/*
* QEMU PC System Emulator
*
* Copyright (c) 2003-2004 Fabrice Bellard
*
* Permission is hereby granted, free of charge, to any person obtaining a copy
* of this software and associated documentation files (the "Software"), to deal
* in the Software without restriction, including without limitation the rights
* to use, copy, modify, merge, publish, distribute, sublicense, and/or sell
* copies of the Software, and to permit persons to whom the Software is
* furnished to do so, subject to the following conditions:
*
* The above copyright notice and this permission notice shall be included in
* all copies or substantial portions of the Software.
*
* THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
* IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
* FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL
* THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
* LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM,
* OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN
* THE SOFTWARE.
*/
#include "qemu/osdep.h"
#include "qemu/units.h"
#include "hw/i386/pc.h"
#include "hw/char/serial.h"
#include "hw/char/parallel.h"
#include "hw/i386/apic.h"
#include "hw/i386/topology.h"
#include "hw/i386/fw_cfg.h"
#include "sysemu/cpus.h"
#include "hw/block/fdc.h"
#include "hw/ide.h"
#include "hw/pci/pci.h"
#include "hw/pci/pci_bus.h"
#include "hw/nvram/fw_cfg.h"
#include "hw/timer/hpet.h"
#include "hw/firmware/smbios.h"
#include "hw/loader.h"
#include "elf.h"
#include "migration/vmstate.h"
#include "multiboot.h"
#include "hw/timer/mc146818rtc.h"
#include "hw/dma/i8257.h"
#include "hw/timer/i8254.h"
#include "hw/input/i8042.h"
#include "hw/irq.h"
#include "hw/audio/pcspk.h"
#include "hw/pci/msi.h"
#include "hw/sysbus.h"
#include "sysemu/sysemu.h"
#include "sysemu/tcg.h"
#include "sysemu/numa.h"
#include "sysemu/kvm.h"
#include "sysemu/qtest.h"
#include "sysemu/reset.h"
#include "sysemu/runstate.h"
#include "kvm_i386.h"
#include "hw/xen/xen.h"
#include "hw/xen/start_info.h"
#include "ui/qemu-spice.h"
#include "exec/memory.h"
#include "exec/address-spaces.h"
#include "sysemu/arch_init.h"
#include "qemu/bitmap.h"
#include "qemu/config-file.h"
#include "qemu/error-report.h"
#include "qemu/option.h"
#include "hw/acpi/acpi.h"
#include "hw/acpi/cpu_hotplug.h"
#include "hw/boards.h"
#include "acpi-build.h"
#include "hw/mem/pc-dimm.h"
#include "qapi/error.h"
#include "qapi/qapi-visit-common.h"
#include "qapi/visitor.h"
#include "hw/core/cpu.h"
#include "hw/nmi.h"
#include "hw/usb.h"
#include "hw/i386/intel_iommu.h"
#include "hw/net/ne2000-isa.h"
#include "standard-headers/asm-x86/bootparam.h"
#include "hw/virtio/virtio-pmem-pci.h"
#include "hw/mem/memory-device.h"
#include "sysemu/replay.h"
#include "qapi/qmp/qerror.h"
#include "config-devices.h"
/* debug PC/ISA interrupts */
//#define DEBUG_IRQ
#ifdef DEBUG_IRQ
#define DPRINTF(fmt, ...) \
do { printf("CPUIRQ: " fmt , ## __VA_ARGS__); } while (0)
#else
#define DPRINTF(fmt, ...)
#endif
#define E820_NR_ENTRIES 16
struct e820_entry {
uint64_t address;
uint64_t length;
uint32_t type;
} QEMU_PACKED __attribute((__aligned__(4)));
struct e820_table {
uint32_t count;
struct e820_entry entry[E820_NR_ENTRIES];
} QEMU_PACKED __attribute((__aligned__(4)));
static struct e820_table e820_reserve;
static struct e820_entry *e820_table;
static unsigned e820_entries;
struct hpet_fw_config hpet_cfg = {.count = UINT8_MAX};
/* Physical Address of PVH entry point read from kernel ELF NOTE */
static size_t pvh_start_addr;
GlobalProperty pc_compat_4_1[] = {};
const size_t pc_compat_4_1_len = G_N_ELEMENTS(pc_compat_4_1);
GlobalProperty pc_compat_4_0[] = {};
const size_t pc_compat_4_0_len = G_N_ELEMENTS(pc_compat_4_0);
GlobalProperty pc_compat_3_1[] = {
{ "intel-iommu", "dma-drain", "off" },
{ "Opteron_G3" "-" TYPE_X86_CPU, "rdtscp", "off" },
{ "Opteron_G4" "-" TYPE_X86_CPU, "rdtscp", "off" },
{ "Opteron_G4" "-" TYPE_X86_CPU, "npt", "off" },
{ "Opteron_G4" "-" TYPE_X86_CPU, "nrip-save", "off" },
{ "Opteron_G5" "-" TYPE_X86_CPU, "rdtscp", "off" },
{ "Opteron_G5" "-" TYPE_X86_CPU, "npt", "off" },
{ "Opteron_G5" "-" TYPE_X86_CPU, "nrip-save", "off" },
{ "EPYC" "-" TYPE_X86_CPU, "npt", "off" },
{ "EPYC" "-" TYPE_X86_CPU, "nrip-save", "off" },
{ "EPYC-IBPB" "-" TYPE_X86_CPU, "npt", "off" },
{ "EPYC-IBPB" "-" TYPE_X86_CPU, "nrip-save", "off" },
{ "Skylake-Client" "-" TYPE_X86_CPU, "mpx", "on" },
{ "Skylake-Client-IBRS" "-" TYPE_X86_CPU, "mpx", "on" },
{ "Skylake-Server" "-" TYPE_X86_CPU, "mpx", "on" },
{ "Skylake-Server-IBRS" "-" TYPE_X86_CPU, "mpx", "on" },
{ "Cascadelake-Server" "-" TYPE_X86_CPU, "mpx", "on" },
{ "Icelake-Client" "-" TYPE_X86_CPU, "mpx", "on" },
{ "Icelake-Server" "-" TYPE_X86_CPU, "mpx", "on" },
{ "Cascadelake-Server" "-" TYPE_X86_CPU, "stepping", "5" },
{ TYPE_X86_CPU, "x-intel-pt-auto-level", "off" },
};
const size_t pc_compat_3_1_len = G_N_ELEMENTS(pc_compat_3_1);
GlobalProperty pc_compat_3_0[] = {
{ TYPE_X86_CPU, "x-hv-synic-kvm-only", "on" },
{ "Skylake-Server" "-" TYPE_X86_CPU, "pku", "off" },
{ "Skylake-Server-IBRS" "-" TYPE_X86_CPU, "pku", "off" },
};
const size_t pc_compat_3_0_len = G_N_ELEMENTS(pc_compat_3_0);
GlobalProperty pc_compat_2_12[] = {
{ TYPE_X86_CPU, "legacy-cache", "on" },
{ TYPE_X86_CPU, "topoext", "off" },
{ "EPYC-" TYPE_X86_CPU, "xlevel", "0x8000000a" },
{ "EPYC-IBPB-" TYPE_X86_CPU, "xlevel", "0x8000000a" },
};
const size_t pc_compat_2_12_len = G_N_ELEMENTS(pc_compat_2_12);
GlobalProperty pc_compat_2_11[] = {
{ TYPE_X86_CPU, "x-migrate-smi-count", "off" },
{ "Skylake-Server" "-" TYPE_X86_CPU, "clflushopt", "off" },
};
const size_t pc_compat_2_11_len = G_N_ELEMENTS(pc_compat_2_11);
GlobalProperty pc_compat_2_10[] = {
{ TYPE_X86_CPU, "x-hv-max-vps", "0x40" },
{ "i440FX-pcihost", "x-pci-hole64-fix", "off" },
{ "q35-pcihost", "x-pci-hole64-fix", "off" },
};
const size_t pc_compat_2_10_len = G_N_ELEMENTS(pc_compat_2_10);
GlobalProperty pc_compat_2_9[] = {
{ "mch", "extended-tseg-mbytes", "0" },
};
const size_t pc_compat_2_9_len = G_N_ELEMENTS(pc_compat_2_9);
GlobalProperty pc_compat_2_8[] = {
{ TYPE_X86_CPU, "tcg-cpuid", "off" },
{ "kvmclock", "x-mach-use-reliable-get-clock", "off" },
{ "ICH9-LPC", "x-smi-broadcast", "off" },
{ TYPE_X86_CPU, "vmware-cpuid-freq", "off" },
{ "Haswell-" TYPE_X86_CPU, "stepping", "1" },
};
const size_t pc_compat_2_8_len = G_N_ELEMENTS(pc_compat_2_8);
GlobalProperty pc_compat_2_7[] = {
{ TYPE_X86_CPU, "l3-cache", "off" },
{ TYPE_X86_CPU, "full-cpuid-auto-level", "off" },
{ "Opteron_G3" "-" TYPE_X86_CPU, "family", "15" },
{ "Opteron_G3" "-" TYPE_X86_CPU, "model", "6" },
{ "Opteron_G3" "-" TYPE_X86_CPU, "stepping", "1" },
{ "isa-pcspk", "migrate", "off" },
};
const size_t pc_compat_2_7_len = G_N_ELEMENTS(pc_compat_2_7);
GlobalProperty pc_compat_2_6[] = {
{ TYPE_X86_CPU, "cpuid-0xb", "off" },
{ "vmxnet3", "romfile", "" },
{ TYPE_X86_CPU, "fill-mtrr-mask", "off" },
{ "apic-common", "legacy-instance-id", "on", }
};
const size_t pc_compat_2_6_len = G_N_ELEMENTS(pc_compat_2_6);
GlobalProperty pc_compat_2_5[] = {};
const size_t pc_compat_2_5_len = G_N_ELEMENTS(pc_compat_2_5);
GlobalProperty pc_compat_2_4[] = {
PC_CPU_MODEL_IDS("2.4.0")
{ "Haswell-" TYPE_X86_CPU, "abm", "off" },
{ "Haswell-noTSX-" TYPE_X86_CPU, "abm", "off" },
{ "Broadwell-" TYPE_X86_CPU, "abm", "off" },
{ "Broadwell-noTSX-" TYPE_X86_CPU, "abm", "off" },
{ "host" "-" TYPE_X86_CPU, "host-cache-info", "on" },
{ TYPE_X86_CPU, "check", "off" },
{ "qemu64" "-" TYPE_X86_CPU, "sse4a", "on" },
{ "qemu64" "-" TYPE_X86_CPU, "abm", "on" },
{ "qemu64" "-" TYPE_X86_CPU, "popcnt", "on" },
{ "qemu32" "-" TYPE_X86_CPU, "popcnt", "on" },
{ "Opteron_G2" "-" TYPE_X86_CPU, "rdtscp", "on" },
{ "Opteron_G3" "-" TYPE_X86_CPU, "rdtscp", "on" },
{ "Opteron_G4" "-" TYPE_X86_CPU, "rdtscp", "on" },
{ "Opteron_G5" "-" TYPE_X86_CPU, "rdtscp", "on", }
};
const size_t pc_compat_2_4_len = G_N_ELEMENTS(pc_compat_2_4);
GlobalProperty pc_compat_2_3[] = {
PC_CPU_MODEL_IDS("2.3.0")
{ TYPE_X86_CPU, "arat", "off" },
{ "qemu64" "-" TYPE_X86_CPU, "min-level", "4" },
{ "kvm64" "-" TYPE_X86_CPU, "min-level", "5" },
{ "pentium3" "-" TYPE_X86_CPU, "min-level", "2" },
{ "n270" "-" TYPE_X86_CPU, "min-level", "5" },
{ "Conroe" "-" TYPE_X86_CPU, "min-level", "4" },
{ "Penryn" "-" TYPE_X86_CPU, "min-level", "4" },
{ "Nehalem" "-" TYPE_X86_CPU, "min-level", "4" },
{ "n270" "-" TYPE_X86_CPU, "min-xlevel", "0x8000000a" },
{ "Penryn" "-" TYPE_X86_CPU, "min-xlevel", "0x8000000a" },
{ "Conroe" "-" TYPE_X86_CPU, "min-xlevel", "0x8000000a" },
{ "Nehalem" "-" TYPE_X86_CPU, "min-xlevel", "0x8000000a" },
{ "Westmere" "-" TYPE_X86_CPU, "min-xlevel", "0x8000000a" },
{ "SandyBridge" "-" TYPE_X86_CPU, "min-xlevel", "0x8000000a" },
{ "IvyBridge" "-" TYPE_X86_CPU, "min-xlevel", "0x8000000a" },
{ "Haswell" "-" TYPE_X86_CPU, "min-xlevel", "0x8000000a" },
{ "Haswell-noTSX" "-" TYPE_X86_CPU, "min-xlevel", "0x8000000a" },
{ "Broadwell" "-" TYPE_X86_CPU, "min-xlevel", "0x8000000a" },
{ "Broadwell-noTSX" "-" TYPE_X86_CPU, "min-xlevel", "0x8000000a" },
{ TYPE_X86_CPU, "kvm-no-smi-migration", "on" },
};
const size_t pc_compat_2_3_len = G_N_ELEMENTS(pc_compat_2_3);
GlobalProperty pc_compat_2_2[] = {
PC_CPU_MODEL_IDS("2.2.0")
{ "kvm64" "-" TYPE_X86_CPU, "vme", "off" },
{ "kvm32" "-" TYPE_X86_CPU, "vme", "off" },
{ "Conroe" "-" TYPE_X86_CPU, "vme", "off" },
{ "Penryn" "-" TYPE_X86_CPU, "vme", "off" },
{ "Nehalem" "-" TYPE_X86_CPU, "vme", "off" },
{ "Westmere" "-" TYPE_X86_CPU, "vme", "off" },
{ "SandyBridge" "-" TYPE_X86_CPU, "vme", "off" },
{ "Haswell" "-" TYPE_X86_CPU, "vme", "off" },
{ "Broadwell" "-" TYPE_X86_CPU, "vme", "off" },
{ "Opteron_G1" "-" TYPE_X86_CPU, "vme", "off" },
{ "Opteron_G2" "-" TYPE_X86_CPU, "vme", "off" },
{ "Opteron_G3" "-" TYPE_X86_CPU, "vme", "off" },
{ "Opteron_G4" "-" TYPE_X86_CPU, "vme", "off" },
{ "Opteron_G5" "-" TYPE_X86_CPU, "vme", "off" },
{ "Haswell" "-" TYPE_X86_CPU, "f16c", "off" },
{ "Haswell" "-" TYPE_X86_CPU, "rdrand", "off" },
{ "Broadwell" "-" TYPE_X86_CPU, "f16c", "off" },
{ "Broadwell" "-" TYPE_X86_CPU, "rdrand", "off" },
};
const size_t pc_compat_2_2_len = G_N_ELEMENTS(pc_compat_2_2);
GlobalProperty pc_compat_2_1[] = {
PC_CPU_MODEL_IDS("2.1.0")
{ "coreduo" "-" TYPE_X86_CPU, "vmx", "on" },
{ "core2duo" "-" TYPE_X86_CPU, "vmx", "on" },
};
const size_t pc_compat_2_1_len = G_N_ELEMENTS(pc_compat_2_1);
GlobalProperty pc_compat_2_0[] = {
PC_CPU_MODEL_IDS("2.0.0")
{ "virtio-scsi-pci", "any_layout", "off" },
{ "PIIX4_PM", "memory-hotplug-support", "off" },
{ "apic", "version", "0x11" },
{ "nec-usb-xhci", "superspeed-ports-first", "off" },
{ "nec-usb-xhci", "force-pcie-endcap", "on" },
{ "pci-serial", "prog_if", "0" },
{ "pci-serial-2x", "prog_if", "0" },
{ "pci-serial-4x", "prog_if", "0" },
{ "virtio-net-pci", "guest_announce", "off" },
{ "ICH9-LPC", "memory-hotplug-support", "off" },
{ "xio3130-downstream", COMPAT_PROP_PCP, "off" },
{ "ioh3420", COMPAT_PROP_PCP, "off" },
};
const size_t pc_compat_2_0_len = G_N_ELEMENTS(pc_compat_2_0);
GlobalProperty pc_compat_1_7[] = {
PC_CPU_MODEL_IDS("1.7.0")
{ TYPE_USB_DEVICE, "msos-desc", "no" },
{ "PIIX4_PM", "acpi-pci-hotplug-with-bridge-support", "off" },
{ "hpet", HPET_INTCAP, "4" },
};
const size_t pc_compat_1_7_len = G_N_ELEMENTS(pc_compat_1_7);
GlobalProperty pc_compat_1_6[] = {
PC_CPU_MODEL_IDS("1.6.0")
{ "e1000", "mitigation", "off" },
{ "qemu64-" TYPE_X86_CPU, "model", "2" },
{ "qemu32-" TYPE_X86_CPU, "model", "3" },
{ "i440FX-pcihost", "short_root_bus", "1" },
{ "q35-pcihost", "short_root_bus", "1" },
};
const size_t pc_compat_1_6_len = G_N_ELEMENTS(pc_compat_1_6);
GlobalProperty pc_compat_1_5[] = {
PC_CPU_MODEL_IDS("1.5.0")
{ "Conroe-" TYPE_X86_CPU, "model", "2" },
{ "Conroe-" TYPE_X86_CPU, "min-level", "2" },
{ "Penryn-" TYPE_X86_CPU, "model", "2" },
{ "Penryn-" TYPE_X86_CPU, "min-level", "2" },
{ "Nehalem-" TYPE_X86_CPU, "model", "2" },
{ "Nehalem-" TYPE_X86_CPU, "min-level", "2" },
{ "virtio-net-pci", "any_layout", "off" },
{ TYPE_X86_CPU, "pmu", "on" },
{ "i440FX-pcihost", "short_root_bus", "0" },
{ "q35-pcihost", "short_root_bus", "0" },
};
const size_t pc_compat_1_5_len = G_N_ELEMENTS(pc_compat_1_5);
GlobalProperty pc_compat_1_4[] = {
PC_CPU_MODEL_IDS("1.4.0")
{ "scsi-hd", "discard_granularity", "0" },
{ "scsi-cd", "discard_granularity", "0" },
{ "scsi-disk", "discard_granularity", "0" },
{ "ide-hd", "discard_granularity", "0" },
{ "ide-cd", "discard_granularity", "0" },
{ "ide-drive", "discard_granularity", "0" },
{ "virtio-blk-pci", "discard_granularity", "0" },
/* DEV_NVECTORS_UNSPECIFIED as a uint32_t string: */
{ "virtio-serial-pci", "vectors", "0xFFFFFFFF" },
{ "virtio-net-pci", "ctrl_guest_offloads", "off" },
{ "e1000", "romfile", "pxe-e1000.rom" },
{ "ne2k_pci", "romfile", "pxe-ne2k_pci.rom" },
{ "pcnet", "romfile", "pxe-pcnet.rom" },
{ "rtl8139", "romfile", "pxe-rtl8139.rom" },
{ "virtio-net-pci", "romfile", "pxe-virtio.rom" },
{ "486-" TYPE_X86_CPU, "model", "0" },
{ "n270" "-" TYPE_X86_CPU, "movbe", "off" },
{ "Westmere" "-" TYPE_X86_CPU, "pclmulqdq", "off" },
};
const size_t pc_compat_1_4_len = G_N_ELEMENTS(pc_compat_1_4);
void gsi_handler(void *opaque, int n, int level)
{
GSIState *s = opaque;
DPRINTF("pc: %s GSI %d\n", level ? "raising" : "lowering", n);
if (n < ISA_NUM_IRQS) {
qemu_set_irq(s->i8259_irq[n], level);
}
qemu_set_irq(s->ioapic_irq[n], level);
}
static void ioport80_write(void *opaque, hwaddr addr, uint64_t data,
unsigned size)
{
}
static uint64_t ioport80_read(void *opaque, hwaddr addr, unsigned size)
{
return 0xffffffffffffffffULL;
}
/* MSDOS compatibility mode FPU exception support */
static qemu_irq ferr_irq;
void pc_register_ferr_irq(qemu_irq irq)
{
ferr_irq = irq;
}
/* XXX: add IGNNE support */
void cpu_set_ferr(CPUX86State *s)
{
qemu_irq_raise(ferr_irq);
}
static void ioportF0_write(void *opaque, hwaddr addr, uint64_t data,
unsigned size)
{
qemu_irq_lower(ferr_irq);
}
static uint64_t ioportF0_read(void *opaque, hwaddr addr, unsigned size)
{
return 0xffffffffffffffffULL;
}
/* TSC handling */
uint64_t cpu_get_tsc(CPUX86State *env)
{
return cpu_get_ticks();
}
/* IRQ handling */
int cpu_get_pic_interrupt(CPUX86State *env)
{
X86CPU *cpu = env_archcpu(env);
int intno;
if (!kvm_irqchip_in_kernel()) {
intno = apic_get_interrupt(cpu->apic_state);
if (intno >= 0) {
return intno;
}
/* read the irq from the PIC */
if (!apic_accept_pic_intr(cpu->apic_state)) {
return -1;
}
}
intno = pic_read_irq(isa_pic);
return intno;
}
static void pic_irq_request(void *opaque, int irq, int level)
{
CPUState *cs = first_cpu;
X86CPU *cpu = X86_CPU(cs);
DPRINTF("pic_irqs: %s irq %d\n", level? "raise" : "lower", irq);
if (cpu->apic_state && !kvm_irqchip_in_kernel()) {
CPU_FOREACH(cs) {
cpu = X86_CPU(cs);
if (apic_accept_pic_intr(cpu->apic_state)) {
apic_deliver_pic_intr(cpu->apic_state, level);
}
}
} else {
if (level) {
cpu_interrupt(cs, CPU_INTERRUPT_HARD);
} else {
cpu_reset_interrupt(cs, CPU_INTERRUPT_HARD);
}
}
}
/* PC cmos mappings */
#define REG_EQUIPMENT_BYTE 0x14
int cmos_get_fd_drive_type(FloppyDriveType fd0)
{
int val;
switch (fd0) {
case FLOPPY_DRIVE_TYPE_144:
/* 1.44 Mb 3"5 drive */
val = 4;
break;
case FLOPPY_DRIVE_TYPE_288:
/* 2.88 Mb 3"5 drive */
val = 5;
break;
case FLOPPY_DRIVE_TYPE_120:
/* 1.2 Mb 5"5 drive */
val = 2;
break;
case FLOPPY_DRIVE_TYPE_NONE:
default:
val = 0;
break;
}
return val;
}
static void cmos_init_hd(ISADevice *s, int type_ofs, int info_ofs,
int16_t cylinders, int8_t heads, int8_t sectors)
{
rtc_set_memory(s, type_ofs, 47);
rtc_set_memory(s, info_ofs, cylinders);
rtc_set_memory(s, info_ofs + 1, cylinders >> 8);
rtc_set_memory(s, info_ofs + 2, heads);
rtc_set_memory(s, info_ofs + 3, 0xff);
rtc_set_memory(s, info_ofs + 4, 0xff);
rtc_set_memory(s, info_ofs + 5, 0xc0 | ((heads > 8) << 3));
rtc_set_memory(s, info_ofs + 6, cylinders);
rtc_set_memory(s, info_ofs + 7, cylinders >> 8);
rtc_set_memory(s, info_ofs + 8, sectors);
}
/* convert boot_device letter to something recognizable by the bios */
static int boot_device2nibble(char boot_device)
{
switch(boot_device) {
case 'a':
case 'b':
return 0x01; /* floppy boot */
case 'c':
return 0x02; /* hard drive boot */
case 'd':
return 0x03; /* CD-ROM boot */
case 'n':
return 0x04; /* Network boot */
}
return 0;
}
static void set_boot_dev(ISADevice *s, const char *boot_device, Error **errp)
{
#define PC_MAX_BOOT_DEVICES 3
int nbds, bds[3] = { 0, };
int i;
nbds = strlen(boot_device);
if (nbds > PC_MAX_BOOT_DEVICES) {
error_setg(errp, "Too many boot devices for PC");
return;
}
for (i = 0; i < nbds; i++) {
bds[i] = boot_device2nibble(boot_device[i]);
if (bds[i] == 0) {
error_setg(errp, "Invalid boot device for PC: '%c'",
boot_device[i]);
return;
}
}
rtc_set_memory(s, 0x3d, (bds[1] << 4) | bds[0]);
rtc_set_memory(s, 0x38, (bds[2] << 4) | (fd_bootchk ? 0x0 : 0x1));
}
static void pc_boot_set(void *opaque, const char *boot_device, Error **errp)
{
set_boot_dev(opaque, boot_device, errp);
}
static void pc_cmos_init_floppy(ISADevice *rtc_state, ISADevice *floppy)
{
int val, nb, i;
FloppyDriveType fd_type[2] = { FLOPPY_DRIVE_TYPE_NONE,
FLOPPY_DRIVE_TYPE_NONE };
/* floppy type */
if (floppy) {
for (i = 0; i < 2; i++) {
fd_type[i] = isa_fdc_get_drive_type(floppy, i);
}
}
val = (cmos_get_fd_drive_type(fd_type[0]) << 4) |
cmos_get_fd_drive_type(fd_type[1]);
rtc_set_memory(rtc_state, 0x10, val);
val = rtc_get_memory(rtc_state, REG_EQUIPMENT_BYTE);
nb = 0;
if (fd_type[0] != FLOPPY_DRIVE_TYPE_NONE) {
nb++;
}
if (fd_type[1] != FLOPPY_DRIVE_TYPE_NONE) {
nb++;
}
switch (nb) {
case 0:
break;
case 1:
val |= 0x01; /* 1 drive, ready for boot */
break;
case 2:
val |= 0x41; /* 2 drives, ready for boot */
break;
}
rtc_set_memory(rtc_state, REG_EQUIPMENT_BYTE, val);
}
typedef struct pc_cmos_init_late_arg {
ISADevice *rtc_state;
BusState *idebus[2];
} pc_cmos_init_late_arg;
typedef struct check_fdc_state {
ISADevice *floppy;
bool multiple;
} CheckFdcState;
static int check_fdc(Object *obj, void *opaque)
{
CheckFdcState *state = opaque;
Object *fdc;
uint32_t iobase;
Error *local_err = NULL;
fdc = object_dynamic_cast(obj, TYPE_ISA_FDC);
if (!fdc) {
return 0;
}
iobase = object_property_get_uint(obj, "iobase", &local_err);
if (local_err || iobase != 0x3f0) {
error_free(local_err);
return 0;
}
if (state->floppy) {
state->multiple = true;
} else {
state->floppy = ISA_DEVICE(obj);
}
return 0;
}
static const char * const fdc_container_path[] = {
"/unattached", "/peripheral", "/peripheral-anon"
};
/*
* Locate the FDC at IO address 0x3f0, in order to configure the CMOS registers
* and ACPI objects.
*/
ISADevice *pc_find_fdc0(void)
{
int i;
Object *container;
CheckFdcState state = { 0 };
for (i = 0; i < ARRAY_SIZE(fdc_container_path); i++) {
container = container_get(qdev_get_machine(), fdc_container_path[i]);
object_child_foreach(container, check_fdc, &state);
}
if (state.multiple) {
warn_report("multiple floppy disk controllers with "
"iobase=0x3f0 have been found");
error_printf("the one being picked for CMOS setup might not reflect "
"your intent");
}
return state.floppy;
}
static void pc_cmos_init_late(void *opaque)
{
pc_cmos_init_late_arg *arg = opaque;
ISADevice *s = arg->rtc_state;
int16_t cylinders;
int8_t heads, sectors;
int val;
int i, trans;
val = 0;
if (arg->idebus[0] && ide_get_geometry(arg->idebus[0], 0,
&cylinders, &heads, §ors) >= 0) {
cmos_init_hd(s, 0x19, 0x1b, cylinders, heads, sectors);
val |= 0xf0;
}
if (arg->idebus[0] && ide_get_geometry(arg->idebus[0], 1,
&cylinders, &heads, §ors) >= 0) {
cmos_init_hd(s, 0x1a, 0x24, cylinders, heads, sectors);
val |= 0x0f;
}
rtc_set_memory(s, 0x12, val);
val = 0;
for (i = 0; i < 4; i++) {
/* NOTE: ide_get_geometry() returns the physical
geometry. It is always such that: 1 <= sects <= 63, 1
<= heads <= 16, 1 <= cylinders <= 16383. The BIOS
geometry can be different if a translation is done. */
if (arg->idebus[i / 2] &&
ide_get_geometry(arg->idebus[i / 2], i % 2,
&cylinders, &heads, §ors) >= 0) {
trans = ide_get_bios_chs_trans(arg->idebus[i / 2], i % 2) - 1;
assert((trans & ~3) == 0);
val |= trans << (i * 2);
}
}
rtc_set_memory(s, 0x39, val);
pc_cmos_init_floppy(s, pc_find_fdc0());
qemu_unregister_reset(pc_cmos_init_late, opaque);
}
void pc_cmos_init(PCMachineState *pcms,
BusState *idebus0, BusState *idebus1,
ISADevice *s)
{
int val;
static pc_cmos_init_late_arg arg;
/* various important CMOS locations needed by PC/Bochs bios */
/* memory size */
/* base memory (first MiB) */
val = MIN(pcms->below_4g_mem_size / KiB, 640);
rtc_set_memory(s, 0x15, val);
rtc_set_memory(s, 0x16, val >> 8);
/* extended memory (next 64MiB) */
if (pcms->below_4g_mem_size > 1 * MiB) {
val = (pcms->below_4g_mem_size - 1 * MiB) / KiB;
} else {
val = 0;
}
if (val > 65535)
val = 65535;
rtc_set_memory(s, 0x17, val);
rtc_set_memory(s, 0x18, val >> 8);
rtc_set_memory(s, 0x30, val);
rtc_set_memory(s, 0x31, val >> 8);
/* memory between 16MiB and 4GiB */
if (pcms->below_4g_mem_size > 16 * MiB) {
val = (pcms->below_4g_mem_size - 16 * MiB) / (64 * KiB);
} else {
val = 0;
}
if (val > 65535)
val = 65535;
rtc_set_memory(s, 0x34, val);
rtc_set_memory(s, 0x35, val >> 8);
/* memory above 4GiB */
val = pcms->above_4g_mem_size / 65536;
rtc_set_memory(s, 0x5b, val);
rtc_set_memory(s, 0x5c, val >> 8);
rtc_set_memory(s, 0x5d, val >> 16);
object_property_add_link(OBJECT(pcms), "rtc_state",
TYPE_ISA_DEVICE,
(Object **)&pcms->rtc,
object_property_allow_set_link,
OBJ_PROP_LINK_STRONG, &error_abort);
object_property_set_link(OBJECT(pcms), OBJECT(s),
"rtc_state", &error_abort);
set_boot_dev(s, MACHINE(pcms)->boot_order, &error_fatal);
val = 0;
val |= 0x02; /* FPU is there */
val |= 0x04; /* PS/2 mouse installed */
rtc_set_memory(s, REG_EQUIPMENT_BYTE, val);
/* hard drives and FDC */
arg.rtc_state = s;
arg.idebus[0] = idebus0;
arg.idebus[1] = idebus1;
qemu_register_reset(pc_cmos_init_late, &arg);
}
#define TYPE_PORT92 "port92"
#define PORT92(obj) OBJECT_CHECK(Port92State, (obj), TYPE_PORT92)
/* port 92 stuff: could be split off */
typedef struct Port92State {
ISADevice parent_obj;
MemoryRegion io;
uint8_t outport;
qemu_irq a20_out;
} Port92State;
static void port92_write(void *opaque, hwaddr addr, uint64_t val,
unsigned size)
{
Port92State *s = opaque;
int oldval = s->outport;
DPRINTF("port92: write 0x%02" PRIx64 "\n", val);
s->outport = val;
qemu_set_irq(s->a20_out, (val >> 1) & 1);
if ((val & 1) && !(oldval & 1)) {
qemu_system_reset_request(SHUTDOWN_CAUSE_GUEST_RESET);
}
}
static uint64_t port92_read(void *opaque, hwaddr addr,
unsigned size)
{
Port92State *s = opaque;
uint32_t ret;
ret = s->outport;
DPRINTF("port92: read 0x%02x\n", ret);
return ret;
}
static void port92_init(ISADevice *dev, qemu_irq a20_out)
{
qdev_connect_gpio_out_named(DEVICE(dev), PORT92_A20_LINE, 0, a20_out);
}
static const VMStateDescription vmstate_port92_isa = {
.name = "port92",
.version_id = 1,
.minimum_version_id = 1,
.fields = (VMStateField[]) {
VMSTATE_UINT8(outport, Port92State),
VMSTATE_END_OF_LIST()
}
};
static void port92_reset(DeviceState *d)
{
Port92State *s = PORT92(d);
s->outport &= ~1;
}
static const MemoryRegionOps port92_ops = {
.read = port92_read,
.write = port92_write,
.impl = {
.min_access_size = 1,
.max_access_size = 1,
},
.endianness = DEVICE_LITTLE_ENDIAN,
};
static void port92_initfn(Object *obj)
{
Port92State *s = PORT92(obj);
memory_region_init_io(&s->io, OBJECT(s), &port92_ops, s, "port92", 1);
s->outport = 0;
qdev_init_gpio_out_named(DEVICE(obj), &s->a20_out, PORT92_A20_LINE, 1);
}
static void port92_realizefn(DeviceState *dev, Error **errp)
{
ISADevice *isadev = ISA_DEVICE(dev);
Port92State *s = PORT92(dev);
isa_register_ioport(isadev, &s->io, 0x92);
}
static void port92_class_initfn(ObjectClass *klass, void *data)
{
DeviceClass *dc = DEVICE_CLASS(klass);
dc->realize = port92_realizefn;
dc->reset = port92_reset;
dc->vmsd = &vmstate_port92_isa;
/*
* Reason: unlike ordinary ISA devices, this one needs additional
* wiring: its A20 output line needs to be wired up by
* port92_init().
*/
dc->user_creatable = false;
}
static const TypeInfo port92_info = {
.name = TYPE_PORT92,
.parent = TYPE_ISA_DEVICE,
.instance_size = sizeof(Port92State),
.instance_init = port92_initfn,
.class_init = port92_class_initfn,
};
static void port92_register_types(void)
{
type_register_static(&port92_info);
}
type_init(port92_register_types)
static void handle_a20_line_change(void *opaque, int irq, int level)
{
X86CPU *cpu = opaque;
/* XXX: send to all CPUs ? */
/* XXX: add logic to handle multiple A20 line sources */
x86_cpu_set_a20(cpu, level);
}
int e820_add_entry(uint64_t address, uint64_t length, uint32_t type)
{
int index = le32_to_cpu(e820_reserve.count);
struct e820_entry *entry;
if (type != E820_RAM) {
/* old FW_CFG_E820_TABLE entry -- reservations only */
if (index >= E820_NR_ENTRIES) {
return -EBUSY;
}
entry = &e820_reserve.entry[index++];
entry->address = cpu_to_le64(address);
entry->length = cpu_to_le64(length);
entry->type = cpu_to_le32(type);
e820_reserve.count = cpu_to_le32(index);
}
/* new "etc/e820" file -- include ram too */
e820_table = g_renew(struct e820_entry, e820_table, e820_entries + 1);
e820_table[e820_entries].address = cpu_to_le64(address);
e820_table[e820_entries].length = cpu_to_le64(length);
e820_table[e820_entries].type = cpu_to_le32(type);
e820_entries++;
return e820_entries;
}
int e820_get_num_entries(void)
{
return e820_entries;
}
bool e820_get_entry(int idx, uint32_t type, uint64_t *address, uint64_t *length)
{
if (idx < e820_entries && e820_table[idx].type == cpu_to_le32(type)) {
*address = le64_to_cpu(e820_table[idx].address);
*length = le64_to_cpu(e820_table[idx].length);
return true;
}
return false;
}
/* Calculates initial APIC ID for a specific CPU index
*
* Currently we need to be able to calculate the APIC ID from the CPU index
* alone (without requiring a CPU object), as the QEMU<->Seabios interfaces have
* no concept of "CPU index", and the NUMA tables on fw_cfg need the APIC ID of
* all CPUs up to max_cpus.
*/
static uint32_t x86_cpu_apic_id_from_index(PCMachineState *pcms,
unsigned int cpu_index)
{
MachineState *ms = MACHINE(pcms);
PCMachineClass *pcmc = PC_MACHINE_GET_CLASS(pcms);
uint32_t correct_id;
static bool warned;
correct_id = x86_apicid_from_cpu_idx(pcms->smp_dies, ms->smp.cores,
ms->smp.threads, cpu_index);
if (pcmc->compat_apic_id_mode) {
if (cpu_index != correct_id && !warned && !qtest_enabled()) {
error_report("APIC IDs set in compatibility mode, "
"CPU topology won't match the configuration");
warned = true;
}
return cpu_index;
} else {
return correct_id;
}
}
static void pc_build_smbios(PCMachineState *pcms)
{
uint8_t *smbios_tables, *smbios_anchor;
size_t smbios_tables_len, smbios_anchor_len;
struct smbios_phys_mem_area *mem_array;
unsigned i, array_count;
MachineState *ms = MACHINE(pcms);
X86CPU *cpu = X86_CPU(ms->possible_cpus->cpus[0].cpu);
/* tell smbios about cpuid version and features */
smbios_set_cpuid(cpu->env.cpuid_version, cpu->env.features[FEAT_1_EDX]);
smbios_tables = smbios_get_table_legacy(ms, &smbios_tables_len);
if (smbios_tables) {
fw_cfg_add_bytes(pcms->fw_cfg, FW_CFG_SMBIOS_ENTRIES,
smbios_tables, smbios_tables_len);
}
/* build the array of physical mem area from e820 table */
mem_array = g_malloc0(sizeof(*mem_array) * e820_get_num_entries());
for (i = 0, array_count = 0; i < e820_get_num_entries(); i++) {
uint64_t addr, len;
if (e820_get_entry(i, E820_RAM, &addr, &len)) {
mem_array[array_count].address = addr;
mem_array[array_count].length = len;
array_count++;
}
}
smbios_get_tables(ms, mem_array, array_count,
&smbios_tables, &smbios_tables_len,
&smbios_anchor, &smbios_anchor_len);
g_free(mem_array);
if (smbios_anchor) {
fw_cfg_add_file(pcms->fw_cfg, "etc/smbios/smbios-tables",
smbios_tables, smbios_tables_len);
fw_cfg_add_file(pcms->fw_cfg, "etc/smbios/smbios-anchor",
smbios_anchor, smbios_anchor_len);
}
}
static FWCfgState *bochs_bios_init(AddressSpace *as, PCMachineState *pcms)
{
FWCfgState *fw_cfg;
uint64_t *numa_fw_cfg;
int i;
const CPUArchIdList *cpus;
MachineClass *mc = MACHINE_GET_CLASS(pcms);
MachineState *ms = MACHINE(pcms);
int nb_numa_nodes = ms->numa_state->num_nodes;
fw_cfg = fw_cfg_init_io_dma(FW_CFG_IO_BASE, FW_CFG_IO_BASE + 4, as);
fw_cfg_add_i16(fw_cfg, FW_CFG_NB_CPUS, pcms->boot_cpus);
/* FW_CFG_MAX_CPUS is a bit confusing/problematic on x86:
*
* For machine types prior to 1.8, SeaBIOS needs FW_CFG_MAX_CPUS for
* building MPTable, ACPI MADT, ACPI CPU hotplug and ACPI SRAT table,
* that tables are based on xAPIC ID and QEMU<->SeaBIOS interface
* for CPU hotplug also uses APIC ID and not "CPU index".
* This means that FW_CFG_MAX_CPUS is not the "maximum number of CPUs",
* but the "limit to the APIC ID values SeaBIOS may see".
*
* So for compatibility reasons with old BIOSes we are stuck with
* "etc/max-cpus" actually being apic_id_limit
*/
fw_cfg_add_i16(fw_cfg, FW_CFG_MAX_CPUS, (uint16_t)pcms->apic_id_limit);
fw_cfg_add_i64(fw_cfg, FW_CFG_RAM_SIZE, (uint64_t)ram_size);
fw_cfg_add_bytes(fw_cfg, FW_CFG_ACPI_TABLES,
acpi_tables, acpi_tables_len);
fw_cfg_add_i32(fw_cfg, FW_CFG_IRQ0_OVERRIDE, kvm_allows_irq0_override());
fw_cfg_add_bytes(fw_cfg, FW_CFG_E820_TABLE,
&e820_reserve, sizeof(e820_reserve));
fw_cfg_add_file(fw_cfg, "etc/e820", e820_table,
sizeof(struct e820_entry) * e820_entries);
fw_cfg_add_bytes(fw_cfg, FW_CFG_HPET, &hpet_cfg, sizeof(hpet_cfg));
/* allocate memory for the NUMA channel: one (64bit) word for the number
* of nodes, one word for each VCPU->node and one word for each node to
* hold the amount of memory.
*/
numa_fw_cfg = g_new0(uint64_t, 1 + pcms->apic_id_limit + nb_numa_nodes);
numa_fw_cfg[0] = cpu_to_le64(nb_numa_nodes);
cpus = mc->possible_cpu_arch_ids(MACHINE(pcms));
for (i = 0; i < cpus->len; i++) {
unsigned int apic_id = cpus->cpus[i].arch_id;
assert(apic_id < pcms->apic_id_limit);
numa_fw_cfg[apic_id + 1] = cpu_to_le64(cpus->cpus[i].props.node_id);
}
for (i = 0; i < nb_numa_nodes; i++) {
numa_fw_cfg[pcms->apic_id_limit + 1 + i] =
cpu_to_le64(ms->numa_state->nodes[i].node_mem);
}
fw_cfg_add_bytes(fw_cfg, FW_CFG_NUMA, numa_fw_cfg,
(1 + pcms->apic_id_limit + nb_numa_nodes) *
sizeof(*numa_fw_cfg));
return fw_cfg;
}
static long get_file_size(FILE *f)
{
long where, size;
/* XXX: on Unix systems, using fstat() probably makes more sense */
where = ftell(f);
fseek(f, 0, SEEK_END);
size = ftell(f);
fseek(f, where, SEEK_SET);
return size;
}
struct setup_data {
uint64_t next;
uint32_t type;
uint32_t len;
uint8_t data[0];
} __attribute__((packed));
/*
* The entry point into the kernel for PVH boot is different from
* the native entry point. The PVH entry is defined by the x86/HVM
* direct boot ABI and is available in an ELFNOTE in the kernel binary.
*
* This function is passed to load_elf() when it is called from
* load_elfboot() which then additionally checks for an ELF Note of
* type XEN_ELFNOTE_PHYS32_ENTRY and passes it to this function to
* parse the PVH entry address from the ELF Note.
*
* Due to trickery in elf_opts.h, load_elf() is actually available as
* load_elf32() or load_elf64() and this routine needs to be able
* to deal with being called as 32 or 64 bit.
*
* The address of the PVH entry point is saved to the 'pvh_start_addr'
* global variable. (although the entry point is 32-bit, the kernel
* binary can be either 32-bit or 64-bit).
*/
static uint64_t read_pvh_start_addr(void *arg1, void *arg2, bool is64)
{
size_t *elf_note_data_addr;
/* Check if ELF Note header passed in is valid */
if (arg1 == NULL) {
return 0;
}
if (is64) {
struct elf64_note *nhdr64 = (struct elf64_note *)arg1;
uint64_t nhdr_size64 = sizeof(struct elf64_note);
uint64_t phdr_align = *(uint64_t *)arg2;
uint64_t nhdr_namesz = nhdr64->n_namesz;
elf_note_data_addr =
((void *)nhdr64) + nhdr_size64 +
QEMU_ALIGN_UP(nhdr_namesz, phdr_align);
} else {
struct elf32_note *nhdr32 = (struct elf32_note *)arg1;
uint32_t nhdr_size32 = sizeof(struct elf32_note);
uint32_t phdr_align = *(uint32_t *)arg2;
uint32_t nhdr_namesz = nhdr32->n_namesz;
elf_note_data_addr =
((void *)nhdr32) + nhdr_size32 +
QEMU_ALIGN_UP(nhdr_namesz, phdr_align);
}
pvh_start_addr = *elf_note_data_addr;
return pvh_start_addr;
}
static bool load_elfboot(const char *kernel_filename,
int kernel_file_size,
uint8_t *header,
size_t pvh_xen_start_addr,
FWCfgState *fw_cfg)
{
uint32_t flags = 0;
uint32_t mh_load_addr = 0;
uint32_t elf_kernel_size = 0;
uint64_t elf_entry;
uint64_t elf_low, elf_high;
int kernel_size;
if (ldl_p(header) != 0x464c457f) {
return false; /* no elfboot */
}
bool elf_is64 = header[EI_CLASS] == ELFCLASS64;
flags = elf_is64 ?
((Elf64_Ehdr *)header)->e_flags : ((Elf32_Ehdr *)header)->e_flags;
if (flags & 0x00010004) { /* LOAD_ELF_HEADER_HAS_ADDR */
error_report("elfboot unsupported flags = %x", flags);
exit(1);
}
uint64_t elf_note_type = XEN_ELFNOTE_PHYS32_ENTRY;
kernel_size = load_elf(kernel_filename, read_pvh_start_addr,
NULL, &elf_note_type, &elf_entry,
&elf_low, &elf_high, 0, I386_ELF_MACHINE,
0, 0);
if (kernel_size < 0) {
error_report("Error while loading elf kernel");
exit(1);
}
mh_load_addr = elf_low;
elf_kernel_size = elf_high - elf_low;
if (pvh_start_addr == 0) {
error_report("Error loading uncompressed kernel without PVH ELF Note");
exit(1);
}
fw_cfg_add_i32(fw_cfg, FW_CFG_KERNEL_ENTRY, pvh_start_addr);
fw_cfg_add_i32(fw_cfg, FW_CFG_KERNEL_ADDR, mh_load_addr);
fw_cfg_add_i32(fw_cfg, FW_CFG_KERNEL_SIZE, elf_kernel_size);
return true;
}
static void load_linux(PCMachineState *pcms,
FWCfgState *fw_cfg)
{
uint16_t protocol;
int setup_size, kernel_size, cmdline_size;
int dtb_size, setup_data_offset;
uint32_t initrd_max;
uint8_t header[8192], *setup, *kernel;
hwaddr real_addr, prot_addr, cmdline_addr, initrd_addr = 0;
FILE *f;
char *vmode;
MachineState *machine = MACHINE(pcms);
PCMachineClass *pcmc = PC_MACHINE_GET_CLASS(pcms);
struct setup_data *setup_data;
const char *kernel_filename = machine->kernel_filename;
const char *initrd_filename = machine->initrd_filename;
const char *dtb_filename = machine->dtb;
const char *kernel_cmdline = machine->kernel_cmdline;
/* Align to 16 bytes as a paranoia measure */
cmdline_size = (strlen(kernel_cmdline)+16) & ~15;
/* load the kernel header */
f = fopen(kernel_filename, "rb");
if (!f || !(kernel_size = get_file_size(f)) ||
fread(header, 1, MIN(ARRAY_SIZE(header), kernel_size), f) !=
MIN(ARRAY_SIZE(header), kernel_size)) {
fprintf(stderr, "qemu: could not load kernel '%s': %s\n",
kernel_filename, strerror(errno));
exit(1);
}
/* kernel protocol version */
#if 0
fprintf(stderr, "header magic: %#x\n", ldl_p(header+0x202));
#endif
if (ldl_p(header+0x202) == 0x53726448) {
protocol = lduw_p(header+0x206);
} else {
/*
* This could be a multiboot kernel. If it is, let's stop treating it
* like a Linux kernel.
* Note: some multiboot images could be in the ELF format (the same of
* PVH), so we try multiboot first since we check the multiboot magic
* header before to load it.
*/
if (load_multiboot(fw_cfg, f, kernel_filename, initrd_filename,
kernel_cmdline, kernel_size, header)) {
return;
}
/*
* Check if the file is an uncompressed kernel file (ELF) and load it,
* saving the PVH entry point used by the x86/HVM direct boot ABI.
* If load_elfboot() is successful, populate the fw_cfg info.
*/
if (pcmc->pvh_enabled &&
load_elfboot(kernel_filename, kernel_size,
header, pvh_start_addr, fw_cfg)) {
fclose(f);
fw_cfg_add_i32(fw_cfg, FW_CFG_CMDLINE_SIZE,
strlen(kernel_cmdline) + 1);
fw_cfg_add_string(fw_cfg, FW_CFG_CMDLINE_DATA, kernel_cmdline);
fw_cfg_add_i32(fw_cfg, FW_CFG_SETUP_SIZE, sizeof(header));
fw_cfg_add_bytes(fw_cfg, FW_CFG_SETUP_DATA,
header, sizeof(header));
/* load initrd */
if (initrd_filename) {
GMappedFile *mapped_file;
gsize initrd_size;
gchar *initrd_data;
GError *gerr = NULL;
mapped_file = g_mapped_file_new(initrd_filename, false, &gerr);
if (!mapped_file) {
fprintf(stderr, "qemu: error reading initrd %s: %s\n",
initrd_filename, gerr->message);
exit(1);
}
pcms->initrd_mapped_file = mapped_file;
initrd_data = g_mapped_file_get_contents(mapped_file);
initrd_size = g_mapped_file_get_length(mapped_file);
initrd_max = pcms->below_4g_mem_size - pcmc->acpi_data_size - 1;
if (initrd_size >= initrd_max) {
fprintf(stderr, "qemu: initrd is too large, cannot support."
"(max: %"PRIu32", need %"PRId64")\n",
initrd_max, (uint64_t)initrd_size);
exit(1);
}
initrd_addr = (initrd_max - initrd_size) & ~4095;
fw_cfg_add_i32(fw_cfg, FW_CFG_INITRD_ADDR, initrd_addr);
fw_cfg_add_i32(fw_cfg, FW_CFG_INITRD_SIZE, initrd_size);
fw_cfg_add_bytes(fw_cfg, FW_CFG_INITRD_DATA, initrd_data,
initrd_size);
}
option_rom[nb_option_roms].bootindex = 0;
option_rom[nb_option_roms].name = "pvh.bin";
nb_option_roms++;
return;
}
protocol = 0;
}
if (protocol < 0x200 || !(header[0x211] & 0x01)) {
/* Low kernel */
real_addr = 0x90000;
cmdline_addr = 0x9a000 - cmdline_size;
prot_addr = 0x10000;
} else if (protocol < 0x202) {
/* High but ancient kernel */
real_addr = 0x90000;
cmdline_addr = 0x9a000 - cmdline_size;
prot_addr = 0x100000;
} else {
/* High and recent kernel */
real_addr = 0x10000;
cmdline_addr = 0x20000;
prot_addr = 0x100000;
}
#if 0
fprintf(stderr,
"qemu: real_addr = 0x" TARGET_FMT_plx "\n"
"qemu: cmdline_addr = 0x" TARGET_FMT_plx "\n"
"qemu: prot_addr = 0x" TARGET_FMT_plx "\n",
real_addr,
cmdline_addr,
prot_addr);
#endif
/* highest address for loading the initrd */
if (protocol >= 0x20c &&
lduw_p(header+0x236) & XLF_CAN_BE_LOADED_ABOVE_4G) {
/*
* Linux has supported initrd up to 4 GB for a very long time (2007,
* long before XLF_CAN_BE_LOADED_ABOVE_4G which was added in 2013),
* though it only sets initrd_max to 2 GB to "work around bootloader
* bugs". Luckily, QEMU firmware(which does something like bootloader)
* has supported this.
*
* It's believed that if XLF_CAN_BE_LOADED_ABOVE_4G is set, initrd can
* be loaded into any address.
*
* In addition, initrd_max is uint32_t simply because QEMU doesn't
* support the 64-bit boot protocol (specifically the ext_ramdisk_image
* field).
*
* Therefore here just limit initrd_max to UINT32_MAX simply as well.
*/
initrd_max = UINT32_MAX;
} else if (protocol >= 0x203) {
initrd_max = ldl_p(header+0x22c);
} else {
initrd_max = 0x37ffffff;
}
if (initrd_max >= pcms->below_4g_mem_size - pcmc->acpi_data_size) {
initrd_max = pcms->below_4g_mem_size - pcmc->acpi_data_size - 1;
}
fw_cfg_add_i32(fw_cfg, FW_CFG_CMDLINE_ADDR, cmdline_addr);
fw_cfg_add_i32(fw_cfg, FW_CFG_CMDLINE_SIZE, strlen(kernel_cmdline)+1);
fw_cfg_add_string(fw_cfg, FW_CFG_CMDLINE_DATA, kernel_cmdline);
if (protocol >= 0x202) {
stl_p(header+0x228, cmdline_addr);
} else {
stw_p(header+0x20, 0xA33F);
stw_p(header+0x22, cmdline_addr-real_addr);
}
/* handle vga= parameter */
vmode = strstr(kernel_cmdline, "vga=");
if (vmode) {
unsigned int video_mode;
/* skip "vga=" */
vmode += 4;
if (!strncmp(vmode, "normal", 6)) {
video_mode = 0xffff;
} else if (!strncmp(vmode, "ext", 3)) {
video_mode = 0xfffe;
} else if (!strncmp(vmode, "ask", 3)) {
video_mode = 0xfffd;
} else {
video_mode = strtol(vmode, NULL, 0);
}
stw_p(header+0x1fa, video_mode);
}
/* loader type */
/* High nybble = B reserved for QEMU; low nybble is revision number.
If this code is substantially changed, you may want to consider
incrementing the revision. */
if (protocol >= 0x200) {
header[0x210] = 0xB0;
}
/* heap */
if (protocol >= 0x201) {
header[0x211] |= 0x80; /* CAN_USE_HEAP */
stw_p(header+0x224, cmdline_addr-real_addr-0x200);
}
/* load initrd */
if (initrd_filename) {
GMappedFile *mapped_file;
gsize initrd_size;
gchar *initrd_data;
GError *gerr = NULL;
if (protocol < 0x200) {
fprintf(stderr, "qemu: linux kernel too old to load a ram disk\n");
exit(1);
}
mapped_file = g_mapped_file_new(initrd_filename, false, &gerr);
if (!mapped_file) {
fprintf(stderr, "qemu: error reading initrd %s: %s\n",
initrd_filename, gerr->message);
exit(1);
}
pcms->initrd_mapped_file = mapped_file;
initrd_data = g_mapped_file_get_contents(mapped_file);
initrd_size = g_mapped_file_get_length(mapped_file);
if (initrd_size >= initrd_max) {
fprintf(stderr, "qemu: initrd is too large, cannot support."
"(max: %"PRIu32", need %"PRId64")\n",
initrd_max, (uint64_t)initrd_size);
exit(1);
}
initrd_addr = (initrd_max-initrd_size) & ~4095;
fw_cfg_add_i32(fw_cfg, FW_CFG_INITRD_ADDR, initrd_addr);
fw_cfg_add_i32(fw_cfg, FW_CFG_INITRD_SIZE, initrd_size);
fw_cfg_add_bytes(fw_cfg, FW_CFG_INITRD_DATA, initrd_data, initrd_size);
stl_p(header+0x218, initrd_addr);
stl_p(header+0x21c, initrd_size);
}
/* load kernel and setup */
setup_size = header[0x1f1];
if (setup_size == 0) {
setup_size = 4;
}
setup_size = (setup_size+1)*512;
if (setup_size > kernel_size) {
fprintf(stderr, "qemu: invalid kernel header\n");
exit(1);
}
kernel_size -= setup_size;
setup = g_malloc(setup_size);
kernel = g_malloc(kernel_size);
fseek(f, 0, SEEK_SET);
if (fread(setup, 1, setup_size, f) != setup_size) {
fprintf(stderr, "fread() failed\n");
exit(1);
}
if (fread(kernel, 1, kernel_size, f) != kernel_size) {
fprintf(stderr, "fread() failed\n");
exit(1);
}
fclose(f);
/* append dtb to kernel */
if (dtb_filename) {
if (protocol < 0x209) {
fprintf(stderr, "qemu: Linux kernel too old to load a dtb\n");
exit(1);
}
dtb_size = get_image_size(dtb_filename);
if (dtb_size <= 0) {
fprintf(stderr, "qemu: error reading dtb %s: %s\n",
dtb_filename, strerror(errno));
exit(1);
}
setup_data_offset = QEMU_ALIGN_UP(kernel_size, 16);
kernel_size = setup_data_offset + sizeof(struct setup_data) + dtb_size;
kernel = g_realloc(kernel, kernel_size);
stq_p(header+0x250, prot_addr + setup_data_offset);
setup_data = (struct setup_data *)(kernel + setup_data_offset);
setup_data->next = 0;
setup_data->type = cpu_to_le32(SETUP_DTB);
setup_data->len = cpu_to_le32(dtb_size);
load_image_size(dtb_filename, setup_data->data, dtb_size);
}
memcpy(setup, header, MIN(sizeof(header), setup_size));
fw_cfg_add_i32(fw_cfg, FW_CFG_KERNEL_ADDR, prot_addr);
fw_cfg_add_i32(fw_cfg, FW_CFG_KERNEL_SIZE, kernel_size);
fw_cfg_add_bytes(fw_cfg, FW_CFG_KERNEL_DATA, kernel, kernel_size);
fw_cfg_add_i32(fw_cfg, FW_CFG_SETUP_ADDR, real_addr);
fw_cfg_add_i32(fw_cfg, FW_CFG_SETUP_SIZE, setup_size);
fw_cfg_add_bytes(fw_cfg, FW_CFG_SETUP_DATA, setup, setup_size);
option_rom[nb_option_roms].bootindex = 0;
option_rom[nb_option_roms].name = "linuxboot.bin";
if (pcmc->linuxboot_dma_enabled && fw_cfg_dma_enabled(fw_cfg)) {
option_rom[nb_option_roms].name = "linuxboot_dma.bin";
}
nb_option_roms++;
}
#define NE2000_NB_MAX 6
static const int ne2000_io[NE2000_NB_MAX] = { 0x300, 0x320, 0x340, 0x360,
0x280, 0x380 };
static const int ne2000_irq[NE2000_NB_MAX] = { 9, 10, 11, 3, 4, 5 };
void pc_init_ne2k_isa(ISABus *bus, NICInfo *nd)
{
static int nb_ne2k = 0;
if (nb_ne2k == NE2000_NB_MAX)
return;
isa_ne2000_init(bus, ne2000_io[nb_ne2k],
ne2000_irq[nb_ne2k], nd);
nb_ne2k++;
}
DeviceState *cpu_get_current_apic(void)
{
if (current_cpu) {
X86CPU *cpu = X86_CPU(current_cpu);
return cpu->apic_state;
} else {
return NULL;
}
}
void pc_acpi_smi_interrupt(void *opaque, int irq, int level)
{
X86CPU *cpu = opaque;
if (level) {
cpu_interrupt(CPU(cpu), CPU_INTERRUPT_SMI);
}
}
static void pc_new_cpu(PCMachineState *pcms, int64_t apic_id, Error **errp)
{
Object *cpu = NULL;
Error *local_err = NULL;
CPUX86State *env = NULL;
cpu = object_new(MACHINE(pcms)->cpu_type);
env = &X86_CPU(cpu)->env;
env->nr_dies = pcms->smp_dies;
object_property_set_uint(cpu, apic_id, "apic-id", &local_err);
object_property_set_bool(cpu, true, "realized", &local_err);
object_unref(cpu);
error_propagate(errp, local_err);
}
/*
* This function is very similar to smp_parse()
* in hw/core/machine.c but includes CPU die support.
*/
void pc_smp_parse(MachineState *ms, QemuOpts *opts)
{
PCMachineState *pcms = PC_MACHINE(ms);
if (opts) {
unsigned cpus = qemu_opt_get_number(opts, "cpus", 0);
unsigned sockets = qemu_opt_get_number(opts, "sockets", 0);
unsigned dies = qemu_opt_get_number(opts, "dies", 1);
unsigned cores = qemu_opt_get_number(opts, "cores", 0);
unsigned threads = qemu_opt_get_number(opts, "threads", 0);
/* compute missing values, prefer sockets over cores over threads */
if (cpus == 0 || sockets == 0) {
cores = cores > 0 ? cores : 1;
threads = threads > 0 ? threads : 1;
if (cpus == 0) {
sockets = sockets > 0 ? sockets : 1;
cpus = cores * threads * dies * sockets;
} else {
ms->smp.max_cpus =
qemu_opt_get_number(opts, "maxcpus", cpus);
sockets = ms->smp.max_cpus / (cores * threads * dies);
}
} else if (cores == 0) {
threads = threads > 0 ? threads : 1;
cores = cpus / (sockets * dies * threads);
cores = cores > 0 ? cores : 1;
} else if (threads == 0) {
threads = cpus / (cores * dies * sockets);
threads = threads > 0 ? threads : 1;
} else if (sockets * dies * cores * threads < cpus) {
error_report("cpu topology: "
"sockets (%u) * dies (%u) * cores (%u) * threads (%u) < "
"smp_cpus (%u)",
sockets, dies, cores, threads, cpus);
exit(1);
}
ms->smp.max_cpus =
qemu_opt_get_number(opts, "maxcpus", cpus);
if (ms->smp.max_cpus < cpus) {
error_report("maxcpus must be equal to or greater than smp");
exit(1);
}
if (sockets * dies * cores * threads > ms->smp.max_cpus) {
error_report("cpu topology: "
"sockets (%u) * dies (%u) * cores (%u) * threads (%u) > "
"maxcpus (%u)",
sockets, dies, cores, threads,
ms->smp.max_cpus);
exit(1);
}
if (sockets * dies * cores * threads != ms->smp.max_cpus) {
warn_report("Invalid CPU topology deprecated: "
"sockets (%u) * dies (%u) * cores (%u) * threads (%u) "
"!= maxcpus (%u)",
sockets, dies, cores, threads,
ms->smp.max_cpus);
}
ms->smp.cpus = cpus;
ms->smp.cores = cores;
ms->smp.threads = threads;
pcms->smp_dies = dies;
}
if (ms->smp.cpus > 1) {
Error *blocker = NULL;
error_setg(&blocker, QERR_REPLAY_NOT_SUPPORTED, "smp");
replay_add_blocker(blocker);
}
}
void pc_hot_add_cpu(MachineState *ms, const int64_t id, Error **errp)
{
PCMachineState *pcms = PC_MACHINE(ms);
int64_t apic_id = x86_cpu_apic_id_from_index(pcms, id);
Error *local_err = NULL;
if (id < 0) {
error_setg(errp, "Invalid CPU id: %" PRIi64, id);
return;
}
if (apic_id >= ACPI_CPU_HOTPLUG_ID_LIMIT) {
error_setg(errp, "Unable to add CPU: %" PRIi64
", resulting APIC ID (%" PRIi64 ") is too large",
id, apic_id);
return;
}
pc_new_cpu(PC_MACHINE(ms), apic_id, &local_err);
if (local_err) {
error_propagate(errp, local_err);
return;
}
}
void pc_cpus_init(PCMachineState *pcms)
{
int i;
const CPUArchIdList *possible_cpus;
MachineState *ms = MACHINE(pcms);
MachineClass *mc = MACHINE_GET_CLASS(pcms);
PCMachineClass *pcmc = PC_MACHINE_CLASS(mc);
x86_cpu_set_default_version(pcmc->default_cpu_version);
/* Calculates the limit to CPU APIC ID values
*
* Limit for the APIC ID value, so that all
* CPU APIC IDs are < pcms->apic_id_limit.
*
* This is used for FW_CFG_MAX_CPUS. See comments on bochs_bios_init().
*/
pcms->apic_id_limit = x86_cpu_apic_id_from_index(pcms,
ms->smp.max_cpus - 1) + 1;
possible_cpus = mc->possible_cpu_arch_ids(ms);
for (i = 0; i < ms->smp.cpus; i++) {
pc_new_cpu(pcms, possible_cpus->cpus[i].arch_id, &error_fatal);
}
}
static void pc_build_feature_control_file(PCMachineState *pcms)
{
MachineState *ms = MACHINE(pcms);
X86CPU *cpu = X86_CPU(ms->possible_cpus->cpus[0].cpu);
CPUX86State *env = &cpu->env;
uint32_t unused, ecx, edx;
uint64_t feature_control_bits = 0;
uint64_t *val;
cpu_x86_cpuid(env, 1, 0, &unused, &unused, &ecx, &edx);
if (ecx & CPUID_EXT_VMX) {
feature_control_bits |= FEATURE_CONTROL_VMXON_ENABLED_OUTSIDE_SMX;
}
if ((edx & (CPUID_EXT2_MCE | CPUID_EXT2_MCA)) ==
(CPUID_EXT2_MCE | CPUID_EXT2_MCA) &&
(env->mcg_cap & MCG_LMCE_P)) {
feature_control_bits |= FEATURE_CONTROL_LMCE;
}
if (!feature_control_bits) {
return;
}
val = g_malloc(sizeof(*val));
*val = cpu_to_le64(feature_control_bits | FEATURE_CONTROL_LOCKED);
fw_cfg_add_file(pcms->fw_cfg, "etc/msr_feature_control", val, sizeof(*val));
}
static void rtc_set_cpus_count(ISADevice *rtc, uint16_t cpus_count)
{
if (cpus_count > 0xff) {
/* If the number of CPUs can't be represented in 8 bits, the
* BIOS must use "FW_CFG_NB_CPUS". Set RTC field to 0 just
* to make old BIOSes fail more predictably.
*/
rtc_set_memory(rtc, 0x5f, 0);
} else {
rtc_set_memory(rtc, 0x5f, cpus_count - 1);
}
}
static
void pc_machine_done(Notifier *notifier, void *data)
{
PCMachineState *pcms = container_of(notifier,
PCMachineState, machine_done);
PCIBus *bus = pcms->bus;
/* set the number of CPUs */
rtc_set_cpus_count(pcms->rtc, pcms->boot_cpus);
if (bus) {
int extra_hosts = 0;
QLIST_FOREACH(bus, &bus->child, sibling) {
/* look for expander root buses */
if (pci_bus_is_root(bus)) {
extra_hosts++;
}
}
if (extra_hosts && pcms->fw_cfg) {
uint64_t *val = g_malloc(sizeof(*val));
*val = cpu_to_le64(extra_hosts);
fw_cfg_add_file(pcms->fw_cfg,
"etc/extra-pci-roots", val, sizeof(*val));
}
}
acpi_setup();
if (pcms->fw_cfg) {
pc_build_smbios(pcms);
pc_build_feature_control_file(pcms);
/* update FW_CFG_NB_CPUS to account for -device added CPUs */
fw_cfg_modify_i16(pcms->fw_cfg, FW_CFG_NB_CPUS, pcms->boot_cpus);
}
if (pcms->apic_id_limit > 255 && !xen_enabled()) {
IntelIOMMUState *iommu = INTEL_IOMMU_DEVICE(x86_iommu_get_default());
if (!iommu || !x86_iommu_ir_supported(X86_IOMMU_DEVICE(iommu)) ||
iommu->intr_eim != ON_OFF_AUTO_ON) {
error_report("current -smp configuration requires "
"Extended Interrupt Mode enabled. "
"You can add an IOMMU using: "
"-device intel-iommu,intremap=on,eim=on");
exit(EXIT_FAILURE);
}
}
}
void pc_guest_info_init(PCMachineState *pcms)
{
int i;
MachineState *ms = MACHINE(pcms);
pcms->apic_xrupt_override = kvm_allows_irq0_override();
pcms->numa_nodes = ms->numa_state->num_nodes;
pcms->node_mem = g_malloc0(pcms->numa_nodes *
sizeof *pcms->node_mem);
for (i = 0; i < ms->numa_state->num_nodes; i++) {
pcms->node_mem[i] = ms->numa_state->nodes[i].node_mem;
}
pcms->machine_done.notify = pc_machine_done;
qemu_add_machine_init_done_notifier(&pcms->machine_done);
}
/* setup pci memory address space mapping into system address space */
void pc_pci_as_mapping_init(Object *owner, MemoryRegion *system_memory,
MemoryRegion *pci_address_space)
{
/* Set to lower priority than RAM */
memory_region_add_subregion_overlap(system_memory, 0x0,
pci_address_space, -1);
}
void xen_load_linux(PCMachineState *pcms)
{
int i;
FWCfgState *fw_cfg;
assert(MACHINE(pcms)->kernel_filename != NULL);
fw_cfg = fw_cfg_init_io(FW_CFG_IO_BASE);
fw_cfg_add_i16(fw_cfg, FW_CFG_NB_CPUS, pcms->boot_cpus);
rom_set_fw(fw_cfg);
load_linux(pcms, fw_cfg);
for (i = 0; i < nb_option_roms; i++) {
assert(!strcmp(option_rom[i].name, "linuxboot.bin") ||
!strcmp(option_rom[i].name, "linuxboot_dma.bin") ||
!strcmp(option_rom[i].name, "pvh.bin") ||
!strcmp(option_rom[i].name, "multiboot.bin"));
rom_add_option(option_rom[i].name, option_rom[i].bootindex);
}
pcms->fw_cfg = fw_cfg;
}
void pc_memory_init(PCMachineState *pcms,
MemoryRegion *system_memory,
MemoryRegion *rom_memory,
MemoryRegion **ram_memory)
{
int linux_boot, i;
MemoryRegion *ram, *option_rom_mr;
MemoryRegion *ram_below_4g, *ram_above_4g;
FWCfgState *fw_cfg;
MachineState *machine = MACHINE(pcms);
PCMachineClass *pcmc = PC_MACHINE_GET_CLASS(pcms);
assert(machine->ram_size == pcms->below_4g_mem_size +
pcms->above_4g_mem_size);
linux_boot = (machine->kernel_filename != NULL);
/* Allocate RAM. We allocate it as a single memory region and use
* aliases to address portions of it, mostly for backwards compatibility
* with older qemus that used qemu_ram_alloc().
*/
ram = g_malloc(sizeof(*ram));
memory_region_allocate_system_memory(ram, NULL, "pc.ram",
machine->ram_size);
*ram_memory = ram;
ram_below_4g = g_malloc(sizeof(*ram_below_4g));
memory_region_init_alias(ram_below_4g, NULL, "ram-below-4g", ram,
0, pcms->below_4g_mem_size);
memory_region_add_subregion(system_memory, 0, ram_below_4g);
e820_add_entry(0, pcms->below_4g_mem_size, E820_RAM);
if (pcms->above_4g_mem_size > 0) {
ram_above_4g = g_malloc(sizeof(*ram_above_4g));
memory_region_init_alias(ram_above_4g, NULL, "ram-above-4g", ram,
pcms->below_4g_mem_size,
pcms->above_4g_mem_size);
memory_region_add_subregion(system_memory, 0x100000000ULL,
ram_above_4g);
e820_add_entry(0x100000000ULL, pcms->above_4g_mem_size, E820_RAM);
}
if (!pcmc->has_reserved_memory &&
(machine->ram_slots ||
(machine->maxram_size > machine->ram_size))) {
MachineClass *mc = MACHINE_GET_CLASS(machine);
error_report("\"-memory 'slots|maxmem'\" is not supported by: %s",
mc->name);
exit(EXIT_FAILURE);
}
/* always allocate the device memory information */
machine->device_memory = g_malloc0(sizeof(*machine->device_memory));
/* initialize device memory address space */
if (pcmc->has_reserved_memory &&
(machine->ram_size < machine->maxram_size)) {
ram_addr_t device_mem_size = machine->maxram_size - machine->ram_size;
if (machine->ram_slots > ACPI_MAX_RAM_SLOTS) {
error_report("unsupported amount of memory slots: %"PRIu64,
machine->ram_slots);
exit(EXIT_FAILURE);
}
if (QEMU_ALIGN_UP(machine->maxram_size,
TARGET_PAGE_SIZE) != machine->maxram_size) {
error_report("maximum memory size must by aligned to multiple of "
"%d bytes", TARGET_PAGE_SIZE);
exit(EXIT_FAILURE);
}
machine->device_memory->base =
ROUND_UP(0x100000000ULL + pcms->above_4g_mem_size, 1 * GiB);
if (pcmc->enforce_aligned_dimm) {
/* size device region assuming 1G page max alignment per slot */
device_mem_size += (1 * GiB) * machine->ram_slots;
}
if ((machine->device_memory->base + device_mem_size) <
device_mem_size) {
error_report("unsupported amount of maximum memory: " RAM_ADDR_FMT,
machine->maxram_size);
exit(EXIT_FAILURE);
}
memory_region_init(&machine->device_memory->mr, OBJECT(pcms),
"device-memory", device_mem_size);
memory_region_add_subregion(system_memory, machine->device_memory->base,
&machine->device_memory->mr);
}
/* Initialize PC system firmware */
pc_system_firmware_init(pcms, rom_memory);
option_rom_mr = g_malloc(sizeof(*option_rom_mr));
memory_region_init_ram(option_rom_mr, NULL, "pc.rom", PC_ROM_SIZE,
&error_fatal);
if (pcmc->pci_enabled) {
memory_region_set_readonly(option_rom_mr, true);
}
memory_region_add_subregion_overlap(rom_memory,
PC_ROM_MIN_VGA,
option_rom_mr,
1);
fw_cfg = bochs_bios_init(&address_space_memory, pcms);
rom_set_fw(fw_cfg);
if (pcmc->has_reserved_memory && machine->device_memory->base) {
uint64_t *val = g_malloc(sizeof(*val));
PCMachineClass *pcmc = PC_MACHINE_GET_CLASS(pcms);
uint64_t res_mem_end = machine->device_memory->base;
if (!pcmc->broken_reserved_end) {
res_mem_end += memory_region_size(&machine->device_memory->mr);
}
*val = cpu_to_le64(ROUND_UP(res_mem_end, 1 * GiB));
fw_cfg_add_file(fw_cfg, "etc/reserved-memory-end", val, sizeof(*val));
}
if (linux_boot) {
load_linux(pcms, fw_cfg);
}
for (i = 0; i < nb_option_roms; i++) {
rom_add_option(option_rom[i].name, option_rom[i].bootindex);
}
pcms->fw_cfg = fw_cfg;
/* Init default IOAPIC address space */
pcms->ioapic_as = &address_space_memory;
}
/*
* The 64bit pci hole starts after "above 4G RAM" and
* potentially the space reserved for memory hotplug.
*/
uint64_t pc_pci_hole64_start(void)
{
PCMachineState *pcms = PC_MACHINE(qdev_get_machine());
PCMachineClass *pcmc = PC_MACHINE_GET_CLASS(pcms);
MachineState *ms = MACHINE(pcms);
uint64_t hole64_start = 0;
if (pcmc->has_reserved_memory && ms->device_memory->base) {
hole64_start = ms->device_memory->base;
if (!pcmc->broken_reserved_end) {
hole64_start += memory_region_size(&ms->device_memory->mr);
}
} else {
hole64_start = 0x100000000ULL + pcms->above_4g_mem_size;
}
return ROUND_UP(hole64_start, 1 * GiB);
}
qemu_irq pc_allocate_cpu_irq(void)
{
return qemu_allocate_irq(pic_irq_request, NULL, 0);
}
DeviceState *pc_vga_init(ISABus *isa_bus, PCIBus *pci_bus)
{
DeviceState *dev = NULL;
rom_set_order_override(FW_CFG_ORDER_OVERRIDE_VGA);
if (pci_bus) {
PCIDevice *pcidev = pci_vga_init(pci_bus);
dev = pcidev ? &pcidev->qdev : NULL;
} else if (isa_bus) {
ISADevice *isadev = isa_vga_init(isa_bus);
dev = isadev ? DEVICE(isadev) : NULL;
}
rom_reset_order_override();
return dev;
}
static const MemoryRegionOps ioport80_io_ops = {
.write = ioport80_write,
.read = ioport80_read,
.endianness = DEVICE_NATIVE_ENDIAN,
.impl = {
.min_access_size = 1,
.max_access_size = 1,
},
};
static const MemoryRegionOps ioportF0_io_ops = {
.write = ioportF0_write,
.read = ioportF0_read,
.endianness = DEVICE_NATIVE_ENDIAN,
.impl = {
.min_access_size = 1,
.max_access_size = 1,
},
};
static void pc_superio_init(ISABus *isa_bus, bool create_fdctrl, bool no_vmport)
{
int i;
DriveInfo *fd[MAX_FD];
qemu_irq *a20_line;
ISADevice *i8042, *port92, *vmmouse;
serial_hds_isa_init(isa_bus, 0, MAX_ISA_SERIAL_PORTS);
parallel_hds_isa_init(isa_bus, MAX_PARALLEL_PORTS);
for (i = 0; i < MAX_FD; i++) {
fd[i] = drive_get(IF_FLOPPY, 0, i);
create_fdctrl |= !!fd[i];
}
if (create_fdctrl) {
fdctrl_init_isa(isa_bus, fd);
}
i8042 = isa_create_simple(isa_bus, "i8042");
if (!no_vmport) {
vmport_init(isa_bus);
vmmouse = isa_try_create(isa_bus, "vmmouse");
} else {
vmmouse = NULL;
}
if (vmmouse) {
DeviceState *dev = DEVICE(vmmouse);
qdev_prop_set_ptr(dev, "ps2_mouse", i8042);
qdev_init_nofail(dev);
}
port92 = isa_create_simple(isa_bus, "port92");
a20_line = qemu_allocate_irqs(handle_a20_line_change, first_cpu, 2);
i8042_setup_a20_line(i8042, a20_line[0]);
port92_init(port92, a20_line[1]);
g_free(a20_line);
}
void pc_basic_device_init(ISABus *isa_bus, qemu_irq *gsi,
ISADevice **rtc_state,
bool create_fdctrl,
bool no_vmport,
bool has_pit,
uint32_t hpet_irqs)
{
int i;
DeviceState *hpet = NULL;
int pit_isa_irq = 0;
qemu_irq pit_alt_irq = NULL;
qemu_irq rtc_irq = NULL;
ISADevice *pit = NULL;
MemoryRegion *ioport80_io = g_new(MemoryRegion, 1);
MemoryRegion *ioportF0_io = g_new(MemoryRegion, 1);
memory_region_init_io(ioport80_io, NULL, &ioport80_io_ops, NULL, "ioport80", 1);
memory_region_add_subregion(isa_bus->address_space_io, 0x80, ioport80_io);
memory_region_init_io(ioportF0_io, NULL, &ioportF0_io_ops, NULL, "ioportF0", 1);
memory_region_add_subregion(isa_bus->address_space_io, 0xf0, ioportF0_io);
/*
* Check if an HPET shall be created.
*
* Without KVM_CAP_PIT_STATE2, we cannot switch off the in-kernel PIT
* when the HPET wants to take over. Thus we have to disable the latter.
*/
if (!no_hpet && (!kvm_irqchip_in_kernel() || kvm_has_pit_state2())) {
/* In order to set property, here not using sysbus_try_create_simple */
hpet = qdev_try_create(NULL, TYPE_HPET);
if (hpet) {
/* For pc-piix-*, hpet's intcap is always IRQ2. For pc-q35-1.7
* and earlier, use IRQ2 for compat. Otherwise, use IRQ16~23,
* IRQ8 and IRQ2.
*/
uint8_t compat = object_property_get_uint(OBJECT(hpet),
HPET_INTCAP, NULL);
if (!compat) {
qdev_prop_set_uint32(hpet, HPET_INTCAP, hpet_irqs);
}
qdev_init_nofail(hpet);
sysbus_mmio_map(SYS_BUS_DEVICE(hpet), 0, HPET_BASE);
for (i = 0; i < GSI_NUM_PINS; i++) {
sysbus_connect_irq(SYS_BUS_DEVICE(hpet), i, gsi[i]);
}
pit_isa_irq = -1;
pit_alt_irq = qdev_get_gpio_in(hpet, HPET_LEGACY_PIT_INT);
rtc_irq = qdev_get_gpio_in(hpet, HPET_LEGACY_RTC_INT);
}
}
*rtc_state = mc146818_rtc_init(isa_bus, 2000, rtc_irq);
qemu_register_boot_set(pc_boot_set, *rtc_state);
if (!xen_enabled() && has_pit) {
if (kvm_pit_in_kernel()) {
pit = kvm_pit_init(isa_bus, 0x40);
} else {
pit = i8254_pit_init(isa_bus, 0x40, pit_isa_irq, pit_alt_irq);
}
if (hpet) {
/* connect PIT to output control line of the HPET */
qdev_connect_gpio_out(hpet, 0, qdev_get_gpio_in(DEVICE(pit), 0));
}
pcspk_init(isa_bus, pit);
}
i8257_dma_init(isa_bus, 0);
/* Super I/O */
pc_superio_init(isa_bus, create_fdctrl, no_vmport);
}
void pc_nic_init(PCMachineClass *pcmc, ISABus *isa_bus, PCIBus *pci_bus)
{
int i;
rom_set_order_override(FW_CFG_ORDER_OVERRIDE_NIC);
for (i = 0; i < nb_nics; i++) {
NICInfo *nd = &nd_table[i];
const char *model = nd->model ? nd->model : pcmc->default_nic_model;
if (g_str_equal(model, "ne2k_isa")) {
pc_init_ne2k_isa(isa_bus, nd);
} else {
pci_nic_init_nofail(nd, pci_bus, model, NULL);
}
}
rom_reset_order_override();
}
void ioapic_init_gsi(GSIState *gsi_state, const char *parent_name)
{
DeviceState *dev;
SysBusDevice *d;
unsigned int i;
if (kvm_ioapic_in_kernel()) {
dev = qdev_create(NULL, TYPE_KVM_IOAPIC);
} else {
dev = qdev_create(NULL, TYPE_IOAPIC);
}
if (parent_name) {
object_property_add_child(object_resolve_path(parent_name, NULL),
"ioapic", OBJECT(dev), NULL);
}
qdev_init_nofail(dev);
d = SYS_BUS_DEVICE(dev);
sysbus_mmio_map(d, 0, IO_APIC_DEFAULT_ADDRESS);
for (i = 0; i < IOAPIC_NUM_PINS; i++) {
gsi_state->ioapic_irq[i] = qdev_get_gpio_in(dev, i);
}
}
static void pc_memory_pre_plug(HotplugHandler *hotplug_dev, DeviceState *dev,
Error **errp)
{
const PCMachineState *pcms = PC_MACHINE(hotplug_dev);
const PCMachineClass *pcmc = PC_MACHINE_GET_CLASS(pcms);
const MachineState *ms = MACHINE(hotplug_dev);
const bool is_nvdimm = object_dynamic_cast(OBJECT(dev), TYPE_NVDIMM);
const uint64_t legacy_align = TARGET_PAGE_SIZE;
Error *local_err = NULL;
/*
* When -no-acpi is used with Q35 machine type, no ACPI is built,
* but pcms->acpi_dev is still created. Check !acpi_enabled in
* addition to cover this case.
*/
if (!pcms->acpi_dev || !acpi_enabled) {
error_setg(errp,
"memory hotplug is not enabled: missing acpi device or acpi disabled");
return;
}
if (is_nvdimm && !ms->nvdimms_state->is_enabled) {
error_setg(errp, "nvdimm is not enabled: missing 'nvdimm' in '-M'");
return;
}
hotplug_handler_pre_plug(pcms->acpi_dev, dev, &local_err);
if (local_err) {
error_propagate(errp, local_err);
return;
}
pc_dimm_pre_plug(PC_DIMM(dev), MACHINE(hotplug_dev),
pcmc->enforce_aligned_dimm ? NULL : &legacy_align, errp);
}
static void pc_memory_plug(HotplugHandler *hotplug_dev,
DeviceState *dev, Error **errp)
{
Error *local_err = NULL;
PCMachineState *pcms = PC_MACHINE(hotplug_dev);
MachineState *ms = MACHINE(hotplug_dev);
bool is_nvdimm = object_dynamic_cast(OBJECT(dev), TYPE_NVDIMM);
pc_dimm_plug(PC_DIMM(dev), MACHINE(pcms), &local_err);
if (local_err) {
goto out;
}
if (is_nvdimm) {
nvdimm_plug(ms->nvdimms_state);
}
hotplug_handler_plug(HOTPLUG_HANDLER(pcms->acpi_dev), dev, &error_abort);
out:
error_propagate(errp, local_err);
}
static void pc_memory_unplug_request(HotplugHandler *hotplug_dev,
DeviceState *dev, Error **errp)
{
Error *local_err = NULL;
PCMachineState *pcms = PC_MACHINE(hotplug_dev);
/*
* When -no-acpi is used with Q35 machine type, no ACPI is built,
* but pcms->acpi_dev is still created. Check !acpi_enabled in
* addition to cover this case.
*/
if (!pcms->acpi_dev || !acpi_enabled) {
error_setg(&local_err,
"memory hotplug is not enabled: missing acpi device or acpi disabled");
goto out;
}
if (object_dynamic_cast(OBJECT(dev), TYPE_NVDIMM)) {
error_setg(&local_err,
"nvdimm device hot unplug is not supported yet.");
goto out;
}
hotplug_handler_unplug_request(HOTPLUG_HANDLER(pcms->acpi_dev), dev,
&local_err);
out:
error_propagate(errp, local_err);
}
static void pc_memory_unplug(HotplugHandler *hotplug_dev,
DeviceState *dev, Error **errp)
{
PCMachineState *pcms = PC_MACHINE(hotplug_dev);
Error *local_err = NULL;
hotplug_handler_unplug(HOTPLUG_HANDLER(pcms->acpi_dev), dev, &local_err);
if (local_err) {
goto out;
}
pc_dimm_unplug(PC_DIMM(dev), MACHINE(pcms));
object_property_set_bool(OBJECT(dev), false, "realized", NULL);
out:
error_propagate(errp, local_err);
}
static int pc_apic_cmp(const void *a, const void *b)
{
CPUArchId *apic_a = (CPUArchId *)a;
CPUArchId *apic_b = (CPUArchId *)b;
return apic_a->arch_id - apic_b->arch_id;
}
/* returns pointer to CPUArchId descriptor that matches CPU's apic_id
* in ms->possible_cpus->cpus, if ms->possible_cpus->cpus has no
* entry corresponding to CPU's apic_id returns NULL.
*/
static CPUArchId *pc_find_cpu_slot(MachineState *ms, uint32_t id, int *idx)
{
CPUArchId apic_id, *found_cpu;
apic_id.arch_id = id;
found_cpu = bsearch(&apic_id, ms->possible_cpus->cpus,
ms->possible_cpus->len, sizeof(*ms->possible_cpus->cpus),
pc_apic_cmp);
if (found_cpu && idx) {
*idx = found_cpu - ms->possible_cpus->cpus;
}
return found_cpu;
}
static void pc_cpu_plug(HotplugHandler *hotplug_dev,
DeviceState *dev, Error **errp)
{
CPUArchId *found_cpu;
Error *local_err = NULL;
X86CPU *cpu = X86_CPU(dev);
PCMachineState *pcms = PC_MACHINE(hotplug_dev);
if (pcms->acpi_dev) {
hotplug_handler_plug(HOTPLUG_HANDLER(pcms->acpi_dev), dev, &local_err);
if (local_err) {
goto out;
}
}
/* increment the number of CPUs */
pcms->boot_cpus++;
if (pcms->rtc) {
rtc_set_cpus_count(pcms->rtc, pcms->boot_cpus);
}
if (pcms->fw_cfg) {
fw_cfg_modify_i16(pcms->fw_cfg, FW_CFG_NB_CPUS, pcms->boot_cpus);
}
found_cpu = pc_find_cpu_slot(MACHINE(pcms), cpu->apic_id, NULL);
found_cpu->cpu = OBJECT(dev);
out:
error_propagate(errp, local_err);
}
static void pc_cpu_unplug_request_cb(HotplugHandler *hotplug_dev,
DeviceState *dev, Error **errp)
{
int idx = -1;
Error *local_err = NULL;
X86CPU *cpu = X86_CPU(dev);
PCMachineState *pcms = PC_MACHINE(hotplug_dev);
if (!pcms->acpi_dev) {
error_setg(&local_err, "CPU hot unplug not supported without ACPI");
goto out;
}
pc_find_cpu_slot(MACHINE(pcms), cpu->apic_id, &idx);
assert(idx != -1);
if (idx == 0) {
error_setg(&local_err, "Boot CPU is unpluggable");
goto out;
}
hotplug_handler_unplug_request(HOTPLUG_HANDLER(pcms->acpi_dev), dev,
&local_err);
if (local_err) {
goto out;
}
out:
error_propagate(errp, local_err);
}
static void pc_cpu_unplug_cb(HotplugHandler *hotplug_dev,
DeviceState *dev, Error **errp)
{
CPUArchId *found_cpu;
Error *local_err = NULL;
X86CPU *cpu = X86_CPU(dev);
PCMachineState *pcms = PC_MACHINE(hotplug_dev);
hotplug_handler_unplug(HOTPLUG_HANDLER(pcms->acpi_dev), dev, &local_err);
if (local_err) {
goto out;
}
found_cpu = pc_find_cpu_slot(MACHINE(pcms), cpu->apic_id, NULL);
found_cpu->cpu = NULL;
object_property_set_bool(OBJECT(dev), false, "realized", NULL);
/* decrement the number of CPUs */
pcms->boot_cpus--;
/* Update the number of CPUs in CMOS */
rtc_set_cpus_count(pcms->rtc, pcms->boot_cpus);
fw_cfg_modify_i16(pcms->fw_cfg, FW_CFG_NB_CPUS, pcms->boot_cpus);
out:
error_propagate(errp, local_err);
}
static void pc_cpu_pre_plug(HotplugHandler *hotplug_dev,
DeviceState *dev, Error **errp)
{
int idx;
CPUState *cs;
CPUArchId *cpu_slot;
X86CPUTopoInfo topo;
X86CPU *cpu = X86_CPU(dev);
CPUX86State *env = &cpu->env;
MachineState *ms = MACHINE(hotplug_dev);
PCMachineState *pcms = PC_MACHINE(hotplug_dev);
unsigned int smp_cores = ms->smp.cores;
unsigned int smp_threads = ms->smp.threads;
if(!object_dynamic_cast(OBJECT(cpu), ms->cpu_type)) {
error_setg(errp, "Invalid CPU type, expected cpu type: '%s'",
ms->cpu_type);
return;
}
env->nr_dies = pcms->smp_dies;
/*
* If APIC ID is not set,
* set it based on socket/die/core/thread properties.
*/
if (cpu->apic_id == UNASSIGNED_APIC_ID) {
int max_socket = (ms->smp.max_cpus - 1) /
smp_threads / smp_cores / pcms->smp_dies;
/*
* die-id was optional in QEMU 4.0 and older, so keep it optional
* if there's only one die per socket.
*/
if (cpu->die_id < 0 && pcms->smp_dies == 1) {
cpu->die_id = 0;
}
if (cpu->socket_id < 0) {
error_setg(errp, "CPU socket-id is not set");
return;
} else if (cpu->socket_id > max_socket) {
error_setg(errp, "Invalid CPU socket-id: %u must be in range 0:%u",
cpu->socket_id, max_socket);
return;
}
if (cpu->die_id < 0) {
error_setg(errp, "CPU die-id is not set");
return;
} else if (cpu->die_id > pcms->smp_dies - 1) {
error_setg(errp, "Invalid CPU die-id: %u must be in range 0:%u",
cpu->die_id, pcms->smp_dies - 1);
return;
}
if (cpu->core_id < 0) {
error_setg(errp, "CPU core-id is not set");
return;
} else if (cpu->core_id > (smp_cores - 1)) {
error_setg(errp, "Invalid CPU core-id: %u must be in range 0:%u",
cpu->core_id, smp_cores - 1);
return;
}
if (cpu->thread_id < 0) {
error_setg(errp, "CPU thread-id is not set");
return;
} else if (cpu->thread_id > (smp_threads - 1)) {
error_setg(errp, "Invalid CPU thread-id: %u must be in range 0:%u",
cpu->thread_id, smp_threads - 1);
return;
}
topo.pkg_id = cpu->socket_id;
topo.die_id = cpu->die_id;
topo.core_id = cpu->core_id;
topo.smt_id = cpu->thread_id;
cpu->apic_id = apicid_from_topo_ids(pcms->smp_dies, smp_cores,
smp_threads, &topo);
}
cpu_slot = pc_find_cpu_slot(MACHINE(pcms), cpu->apic_id, &idx);
if (!cpu_slot) {
MachineState *ms = MACHINE(pcms);
x86_topo_ids_from_apicid(cpu->apic_id, pcms->smp_dies,
smp_cores, smp_threads, &topo);
error_setg(errp,
"Invalid CPU [socket: %u, die: %u, core: %u, thread: %u] with"
" APIC ID %" PRIu32 ", valid index range 0:%d",
topo.pkg_id, topo.die_id, topo.core_id, topo.smt_id,
cpu->apic_id, ms->possible_cpus->len - 1);
return;
}
if (cpu_slot->cpu) {
error_setg(errp, "CPU[%d] with APIC ID %" PRIu32 " exists",
idx, cpu->apic_id);
return;
}
/* if 'address' properties socket-id/core-id/thread-id are not set, set them
* so that machine_query_hotpluggable_cpus would show correct values
*/
/* TODO: move socket_id/core_id/thread_id checks into x86_cpu_realizefn()
* once -smp refactoring is complete and there will be CPU private
* CPUState::nr_cores and CPUState::nr_threads fields instead of globals */
x86_topo_ids_from_apicid(cpu->apic_id, pcms->smp_dies,
smp_cores, smp_threads, &topo);
if (cpu->socket_id != -1 && cpu->socket_id != topo.pkg_id) {
error_setg(errp, "property socket-id: %u doesn't match set apic-id:"
" 0x%x (socket-id: %u)", cpu->socket_id, cpu->apic_id, topo.pkg_id);
return;
}
cpu->socket_id = topo.pkg_id;
if (cpu->die_id != -1 && cpu->die_id != topo.die_id) {
error_setg(errp, "property die-id: %u doesn't match set apic-id:"
" 0x%x (die-id: %u)", cpu->die_id, cpu->apic_id, topo.die_id);
return;
}
cpu->die_id = topo.die_id;
if (cpu->core_id != -1 && cpu->core_id != topo.core_id) {
error_setg(errp, "property core-id: %u doesn't match set apic-id:"
" 0x%x (core-id: %u)", cpu->core_id, cpu->apic_id, topo.core_id);
return;
}
cpu->core_id = topo.core_id;
if (cpu->thread_id != -1 && cpu->thread_id != topo.smt_id) {
error_setg(errp, "property thread-id: %u doesn't match set apic-id:"
" 0x%x (thread-id: %u)", cpu->thread_id, cpu->apic_id, topo.smt_id);
return;
}
cpu->thread_id = topo.smt_id;
if (hyperv_feat_enabled(cpu, HYPERV_FEAT_VPINDEX) &&
!kvm_hv_vpindex_settable()) {
error_setg(errp, "kernel doesn't allow setting HyperV VP_INDEX");
return;
}
cs = CPU(cpu);
cs->cpu_index = idx;
numa_cpu_pre_plug(cpu_slot, dev, errp);
}
static void pc_virtio_pmem_pci_pre_plug(HotplugHandler *hotplug_dev,
DeviceState *dev, Error **errp)
{
HotplugHandler *hotplug_dev2 = qdev_get_bus_hotplug_handler(dev);
Error *local_err = NULL;
if (!hotplug_dev2) {
/*
* Without a bus hotplug handler, we cannot control the plug/unplug
* order. This should never be the case on x86, however better add
* a safety net.
*/
error_setg(errp, "virtio-pmem-pci not supported on this bus.");
return;
}
/*
* First, see if we can plug this memory device at all. If that
* succeeds, branch of to the actual hotplug handler.
*/
memory_device_pre_plug(MEMORY_DEVICE(dev), MACHINE(hotplug_dev), NULL,
&local_err);
if (!local_err) {
hotplug_handler_pre_plug(hotplug_dev2, dev, &local_err);
}
error_propagate(errp, local_err);
}
static void pc_virtio_pmem_pci_plug(HotplugHandler *hotplug_dev,
DeviceState *dev, Error **errp)
{
HotplugHandler *hotplug_dev2 = qdev_get_bus_hotplug_handler(dev);
Error *local_err = NULL;
/*
* Plug the memory device first and then branch off to the actual
* hotplug handler. If that one fails, we can easily undo the memory
* device bits.
*/
memory_device_plug(MEMORY_DEVICE(dev), MACHINE(hotplug_dev));
hotplug_handler_plug(hotplug_dev2, dev, &local_err);
if (local_err) {
memory_device_unplug(MEMORY_DEVICE(dev), MACHINE(hotplug_dev));
}
error_propagate(errp, local_err);
}
static void pc_virtio_pmem_pci_unplug_request(HotplugHandler *hotplug_dev,
DeviceState *dev, Error **errp)
{
/* We don't support virtio pmem hot unplug */
error_setg(errp, "virtio pmem device unplug not supported.");
}
static void pc_virtio_pmem_pci_unplug(HotplugHandler *hotplug_dev,
DeviceState *dev, Error **errp)
{
/* We don't support virtio pmem hot unplug */
}
static void pc_machine_device_pre_plug_cb(HotplugHandler *hotplug_dev,
DeviceState *dev, Error **errp)
{
if (object_dynamic_cast(OBJECT(dev), TYPE_PC_DIMM)) {
pc_memory_pre_plug(hotplug_dev, dev, errp);
} else if (object_dynamic_cast(OBJECT(dev), TYPE_CPU)) {
pc_cpu_pre_plug(hotplug_dev, dev, errp);
} else if (object_dynamic_cast(OBJECT(dev), TYPE_VIRTIO_PMEM_PCI)) {
pc_virtio_pmem_pci_pre_plug(hotplug_dev, dev, errp);
}
}
static void pc_machine_device_plug_cb(HotplugHandler *hotplug_dev,
DeviceState *dev, Error **errp)
{
if (object_dynamic_cast(OBJECT(dev), TYPE_PC_DIMM)) {
pc_memory_plug(hotplug_dev, dev, errp);
} else if (object_dynamic_cast(OBJECT(dev), TYPE_CPU)) {
pc_cpu_plug(hotplug_dev, dev, errp);
} else if (object_dynamic_cast(OBJECT(dev), TYPE_VIRTIO_PMEM_PCI)) {
pc_virtio_pmem_pci_plug(hotplug_dev, dev, errp);
}
}
static void pc_machine_device_unplug_request_cb(HotplugHandler *hotplug_dev,
DeviceState *dev, Error **errp)
{
if (object_dynamic_cast(OBJECT(dev), TYPE_PC_DIMM)) {
pc_memory_unplug_request(hotplug_dev, dev, errp);
} else if (object_dynamic_cast(OBJECT(dev), TYPE_CPU)) {
pc_cpu_unplug_request_cb(hotplug_dev, dev, errp);
} else if (object_dynamic_cast(OBJECT(dev), TYPE_VIRTIO_PMEM_PCI)) {
pc_virtio_pmem_pci_unplug_request(hotplug_dev, dev, errp);
} else {
error_setg(errp, "acpi: device unplug request for not supported device"
" type: %s", object_get_typename(OBJECT(dev)));
}
}
static void pc_machine_device_unplug_cb(HotplugHandler *hotplug_dev,
DeviceState *dev, Error **errp)
{
if (object_dynamic_cast(OBJECT(dev), TYPE_PC_DIMM)) {
pc_memory_unplug(hotplug_dev, dev, errp);
} else if (object_dynamic_cast(OBJECT(dev), TYPE_CPU)) {
pc_cpu_unplug_cb(hotplug_dev, dev, errp);
} else if (object_dynamic_cast(OBJECT(dev), TYPE_VIRTIO_PMEM_PCI)) {
pc_virtio_pmem_pci_unplug(hotplug_dev, dev, errp);
} else {
error_setg(errp, "acpi: device unplug for not supported device"
" type: %s", object_get_typename(OBJECT(dev)));
}
}
static HotplugHandler *pc_get_hotplug_handler(MachineState *machine,
DeviceState *dev)
{
if (object_dynamic_cast(OBJECT(dev), TYPE_PC_DIMM) ||
object_dynamic_cast(OBJECT(dev), TYPE_CPU) ||
object_dynamic_cast(OBJECT(dev), TYPE_VIRTIO_PMEM_PCI)) {
return HOTPLUG_HANDLER(machine);
}
return NULL;
}
static void
pc_machine_get_device_memory_region_size(Object *obj, Visitor *v,
const char *name, void *opaque,
Error **errp)
{
MachineState *ms = MACHINE(obj);
int64_t value = 0;
if (ms->device_memory) {
value = memory_region_size(&ms->device_memory->mr);
}
visit_type_int(v, name, &value, errp);
}
static void pc_machine_get_max_ram_below_4g(Object *obj, Visitor *v,
const char *name, void *opaque,
Error **errp)
{
PCMachineState *pcms = PC_MACHINE(obj);
uint64_t value = pcms->max_ram_below_4g;
visit_type_size(v, name, &value, errp);
}
static void pc_machine_set_max_ram_below_4g(Object *obj, Visitor *v,
const char *name, void *opaque,
Error **errp)
{
PCMachineState *pcms = PC_MACHINE(obj);
Error *error = NULL;
uint64_t value;
visit_type_size(v, name, &value, &error);
if (error) {
error_propagate(errp, error);
return;
}
if (value > 4 * GiB) {
error_setg(&error,
"Machine option 'max-ram-below-4g=%"PRIu64
"' expects size less than or equal to 4G", value);
error_propagate(errp, error);
return;
}
if (value < 1 * MiB) {
warn_report("Only %" PRIu64 " bytes of RAM below the 4GiB boundary,"
"BIOS may not work with less than 1MiB", value);
}
pcms->max_ram_below_4g = value;
}
static void pc_machine_get_vmport(Object *obj, Visitor *v, const char *name,
void *opaque, Error **errp)
{
PCMachineState *pcms = PC_MACHINE(obj);
OnOffAuto vmport = pcms->vmport;
visit_type_OnOffAuto(v, name, &vmport, errp);
}
static void pc_machine_set_vmport(Object *obj, Visitor *v, const char *name,
void *opaque, Error **errp)
{
PCMachineState *pcms = PC_MACHINE(obj);
visit_type_OnOffAuto(v, name, &pcms->vmport, errp);
}
bool pc_machine_is_smm_enabled(PCMachineState *pcms)
{
bool smm_available = false;
if (pcms->smm == ON_OFF_AUTO_OFF) {
return false;
}
if (tcg_enabled() || qtest_enabled()) {
smm_available = true;
} else if (kvm_enabled()) {
smm_available = kvm_has_smm();
}
if (smm_available) {
return true;
}
if (pcms->smm == ON_OFF_AUTO_ON) {
error_report("System Management Mode not supported by this hypervisor.");
exit(1);
}
return false;
}
static void pc_machine_get_smm(Object *obj, Visitor *v, const char *name,
void *opaque, Error **errp)
{
PCMachineState *pcms = PC_MACHINE(obj);
OnOffAuto smm = pcms->smm;
visit_type_OnOffAuto(v, name, &smm, errp);
}
static void pc_machine_set_smm(Object *obj, Visitor *v, const char *name,
void *opaque, Error **errp)
{
PCMachineState *pcms = PC_MACHINE(obj);
visit_type_OnOffAuto(v, name, &pcms->smm, errp);
}
static bool pc_machine_get_smbus(Object *obj, Error **errp)
{
PCMachineState *pcms = PC_MACHINE(obj);
return pcms->smbus_enabled;
}
static void pc_machine_set_smbus(Object *obj, bool value, Error **errp)
{
PCMachineState *pcms = PC_MACHINE(obj);
pcms->smbus_enabled = value;
}
static bool pc_machine_get_sata(Object *obj, Error **errp)
{
PCMachineState *pcms = PC_MACHINE(obj);
return pcms->sata_enabled;
}
static void pc_machine_set_sata(Object *obj, bool value, Error **errp)
{
PCMachineState *pcms = PC_MACHINE(obj);
pcms->sata_enabled = value;
}
static bool pc_machine_get_pit(Object *obj, Error **errp)
{
PCMachineState *pcms = PC_MACHINE(obj);
return pcms->pit_enabled;
}
static void pc_machine_set_pit(Object *obj, bool value, Error **errp)
{
PCMachineState *pcms = PC_MACHINE(obj);
pcms->pit_enabled = value;
}
static void pc_machine_initfn(Object *obj)
{
PCMachineState *pcms = PC_MACHINE(obj);
pcms->max_ram_below_4g = 0; /* use default */
pcms->smm = ON_OFF_AUTO_AUTO;
#ifdef CONFIG_VMPORT
pcms->vmport = ON_OFF_AUTO_AUTO;
#else
pcms->vmport = ON_OFF_AUTO_OFF;
#endif /* CONFIG_VMPORT */
/* acpi build is enabled by default if machine supports it */
pcms->acpi_build_enabled = PC_MACHINE_GET_CLASS(pcms)->has_acpi_build;
pcms->smbus_enabled = true;
pcms->sata_enabled = true;
pcms->pit_enabled = true;
pcms->smp_dies = 1;
pc_system_flash_create(pcms);
}
static void pc_machine_reset(MachineState *machine)
{
CPUState *cs;
X86CPU *cpu;
qemu_devices_reset();
/* Reset APIC after devices have been reset to cancel
* any changes that qemu_devices_reset() might have done.
*/
CPU_FOREACH(cs) {
cpu = X86_CPU(cs);
if (cpu->apic_state) {
device_reset(cpu->apic_state);
}
}
}
static void pc_machine_wakeup(MachineState *machine)
{
cpu_synchronize_all_states();
pc_machine_reset(machine);
cpu_synchronize_all_post_reset();
}
static CpuInstanceProperties
pc_cpu_index_to_props(MachineState *ms, unsigned cpu_index)
{
MachineClass *mc = MACHINE_GET_CLASS(ms);
const CPUArchIdList *possible_cpus = mc->possible_cpu_arch_ids(ms);
assert(cpu_index < possible_cpus->len);
return possible_cpus->cpus[cpu_index].props;
}
static int64_t pc_get_default_cpu_node_id(const MachineState *ms, int idx)
{
X86CPUTopoInfo topo;
PCMachineState *pcms = PC_MACHINE(ms);
assert(idx < ms->possible_cpus->len);
x86_topo_ids_from_apicid(ms->possible_cpus->cpus[idx].arch_id,
pcms->smp_dies, ms->smp.cores,
ms->smp.threads, &topo);
return topo.pkg_id % ms->numa_state->num_nodes;
}
static const CPUArchIdList *pc_possible_cpu_arch_ids(MachineState *ms)
{
PCMachineState *pcms = PC_MACHINE(ms);
int i;
unsigned int max_cpus = ms->smp.max_cpus;
if (ms->possible_cpus) {
/*
* make sure that max_cpus hasn't changed since the first use, i.e.
* -smp hasn't been parsed after it
*/
assert(ms->possible_cpus->len == max_cpus);
return ms->possible_cpus;
}
ms->possible_cpus = g_malloc0(sizeof(CPUArchIdList) +
sizeof(CPUArchId) * max_cpus);
ms->possible_cpus->len = max_cpus;
for (i = 0; i < ms->possible_cpus->len; i++) {
X86CPUTopoInfo topo;
ms->possible_cpus->cpus[i].type = ms->cpu_type;
ms->possible_cpus->cpus[i].vcpus_count = 1;
ms->possible_cpus->cpus[i].arch_id = x86_cpu_apic_id_from_index(pcms, i);
x86_topo_ids_from_apicid(ms->possible_cpus->cpus[i].arch_id,
pcms->smp_dies, ms->smp.cores,
ms->smp.threads, &topo);
ms->possible_cpus->cpus[i].props.has_socket_id = true;
ms->possible_cpus->cpus[i].props.socket_id = topo.pkg_id;
if (pcms->smp_dies > 1) {
ms->possible_cpus->cpus[i].props.has_die_id = true;
ms->possible_cpus->cpus[i].props.die_id = topo.die_id;
}
ms->possible_cpus->cpus[i].props.has_core_id = true;
ms->possible_cpus->cpus[i].props.core_id = topo.core_id;
ms->possible_cpus->cpus[i].props.has_thread_id = true;
ms->possible_cpus->cpus[i].props.thread_id = topo.smt_id;
}
return ms->possible_cpus;
}
static void x86_nmi(NMIState *n, int cpu_index, Error **errp)
{
/* cpu index isn't used */
CPUState *cs;
CPU_FOREACH(cs) {
X86CPU *cpu = X86_CPU(cs);
if (!cpu->apic_state) {
cpu_interrupt(cs, CPU_INTERRUPT_NMI);
} else {
apic_deliver_nmi(cpu->apic_state);
}
}
}
static void pc_machine_class_init(ObjectClass *oc, void *data)
{
MachineClass *mc = MACHINE_CLASS(oc);
PCMachineClass *pcmc = PC_MACHINE_CLASS(oc);
HotplugHandlerClass *hc = HOTPLUG_HANDLER_CLASS(oc);
NMIClass *nc = NMI_CLASS(oc);
pcmc->pci_enabled = true;
pcmc->has_acpi_build = true;
pcmc->rsdp_in_ram = true;
pcmc->smbios_defaults = true;
pcmc->smbios_uuid_encoded = true;
pcmc->gigabyte_align = true;
pcmc->has_reserved_memory = true;
pcmc->kvmclock_enabled = true;
pcmc->enforce_aligned_dimm = true;
/* BIOS ACPI tables: 128K. Other BIOS datastructures: less than 4K reported
* to be used at the moment, 32K should be enough for a while. */
pcmc->acpi_data_size = 0x20000 + 0x8000;
pcmc->save_tsc_khz = true;
pcmc->linuxboot_dma_enabled = true;
pcmc->pvh_enabled = true;
assert(!mc->get_hotplug_handler);
mc->get_hotplug_handler = pc_get_hotplug_handler;
mc->cpu_index_to_instance_props = pc_cpu_index_to_props;
mc->get_default_cpu_node_id = pc_get_default_cpu_node_id;
mc->possible_cpu_arch_ids = pc_possible_cpu_arch_ids;
mc->auto_enable_numa_with_memhp = true;
mc->has_hotpluggable_cpus = true;
mc->default_boot_order = "cad";
mc->hot_add_cpu = pc_hot_add_cpu;
mc->smp_parse = pc_smp_parse;
mc->block_default_type = IF_IDE;
mc->max_cpus = 255;
mc->reset = pc_machine_reset;
mc->wakeup = pc_machine_wakeup;
hc->pre_plug = pc_machine_device_pre_plug_cb;
hc->plug = pc_machine_device_plug_cb;
hc->unplug_request = pc_machine_device_unplug_request_cb;
hc->unplug = pc_machine_device_unplug_cb;
nc->nmi_monitor_handler = x86_nmi;
mc->default_cpu_type = TARGET_DEFAULT_CPU_TYPE;
mc->nvdimm_supported = true;
mc->numa_mem_supported = true;
object_class_property_add(oc, PC_MACHINE_DEVMEM_REGION_SIZE, "int",
pc_machine_get_device_memory_region_size, NULL,
NULL, NULL, &error_abort);
object_class_property_add(oc, PC_MACHINE_MAX_RAM_BELOW_4G, "size",
pc_machine_get_max_ram_below_4g, pc_machine_set_max_ram_below_4g,
NULL, NULL, &error_abort);
object_class_property_set_description(oc, PC_MACHINE_MAX_RAM_BELOW_4G,
"Maximum ram below the 4G boundary (32bit boundary)", &error_abort);
object_class_property_add(oc, PC_MACHINE_SMM, "OnOffAuto",
pc_machine_get_smm, pc_machine_set_smm,
NULL, NULL, &error_abort);
object_class_property_set_description(oc, PC_MACHINE_SMM,
"Enable SMM (pc & q35)", &error_abort);
object_class_property_add(oc, PC_MACHINE_VMPORT, "OnOffAuto",
pc_machine_get_vmport, pc_machine_set_vmport,
NULL, NULL, &error_abort);
object_class_property_set_description(oc, PC_MACHINE_VMPORT,
"Enable vmport (pc & q35)", &error_abort);
object_class_property_add_bool(oc, PC_MACHINE_SMBUS,
pc_machine_get_smbus, pc_machine_set_smbus, &error_abort);
object_class_property_add_bool(oc, PC_MACHINE_SATA,
pc_machine_get_sata, pc_machine_set_sata, &error_abort);
object_class_property_add_bool(oc, PC_MACHINE_PIT,
pc_machine_get_pit, pc_machine_set_pit, &error_abort);
}
static const TypeInfo pc_machine_info = {
.name = TYPE_PC_MACHINE,
.parent = TYPE_MACHINE,
.abstract = true,
.instance_size = sizeof(PCMachineState),
.instance_init = pc_machine_initfn,
.class_size = sizeof(PCMachineClass),
.class_init = pc_machine_class_init,
.interfaces = (InterfaceInfo[]) {
{ TYPE_HOTPLUG_HANDLER },
{ TYPE_NMI },
{ }
},
};
static void pc_machine_register_types(void)
{
type_register_static(&pc_machine_info);
}
type_init(pc_machine_register_types)