get_cur_drv(fdctrl);
/* Drives position */
fdctrl->fifo[0] = drv0(fdctrl)->track;
fdctrl->fifo[1] = drv1(fdctrl)->track;
#if MAX_FD == 4
fdctrl->fifo[2] = drv2(fdctrl)->track;
fdctrl->fifo[3] = drv3(fdctrl)->track;
#else
fdctrl->fifo[2] = 0;
fdctrl->fifo[3] = 0;
#endif
/* timers */
fdctrl->fifo[4] = fdctrl->timer0;
fdctrl->fifo[5] = (fdctrl->timer1 << 1) | (fdctrl->dor & FD_DOR_DMAEN ? 1 : 0);
fdctrl->fifo[6] = cur_drv->last_sect;
fdctrl->fifo[7] = (fdctrl->lock << 7) |
(cur_drv->perpendicular << 2);
fdctrl->fifo[8] = fdctrl->config;
fdctrl->fifo[9] = fdctrl->precomp_trk;
fdctrl_set_fifo(fdctrl, 10, 0);
}
static void fdctrl_handle_version (fdctrl_t *fdctrl, int direction)
{
/* Controller's version */
fdctrl->fifo[0] = fdctrl->version;
fdctrl_set_fifo(fdctrl, 1, 1);
}
static void fdctrl_handle_partid (fdctrl_t *fdctrl, int direction)
{
fdctrl->fifo[0] = 0x41; /* Stepping 1 */
fdctrl_set_fifo(fdctrl, 1, 0);
}
static void fdctrl_handle_restore (fdctrl_t *fdctrl, int direction)
{
fdrive_t *cur_drv = get_cur_drv(fdctrl);
/* Drives position */
drv0(fdctrl)->track = fdctrl->fifo[3];
drv1(fdctrl)->track = fdctrl->fifo[4];
#if MAX_FD == 4
drv2(fdctrl)->track = fdctrl->fifo[5];
drv3(fdctrl)->track = fdctrl->fifo[6];
#endif
/* timers */
fdctrl->timer0 = fdctrl->fifo[7];
fdctrl->timer1 = fdctrl->fifo[8];
cur_drv->last_sect = fdctrl->fifo[9];
fdctrl->lock = fdctrl->fifo[10] >> 7;
cur_drv->perpendicular = (fdctrl->fifo[10] >> 2) & 0xF;
fdctrl->config = fdctrl->fifo[11];
fdctrl->precomp_trk = fdctrl->fifo[12];
fdctrl->pwrd = fdctrl->fifo[13];
fdctrl_reset_fifo(fdctrl);
}
static void fdctrl_handle_save (fdctrl_t *fdctrl, int direction)
{
fdrive_t *cur_drv = get_cur_drv(fdctrl);
fdctrl->fifo[0] = 0;
fdctrl->fifo[1] = 0;
/* Drives position */
fdctrl->fifo[2] = drv0(fdctrl)->track;
fdctrl->fifo[3] = drv1(fdctrl)->track;
#if MAX_FD == 4
fdctrl->fifo[4] = drv2(fdctrl)->track;
fdctrl->fifo[5] = drv3(fdctrl)->track;
#else
fdctrl->fifo[4] = 0;
fdctrl->fifo[5] = 0;
#endif
/* timers */
fdctrl->fifo[6] = fdctrl->timer0;
fdctrl->fifo[7] = fdctrl->timer1;
fdctrl->fifo[8] = cur_drv->last_sect;
fdctrl->fifo[9] = (fdctrl->lock << 7) |
(cur_drv->perpendicular << 2);
fdctrl->fifo[10] = fdctrl->config;
fdctrl->fifo[11] = fdctrl->precomp_trk;
fdctrl->fifo[12] = fdctrl->pwrd;
fdctrl->fifo[13] = 0;
fdctrl->fifo[14] = 0;
fdctrl_set_fifo(fdctrl, 15, 1);
}
static void fdctrl_handle_readid (fdctrl_t *fdctrl, int direction)
{
fdrive_t *cur_drv = get_cur_drv(fdctrl);
/* XXX: should set main status register to busy */
cur_drv->head = (fdctrl->fifo[1] >> 2) & 1;
qemu_mod_timer(fdctrl->result_timer,
qemu_get_clock(vm_clock) + (ticks_per_sec / 50));
}
static void fdctrl_handle_format_track (fdctrl_t *fdctrl, int direction)
{
fdrive_t *cur_drv;
SET_CUR_DRV(fdctrl, fdctrl->fifo[1] & FD_DOR_SELMASK);
cur_drv = get_cur_drv(fdctrl);
fdctrl->data_state |= FD_STATE_FORMAT;
if (fdctrl->fifo[0] & 0x80)
fdctrl->data_state |= FD_STATE_MULTI;
else
fdctrl->data_state &= ~FD_STATE_MULTI;
fdctrl->data_state &= ~FD_STATE_SEEK;
cur_drv->bps =
fdctrl->fifo[2] > 7 ? 16384 : 128 << fdctrl->fifo[2];
#if 0
cur_drv->last_sect =
cur_drv->flags & FDISK_DBL_SIDES ? fdctrl->fifo[3] :
fdctrl->fifo[3] / 2;
#else
cur_drv->last_sect = fdctrl->fifo[3];
#endif
/* TODO: implement format using DMA expected by the Bochs BIOS
* and Linux fdformat (read 3 bytes per sector via DMA and fill
* the sector with the specified fill byte
*/
fdctrl->data_state &= ~FD_STATE_FORMAT;
fdctrl_stop_transfer(fdctrl, 0x00, 0x00, 0x00);
}
static void fdctrl_handle_specify (fdctrl_t *fdctrl, int direction)
{
fdctrl->timer0 = (fdctrl->fifo[1] >> 4) & 0xF;
fdctrl->timer1 = fdctrl->fifo[2] >> 1;
if (fdctrl->fifo[2] & 1)
fdctrl->dor &= ~FD_DOR_DMAEN;
else
fdctrl->dor |= FD_DOR_DMAEN;
/* No result back */
fdctrl_reset_fifo(fdctrl);
}
static void fdctrl_handle_sense_drive_status (fdctrl_t *fdctrl, int direction)
{
fdrive_t *cur_drv;
SET_CUR_DRV(fdctrl, fdctrl->fifo[1] & FD_DOR_SELMASK);
cur_drv = get_cur_drv(fdctrl);
cur_drv->head = (fdctrl->fifo[1] >> 2) & 1;
/* 1 Byte status back */
fdctrl->fifo[0] = (cur_drv->ro << 6) |
(cur_drv->track == 0 ? 0x10 : 0x00) |
(cur_drv->head << 2) |
GET_CUR_DRV(fdctrl) |
0x28;
fdctrl_set_fifo(fdctrl, 1, 0);
}
static void fdctrl_handle_recalibrate (fdctrl_t *fdctrl, int direction)
{
fdrive_t *cur_drv;
SET_CUR_DRV(fdctrl, fdctrl->fifo[1] & FD_DOR_SELMASK);
cur_drv = get_cur_drv(fdctrl);
fd_recalibrate(cur_drv);
fdctrl_reset_fifo(fdctrl);
/* Raise Interrupt */
fdctrl_raise_irq(fdctrl, FD_SR0_SEEK);
}
static void fdctrl_handle_sense_interrupt_status (fdctrl_t *fdctrl, int direction)
{
fdrive_t *cur_drv = get_cur_drv(fdctrl);
if(fdctrl->reset_sensei > 0) {
fdctrl->fifo[0] =
FD_SR0_RDYCHG + FD_RESET_SENSEI_COUNT - fdctrl->reset_sensei;
fdctrl->reset_sensei--;
} else {
/* XXX: status0 handling is broken for read/write
commands, so we do this hack. It should be suppressed
ASAP */
fdctrl->fifo[0] =
FD_SR0_SEEK | (cur_drv->head << 2) | GET_CUR_DRV(fdctrl);
}
fdctrl->fifo[1] = cur_drv->track;
fdctrl_set_fifo(fdctrl, 2, 0);
fdctrl_reset_irq(fdctrl);
fdctrl->status0 = FD_SR0_RDYCHG;
}
static void fdctrl_handle_seek (fdctrl_t *fdctrl, int direction)
{
fdrive_t *cur_drv;
SET_CUR_DRV(fdctrl, fdctrl->fifo[1] & FD_DOR_SELMASK);
cur_drv = get_cur_drv(fdctrl);
fdctrl_reset_fifo(fdctrl);
if (fdctrl->fifo[2] > cur_drv->max_track) {
fdctrl_raise_irq(fdctrl, FD_SR0_ABNTERM | FD_SR0_SEEK);
} else {
cur_drv->track = fdctrl->fifo[2];
/* Raise Interrupt */
fdctrl_raise_irq(fdctrl, FD_SR0_SEEK);
}
}
static void fdctrl_handle_perpendicular_mode (fdctrl_t *fdctrl, int direction)
{
fdrive_t *cur_drv = get_cur_drv(fdctrl);
if (fdctrl->fifo[1] & 0x80)
cur_drv->perpendicular = fdctrl->fifo[1] & 0x7;
/* No result back */
fdctrl_reset_fifo(fdctrl);
}
static void fdctrl_handle_configure (fdctrl_t *fdctrl, int direction)
{
fdctrl->config = fdctrl->fifo[2];
fdctrl->precomp_trk = fdctrl->fifo[3];
/* No result back */
fdctrl_reset_fifo(fdctrl);
}
static void fdctrl_handle_powerdown_mode (fdctrl_t *fdctrl, int direction)
{
fdctrl->pwrd = fdctrl->fifo[1];
fdctrl->fifo[0] = fdctrl->fifo[1];
fdctrl_set_fifo(fdctrl, 1, 1);
}
static void fdctrl_handle_option (fdctrl_t *fdctrl, int direction)
{
/* No result back */
fdctrl_reset_fifo(fdctrl);
}
static void fdctrl_handle_drive_specification_command (fdctrl_t *fdctrl, int direction)
{
fdrive_t *cur_drv = get_cur_drv(fdctrl);
if (fdctrl->fifo[fdctrl->data_pos - 1] & 0x80) {
/* Command parameters done */
if (fdctrl->fifo[fdctrl->data_pos - 1] & 0x40) {
fdctrl->fifo[0] = fdctrl->fifo[1];
fdctrl->fifo[2] = 0;
fdctrl->fifo[3] = 0;
fdctrl_set_fifo(fdctrl, 4, 1);
} else {
fdctrl_reset_fifo(fdctrl);
}
} else if (fdctrl->data_len > 7) {
/* ERROR */
fdctrl->fifo[0] = 0x80 |
(cur_drv->head << 2) | GET_CUR_DRV(fdctrl);
fdctrl_set_fifo(fdctrl, 1, 1);
}
}
static void fdctrl_handle_relative_seek_out (fdctrl_t *fdctrl, int direction)
{
fdrive_t *cur_drv;
SET_CUR_DRV(fdctrl, fdctrl->fifo[1] & FD_DOR_SELMASK);
cur_drv = get_cur_drv(fdctrl);
if (fdctrl->fifo[2] + cur_drv->track >= cur_drv->max_track) {
cur_drv->track = cur_drv->max_track - 1;
} else {
cur_drv->track += fdctrl->fifo[2];
}
fdctrl_reset_fifo(fdctrl);
/* Raise Interrupt */
fdctrl_raise_irq(fdctrl, FD_SR0_SEEK);
}
static void fdctrl_handle_relative_seek_in (fdctrl_t *fdctrl, int direction)
{
fdrive_t *cur_drv;
SET_CUR_DRV(fdctrl, fdctrl->fifo[1] & FD_DOR_SELMASK);
cur_drv = get_cur_drv(fdctrl);
if (fdctrl->fifo[2] > cur_drv->track) {
cur_drv->track = 0;
} else {
cur_drv->track -= fdctrl->fifo[2];
}
fdctrl_reset_fifo(fdctrl);
/* Raise Interrupt */
fdctrl_raise_irq(fdctrl, FD_SR0_SEEK);
}
static const struct {
uint8_t value;
uint8_t mask;
const char* name;
int parameters;
void (*handler)(fdctrl_t *fdctrl, int direction);
int direction;
} handlers[] = {
{ FD_CMD_READ, 0x1f, "READ", 8, fdctrl_start_transfer, FD_DIR_READ },
{ FD_CMD_WRITE, 0x3f, "WRITE", 8, fdctrl_start_transfer, FD_DIR_WRITE },
{ FD_CMD_SEEK, 0xff, "SEEK", 2, fdctrl_handle_seek },
{ FD_CMD_SENSE_INTERRUPT_STATUS, 0xff, "SENSE INTERRUPT STATUS", 0, fdctrl_handle_sense_interrupt_status },
{ FD_CMD_RECALIBRATE, 0xff, "RECALIBRATE", 1, fdctrl_handle_recalibrate },
{ FD_CMD_FORMAT_TRACK, 0xbf, "FORMAT TRACK", 5, fdctrl_handle_format_track },
{ FD_CMD_READ_TRACK, 0xbf, "READ TRACK", 8, fdctrl_start_transfer, FD_DIR_READ },
{ FD_CMD_RESTORE, 0xff, "RESTORE", 17, fdctrl_handle_restore }, /* part of READ DELETED DATA */
{ FD_CMD_SAVE, 0xff, "SAVE", 0, fdctrl_handle_save }, /* part of READ DELETED DATA */
{ FD_CMD_READ_DELETED, 0x1f, "READ DELETED DATA", 8, fdctrl_start_transfer_del, FD_DIR_READ },
{ FD_CMD_SCAN_EQUAL, 0x1f, "SCAN EQUAL", 8, fdctrl_start_transfer, FD_DIR_SCANE },
{ FD_CMD_VERIFY, 0x1f, "VERIFY", 8, fdctrl_unimplemented },
{ FD_CMD_SCAN_LOW_OR_EQUAL, 0x1f, "SCAN LOW OR EQUAL", 8, fdctrl_start_transfer, FD_DIR_SCANL },
{ FD_CMD_SCAN_HIGH_OR_EQUAL, 0x1f, "SCAN HIGH OR EQUAL", 8, fdctrl_start_transfer, FD_DIR_SCANH },
{ FD_CMD_WRITE_DELETED, 0x3f, "WRITE DELETED DATA", 8, fdctrl_start_transfer_del, FD_DIR_WRITE },
{ FD_CMD_READ_ID, 0xbf, "READ ID", 1, fdctrl_handle_readid },
{ FD_CMD_SPECIFY, 0xff, "SPECIFY", 2, fdctrl_handle_specify },
{ FD_CMD_SENSE_DRIVE_STATUS, 0xff, "SENSE DRIVE STATUS", 1, fdctrl_handle_sense_drive_status },
{ FD_CMD_PERPENDICULAR_MODE, 0xff, "PERPENDICULAR MODE", 1, fdctrl_handle_perpendicular_mode },
{ FD_CMD_CONFIGURE, 0xff, "CONFIGURE", 3, fdctrl_handle_configure },
{ FD_CMD_POWERDOWN_MODE, 0xff, "POWERDOWN MODE", 2, fdctrl_handle_powerdown_mode },
{ FD_CMD_OPTION, 0xff, "OPTION", 1, fdctrl_handle_option },
{ FD_CMD_DRIVE_SPECIFICATION_COMMAND, 0xff, "DRIVE SPECIFICATION COMMAND", 5, fdctrl_handle_drive_specification_command },
{ FD_CMD_RELATIVE_SEEK_OUT, 0xff, "RELATIVE SEEK OUT", 2, fdctrl_handle_relative_seek_out },
{ FD_CMD_FORMAT_AND_WRITE, 0xff, "FORMAT AND WRITE", 10, fdctrl_unimplemented },
{ FD_CMD_RELATIVE_SEEK_IN, 0xff, "RELATIVE SEEK IN", 2, fdctrl_handle_relative_seek_in },
{ FD_CMD_LOCK, 0x7f, "LOCK", 0, fdctrl_handle_lock },
{ FD_CMD_DUMPREG, 0xff, "DUMPREG", 0, fdctrl_handle_dumpreg },
{ FD_CMD_VERSION, 0xff, "VERSION", 0, fdctrl_handle_version },
{ FD_CMD_PART_ID, 0xff, "PART ID", 0, fdctrl_handle_partid },
{ FD_CMD_WRITE, 0x1f, "WRITE (BeOS)", 8, fdctrl_start_transfer, FD_DIR_WRITE }, /* not in specification ; BeOS 4.5 bug */
{ 0, 0, "unknown", 0, fdctrl_unimplemented }, /* default handler */
};
/* Associate command to an index in the 'handlers' array */
static uint8_t command_to_handler[256];
static void fdctrl_write_data (fdctrl_t *fdctrl, uint32_t value)
{
fdrive_t *cur_drv;
int pos;
/* Reset mode */
if (!(fdctrl->dor & FD_DOR_nRESET)) {
FLOPPY_DPRINTF("Floppy controller in RESET state !\n");
return;
}
if (!(fdctrl->msr & FD_MSR_RQM) || (fdctrl->msr & FD_MSR_DIO)) {
FLOPPY_ERROR("controller not ready for writing\n");
return;
}
fdctrl->dsr &= ~FD_DSR_PWRDOWN;
/* Is it write command time ? */
if (fdctrl->msr & FD_MSR_NONDMA) {
/* FIFO data write */
pos = fdctrl->data_pos++;
pos %= FD_SECTOR_LEN;
fdctrl->fifo[pos] = value;
if (pos == FD_SECTOR_LEN - 1 ||
fdctrl->data_pos == fdctrl->data_len) {
cur_drv = get_cur_drv(fdctrl);
if (bdrv_write(cur_drv->bs, fd_sector(cur_drv), fdctrl->fifo, 1) < 0) {
FLOPPY_ERROR("writing sector %d\n", fd_sector(cur_drv));
return;
}
if (!fdctrl_seek_to_next_sect(fdctrl, cur_drv)) {
FLOPPY_DPRINTF("error seeking to next sector %d\n",
fd_sector(cur_drv));
return;
}
}
/* Switch from transfer mode to status mode
* then from status mode to command mode
*/
if (fdctrl->data_pos == fdctrl->data_len)
fdctrl_stop_transfer(fdctrl, FD_SR0_SEEK, 0x00, 0x00);
return;
}
if (fdctrl->data_pos == 0) {
/* Command */
pos = command_to_handler[value & 0xff];
FLOPPY_DPRINTF("%s command\n", handlers[pos].name);
fdctrl->data_len = handlers[pos].parameters + 1;
}
FLOPPY_DPRINTF("%s: %02x\n", __func__, value);
fdctrl->fifo[fdctrl->data_pos++] = value;
if (fdctrl->data_pos == fdctrl->data_len) {
/* We now have all parameters
* and will be able to treat the command
*/
if (fdctrl->data_state & FD_STATE_FORMAT) {
fdctrl_format_sector(fdctrl);
return;
}
pos = command_to_handler[fdctrl->fifo[0] & 0xff];
FLOPPY_DPRINTF("treat %s command\n", handlers[pos].name);
(*handlers[pos].handler)(fdctrl, handlers[pos].direction);
}
}
static void fdctrl_result_timer(void *opaque)
{
fdctrl_t *fdctrl = opaque;
fdrive_t *cur_drv = get_cur_drv(fdctrl);
/* Pretend we are spinning.
* This is needed for Coherent, which uses READ ID to check for
* sector interleaving.
*/
if (cur_drv->last_sect != 0) {
cur_drv->sect = (cur_drv->sect % cur_drv->last_sect) + 1;
}
fdctrl_stop_transfer(fdctrl, 0x00, 0x00, 0x00);
}
/* Init functions */
static fdctrl_t *fdctrl_init_common (qemu_irq irq, int dma_chann,
target_phys_addr_t io_base,
BlockDriverState **fds)
{
fdctrl_t *fdctrl;
int i, j;
/* Fill 'command_to_handler' lookup table */
for (i = ARRAY_SIZE(handlers) - 1; i >= 0; i--) {
for (j = 0; j < sizeof(command_to_handler); j++) {
if ((j & handlers[i].mask) == handlers[i].value)
command_to_handler[j] = i;
}
}
FLOPPY_DPRINTF("init controller\n");
fdctrl = qemu_mallocz(sizeof(fdctrl_t));
fdctrl->fifo = qemu_memalign(512, FD_SECTOR_LEN);
fdctrl->result_timer = qemu_new_timer(vm_clock,
fdctrl_result_timer, fdctrl);
fdctrl->version = 0x90; /* Intel 82078 controller */
fdctrl->irq = irq;
fdctrl->dma_chann = dma_chann;
fdctrl->io_base = io_base;
fdctrl->config = FD_CONFIG_EIS | FD_CONFIG_EFIFO; /* Implicit seek, polling & FIFO enabled */
if (fdctrl->dma_chann != -1) {
DMA_register_channel(dma_chann, &fdctrl_transfer_handler, fdctrl);
}
for (i = 0; i < MAX_FD; i++) {
fd_init(&fdctrl->drives[i], fds[i]);
}
fdctrl_external_reset(fdctrl);
register_savevm("fdc", io_base, 2, fdc_save, fdc_load, fdctrl);
qemu_register_reset(fdctrl_external_reset, fdctrl);
for (i = 0; i < MAX_FD; i++) {
fd_revalidate(&fdctrl->drives[i]);
}
return fdctrl;
}
fdctrl_t *fdctrl_init (qemu_irq irq, int dma_chann, int mem_mapped,
target_phys_addr_t io_base,
BlockDriverState **fds)
{
fdctrl_t *fdctrl;
int io_mem;
fdctrl = fdctrl_init_common(irq, dma_chann, io_base, fds);
fdctrl->sun4m = 0;
if (mem_mapped) {
io_mem = cpu_register_io_memory(0, fdctrl_mem_read, fdctrl_mem_write,
fdctrl);
cpu_register_physical_memory(io_base, 0x08, io_mem);
} else {
register_ioport_read((uint32_t)io_base + 0x01, 5, 1,
&fdctrl_read_port, fdctrl);
register_ioport_read((uint32_t)io_base + 0x07, 1, 1,
&fdctrl_read_port, fdctrl);
register_ioport_write((uint32_t)io_base + 0x01, 5, 1,
&fdctrl_write_port, fdctrl);
register_ioport_write((uint32_t)io_base + 0x07, 1, 1,
&fdctrl_write_port, fdctrl);
}
return fdctrl;
}
fdctrl_t *sun4m_fdctrl_init (qemu_irq irq, target_phys_addr_t io_base,
BlockDriverState **fds, qemu_irq *fdc_tc)
{
fdctrl_t *fdctrl;
int io_mem;
fdctrl = fdctrl_init_common(irq, -1, io_base, fds);
fdctrl->sun4m = 1;
io_mem = cpu_register_io_memory(0, fdctrl_mem_read_strict,
fdctrl_mem_write_strict,
fdctrl);
cpu_register_physical_memory(io_base, 0x08, io_mem);
*fdc_tc = *qemu_allocate_irqs(fdctrl_handle_tc, fdctrl, 1);
return fdctrl;
}