/*
* Copyright (c) 2003-2004 Fabrice Bellard
* Copyright (c) 2019 Red Hat, Inc.
*
* Permission is hereby granted, free of charge, to any person obtaining a copy
* of this software and associated documentation files (the "Software"), to deal
* in the Software without restriction, including without limitation the rights
* to use, copy, modify, merge, publish, distribute, sublicense, and/or sell
* copies of the Software, and to permit persons to whom the Software is
* furnished to do so, subject to the following conditions:
*
* The above copyright notice and this permission notice shall be included in
* all copies or substantial portions of the Software.
*
* THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
* IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
* FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL
* THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
* LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM,
* OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN
* THE SOFTWARE.
*/
#include "qemu/osdep.h"
#include "qemu/error-report.h"
#include "qemu/option.h"
#include "qemu/cutils.h"
#include "qemu/units.h"
#include "qemu/datadir.h"
#include "qemu/guest-random.h"
#include "qapi/error.h"
#include "qapi/qmp/qerror.h"
#include "qapi/qapi-visit-common.h"
#include "qapi/clone-visitor.h"
#include "qapi/qapi-visit-machine.h"
#include "qapi/visitor.h"
#include "sysemu/qtest.h"
#include "sysemu/whpx.h"
#include "sysemu/numa.h"
#include "sysemu/replay.h"
#include "sysemu/sysemu.h"
#include "sysemu/cpu-timers.h"
#include "sysemu/xen.h"
#include "trace.h"
#include "hw/i386/x86.h"
#include "target/i386/cpu.h"
#include "hw/i386/topology.h"
#include "hw/i386/fw_cfg.h"
#include "hw/intc/i8259.h"
#include "hw/rtc/mc146818rtc.h"
#include "target/i386/sev.h"
#include "hw/acpi/cpu_hotplug.h"
#include "hw/irq.h"
#include "hw/nmi.h"
#include "hw/loader.h"
#include "multiboot.h"
#include "elf.h"
#include "standard-headers/asm-x86/bootparam.h"
#include CONFIG_DEVICES
#include "kvm/kvm_i386.h"
/* Physical Address of PVH entry point read from kernel ELF NOTE */
static size_t pvh_start_addr;
inline void init_topo_info(X86CPUTopoInfo *topo_info,
const X86MachineState *x86ms)
{
MachineState *ms = MACHINE(x86ms);
topo_info->dies_per_pkg = ms->smp.dies;
topo_info->cores_per_die = ms->smp.cores;
topo_info->threads_per_core = ms->smp.threads;
}
/*
* Calculates initial APIC ID for a specific CPU index
*
* Currently we need to be able to calculate the APIC ID from the CPU index
* alone (without requiring a CPU object), as the QEMU<->Seabios interfaces have
* no concept of "CPU index", and the NUMA tables on fw_cfg need the APIC ID of
* all CPUs up to max_cpus.
*/
uint32_t x86_cpu_apic_id_from_index(X86MachineState *x86ms,
unsigned int cpu_index)
{
X86CPUTopoInfo topo_info;
init_topo_info(&topo_info, x86ms);
return x86_apicid_from_cpu_idx(&topo_info, cpu_index);
}
void x86_cpu_new(X86MachineState *x86ms, int64_t apic_id, Error **errp)
{
Object *cpu = object_new(MACHINE(x86ms)->cpu_type);
if (!object_property_set_uint(cpu, "apic-id", apic_id, errp)) {
goto out;
}
qdev_realize(DEVICE(cpu), NULL, errp);
out:
object_unref(cpu);
}
void x86_cpus_init(X86MachineState *x86ms, int default_cpu_version)
{
int i;
const CPUArchIdList *possible_cpus;
MachineState *ms = MACHINE(x86ms);
MachineClass *mc = MACHINE_GET_CLASS(x86ms);
x86_cpu_set_default_version(default_cpu_version);
/*
* Calculates the limit to CPU APIC ID values
*
* Limit for the APIC ID value, so that all
* CPU APIC IDs are < x86ms->apic_id_limit.
*
* This is used for FW_CFG_MAX_CPUS. See comments on fw_cfg_arch_create().
*/
x86ms->apic_id_limit = x86_cpu_apic_id_from_index(x86ms,
ms->smp.max_cpus - 1) + 1;
/*
* Can we support APIC ID 255 or higher?
*
* Under Xen: yes.
* With userspace emulated lapic: no
* With KVM's in-kernel lapic: only if X2APIC API is enabled.
*/
if (x86ms->apic_id_limit > 255 && !xen_enabled() &&
(!kvm_irqchip_in_kernel() || !kvm_enable_x2apic())) {
error_report("current -smp configuration requires kernel "
"irqchip and X2APIC API support.");
exit(EXIT_FAILURE);
}
possible_cpus = mc->possible_cpu_arch_ids(ms);
for (i = 0; i < ms->smp.cpus; i++) {
x86_cpu_new(x86ms, possible_cpus->cpus[i].arch_id, &error_fatal);
}
}
void x86_rtc_set_cpus_count(ISADevice *rtc, uint16_t cpus_count)
{
if (cpus_count > 0xff) {
/*
* If the number of CPUs can't be represented in 8 bits, the
* BIOS must use "FW_CFG_NB_CPUS". Set RTC field to 0 just
* to make old BIOSes fail more predictably.
*/
rtc_set_memory(rtc, 0x5f, 0);
} else {
rtc_set_memory(rtc, 0x5f, cpus_count - 1);
}
}
static int x86_apic_cmp(const void *a, const void *b)
{
CPUArchId *apic_a = (CPUArchId *)a;
CPUArchId *apic_b = (CPUArchId *)b;
return apic_a->arch_id - apic_b->arch_id;
}
/*
* returns pointer to CPUArchId descriptor that matches CPU's apic_id
* in ms->possible_cpus->cpus, if ms->possible_cpus->cpus has no
* entry corresponding to CPU's apic_id returns NULL.
*/
CPUArchId *x86_find_cpu_slot(MachineState *ms, uint32_t id, int *idx)
{
CPUArchId apic_id, *found_cpu;
apic_id.arch_id = id;
found_cpu = bsearch(&apic_id, ms->possible_cpus->cpus,
ms->possible_cpus->len, sizeof(*ms->possible_cpus->cpus),
x86_apic_cmp);
if (found_cpu && idx) {
*idx = found_cpu - ms->possible_cpus->cpus;
}
return found_cpu;
}
void x86_cpu_plug(HotplugHandler *hotplug_dev,
DeviceState *dev, Error **errp)
{
CPUArchId *found_cpu;
Error *local_err = NULL;
X86CPU *cpu = X86_CPU(dev);
X86MachineState *x86ms = X86_MACHINE(hotplug_dev);
if (x86ms->acpi_dev) {
hotplug_handler_plug(x86ms->acpi_dev, dev, &local_err);
if (local_err) {
goto out;
}
}
/* increment the number of CPUs */
x86ms->boot_cpus++;
if (x86ms->rtc) {
x86_rtc_set_cpus_count(x86ms->rtc, x86ms->boot_cpus);
}
if (x86ms->fw_cfg) {
fw_cfg_modify_i16(x86ms->fw_cfg, FW_CFG_NB_CPUS, x86ms->boot_cpus);
}
found_cpu = x86_find_cpu_slot(MACHINE(x86ms), cpu->apic_id, NULL);
found_cpu->cpu = OBJECT(dev);
out:
error_propagate(errp, local_err);
}
void x86_cpu_unplug_request_cb(HotplugHandler *hotplug_dev,
DeviceState *dev, Error **errp)
{
int idx = -1;
X86CPU *cpu = X86_CPU(dev);
X86MachineState *x86ms = X86_MACHINE(hotplug_dev);
if (!x86ms->acpi_dev) {
error_setg(errp, "CPU hot unplug not supported without ACPI");
return;
}
x86_find_cpu_slot(MACHINE(x86ms), cpu->apic_id, &idx);
assert(idx != -1);
if (idx == 0) {
error_setg(errp, "Boot CPU is unpluggable");
return;
}
hotplug_handler_unplug_request(x86ms->acpi_dev, dev,
errp);
}
void x86_cpu_unplug_cb(HotplugHandler *hotplug_dev,
DeviceState *dev, Error **errp)
{
CPUArchId *found_cpu;
Error *local_err = NULL;
X86CPU *cpu = X86_CPU(dev);
X86MachineState *x86ms = X86_MACHINE(hotplug_dev);
hotplug_handler_unplug(x86ms->acpi_dev, dev, &local_err);
if (local_err) {
goto out;
}
found_cpu = x86_find_cpu_slot(MACHINE(x86ms), cpu->apic_id, NULL);
found_cpu->cpu = NULL;
qdev_unrealize(dev);
/* decrement the number of CPUs */
x86ms->boot_cpus--;
/* Update the number of CPUs in CMOS */
x86_rtc_set_cpus_count(x86ms->rtc, x86ms->boot_cpus);
fw_cfg_modify_i16(x86ms->fw_cfg, FW_CFG_NB_CPUS, x86ms->boot_cpus);
out:
error_propagate(errp, local_err);
}
void x86_cpu_pre_plug(HotplugHandler *hotplug_dev,
DeviceState *dev, Error **errp)
{
int idx;
CPUState *cs;
CPUArchId *cpu_slot;
X86CPUTopoIDs topo_ids;
X86CPU *cpu = X86_CPU(dev);
CPUX86State *env = &cpu->env;
MachineState *ms = MACHINE(hotplug_dev);
X86MachineState *x86ms = X86_MACHINE(hotplug_dev);
unsigned int smp_cores = ms->smp.cores;
unsigned int smp_threads = ms->smp.threads;
X86CPUTopoInfo topo_info;
if (!object_dynamic_cast(OBJECT(cpu), ms->cpu_type)) {
error_setg(errp, "Invalid CPU type, expected cpu type: '%s'",
ms->cpu_type);
return;
}
if (x86ms->acpi_dev) {
Error *local_err = NULL;
hotplug_handler_pre_plug(HOTPLUG_HANDLER(x86ms->acpi_dev), dev,
&local_err);
if (local_err) {
error_propagate(errp, local_err);
return;
}
}
init_topo_info(&topo_info, x86ms);
env->nr_dies = ms->smp.dies;
/*
* If APIC ID is not set,
* set it based on socket/die/core/thread properties.
*/
if (cpu->apic_id == UNASSIGNED_APIC_ID) {
int max_socket = (ms->smp.max_cpus - 1) /
smp_threads / smp_cores / ms->smp.dies;
/*
* die-id was optional in QEMU 4.0 and older, so keep it optional
* if there's only one die per socket.
*/
if (cpu->die_id < 0 && ms->smp.dies == 1) {
cpu->die_id = 0;
}
if (cpu->socket_id < 0) {
error_setg(errp, "CPU socket-id is not set");
return;
} else if (cpu->socket_id > max_socket) {
error_setg(errp, "Invalid CPU socket-id: %u must be in range 0:%u",
cpu->socket_id, max_socket);
return;
}
if (cpu->die_id < 0) {
error_setg(errp, "CPU die-id is not set");
return;
} else if (cpu->die_id > ms->smp.dies - 1) {
error_setg(errp, "Invalid CPU die-id: %u must be in range 0:%u",
cpu->die_id, ms->smp.dies - 1);
return;
}
if (cpu->core_id < 0) {
error_setg(errp, "CPU core-id is not set");
return;
} else if (cpu->core_id > (smp_cores - 1)) {
error_setg(errp, "Invalid CPU core-id: %u must be in range 0:%u",
cpu->core_id, smp_cores - 1);
return;
}
if (cpu->thread_id < 0) {
error_setg(errp, "CPU thread-id is not set");
return;
} else if (cpu->thread_id > (smp_threads - 1)) {
error_setg(errp, "Invalid CPU thread-id: %u must be in range 0:%u",
cpu->thread_id, smp_threads - 1);
return;
}
topo_ids.pkg_id = cpu->socket_id;
topo_ids.die_id = cpu->die_id;
topo_ids.core_id = cpu->core_id;
topo_ids.smt_id = cpu->thread_id;
cpu->apic_id = x86_apicid_from_topo_ids(&topo_info, &topo_ids);
}
cpu_slot = x86_find_cpu_slot(MACHINE(x86ms), cpu->apic_id, &idx);
if (!cpu_slot) {
MachineState *ms = MACHINE(x86ms);
x86_topo_ids_from_apicid(cpu->apic_id, &topo_info, &topo_ids);
error_setg(errp,
"Invalid CPU [socket: %u, die: %u, core: %u, thread: %u] with"
" APIC ID %" PRIu32 ", valid index range 0:%d",
topo_ids.pkg_id, topo_ids.die_id, topo_ids.core_id, topo_ids.smt_id,
cpu->apic_id, ms->possible_cpus->len - 1);
return;
}
if (cpu_slot->cpu) {
error_setg(errp, "CPU[%d] with APIC ID %" PRIu32 " exists",
idx, cpu->apic_id);
return;
}
/* if 'address' properties socket-id/core-id/thread-id are not set, set them
* so that machine_query_hotpluggable_cpus would show correct values
*/
/* TODO: move socket_id/core_id/thread_id checks into x86_cpu_realizefn()
* once -smp refactoring is complete and there will be CPU private
* CPUState::nr_cores and CPUState::nr_threads fields instead of globals */
x86_topo_ids_from_apicid(cpu->apic_id, &topo_info, &topo_ids);
if (cpu->socket_id != -1 && cpu->socket_id != topo_ids.pkg_id) {
error_setg(errp, "property socket-id: %u doesn't match set apic-id:"
" 0x%x (socket-id: %u)", cpu->socket_id, cpu->apic_id,
topo_ids.pkg_id);
return;
}
cpu->socket_id = topo_ids.pkg_id;
if (cpu->die_id != -1 && cpu->die_id != topo_ids.die_id) {
error_setg(errp, "property die-id: %u doesn't match set apic-id:"
" 0x%x (die-id: %u)", cpu->die_id, cpu->apic_id, topo_ids.die_id);
return;
}
cpu->die_id = topo_ids.die_id;
if (cpu->core_id != -1 && cpu->core_id != topo_ids.core_id) {
error_setg(errp, "property core-id: %u doesn't match set apic-id:"
" 0x%x (core-id: %u)", cpu->core_id, cpu->apic_id,
topo_ids.core_id);
return;
}
cpu->core_id = topo_ids.core_id;
if (cpu->thread_id != -1 && cpu->thread_id != topo_ids.smt_id) {
error_setg(errp, "property thread-id: %u doesn't match set apic-id:"
" 0x%x (thread-id: %u)", cpu->thread_id, cpu->apic_id,
topo_ids.smt_id);
return;
}
cpu->thread_id = topo_ids.smt_id;
if (hyperv_feat_enabled(cpu, HYPERV_FEAT_VPINDEX) &&
!kvm_hv_vpindex_settable()) {
error_setg(errp, "kernel doesn't allow setting HyperV VP_INDEX");
return;
}
cs = CPU(cpu);
cs->cpu_index = idx;
numa_cpu_pre_plug(cpu_slot, dev, errp);
}
CpuInstanceProperties
x86_cpu_index_to_props(MachineState *ms, unsigned cpu_index)
{
MachineClass *mc = MACHINE_GET_CLASS(ms);
const CPUArchIdList *possible_cpus = mc->possible_cpu_arch_ids(ms);
assert(cpu_index < possible_cpus->len);
return possible_cpus->cpus[cpu_index].props;
}
int64_t x86_get_default_cpu_node_id(const MachineState *ms, int idx)
{
X86CPUTopoIDs topo_ids;
X86MachineState *x86ms = X86_MACHINE(ms);
X86CPUTopoInfo topo_info;
init_topo_info(&topo_info, x86ms);
assert(idx < ms->possible_cpus->len);
x86_topo_ids_from_apicid(ms->possible_cpus->cpus[idx].arch_id,
&topo_info, &topo_ids);
return topo_ids.pkg_id % ms->numa_state->num_nodes;
}
const CPUArchIdList *x86_possible_cpu_arch_ids(MachineState *ms)
{
X86MachineState *x86ms = X86_MACHINE(ms);
unsigned int max_cpus = ms->smp.max_cpus;
X86CPUTopoInfo topo_info;
int i;
if (ms->possible_cpus) {
/*
* make sure that max_cpus hasn't changed since the first use, i.e.
* -smp hasn't been parsed after it
*/
assert(ms->possible_cpus->len == max_cpus);
return ms->possible_cpus;
}
ms->possible_cpus = g_malloc0(sizeof(CPUArchIdList) +
sizeof(CPUArchId) * max_cpus);
ms->possible_cpus->len = max_cpus;
init_topo_info(&topo_info, x86ms);
for (i = 0; i < ms->possible_cpus->len; i++) {
X86CPUTopoIDs topo_ids;
ms->possible_cpus->cpus[i].type = ms->cpu_type;
ms->possible_cpus->cpus[i].vcpus_count = 1;
ms->possible_cpus->cpus[i].arch_id =
x86_cpu_apic_id_from_index(x86ms, i);
x86_topo_ids_from_apicid(ms->possible_cpus->cpus[i].arch_id,
&topo_info, &topo_ids);
ms->possible_cpus->cpus[i].props.has_socket_id = true;
ms->possible_cpus->cpus[i].props.socket_id = topo_ids.pkg_id;
if (ms->smp.dies > 1) {
ms->possible_cpus->cpus[i].props.has_die_id = true;
ms->possible_cpus->cpus[i].props.die_id = topo_ids.die_id;
}
ms->possible_cpus->cpus[i].props.has_core_id = true;
ms->possible_cpus->cpus[i].props.core_id = topo_ids.core_id;
ms->possible_cpus->cpus[i].props.has_thread_id = true;
ms->possible_cpus->cpus[i].props.thread_id = topo_ids.smt_id;
}
return ms->possible_cpus;
}
static void x86_nmi(NMIState *n, int cpu_index, Error **errp)
{
/* cpu index isn't used */
CPUState *cs;
CPU_FOREACH(cs) {
X86CPU *cpu = X86_CPU(cs);
if (!cpu->apic_state) {
cpu_interrupt(cs, CPU_INTERRUPT_NMI);
} else {
apic_deliver_nmi(cpu->apic_state);
}
}
}
static long get_file_size(FILE *f)
{
long where, size;
/* XXX: on Unix systems, using fstat() probably makes more sense */
where = ftell(f);
fseek(f, 0, SEEK_END);
size = ftell(f);
fseek(f, where, SEEK_SET);
return size;
}
/* TSC handling */
uint64_t cpu_get_tsc(CPUX86State *env)
{
return cpus_get_elapsed_ticks();
}
/* IRQ handling */
static void pic_irq_request(void *opaque, int irq, int level)
{
CPUState *cs = first_cpu;
X86CPU *cpu = X86_CPU(cs);
trace_x86_pic_interrupt(irq, level);
if (cpu->apic_state && !kvm_irqchip_in_kernel() &&
!whpx_apic_in_platform()) {
CPU_FOREACH(cs) {
cpu = X86_CPU(cs);
if (apic_accept_pic_intr(cpu->apic_state)) {
apic_deliver_pic_intr(cpu->apic_state, level);
}
}
} else {
if (level) {
cpu_interrupt(cs, CPU_INTERRUPT_HARD);
} else {
cpu_reset_interrupt(cs, CPU_INTERRUPT_HARD);
}
}
}
qemu_irq x86_allocate_cpu_irq(void)
{
return qemu_allocate_irq(pic_irq_request, NULL, 0);
}
int cpu_get_pic_interrupt(CPUX86State *env)
{
X86CPU *cpu = env_archcpu(env);
int intno;
if (!kvm_irqchip_in_kernel() && !whpx_apic_in_platform()) {
intno = apic_get_interrupt(cpu->apic_state);
if (intno >= 0) {
return intno;
}
/* read the irq from the PIC */
if (!apic_accept_pic_intr(cpu->apic_state)) {
return -1;
}
}
intno = pic_read_irq(isa_pic);
return intno;
}
DeviceState *cpu_get_current_apic(void)
{
if (current_cpu) {
X86CPU *cpu = X86_CPU(current_cpu);
return cpu->apic_state;
} else {
return NULL;
}
}
void gsi_handler(void *opaque, int n, int level)
{
GSIState *s = opaque;
trace_x86_gsi_interrupt(n, level);
switch (n) {
case 0 ... ISA_NUM_IRQS - 1:
if (s->i8259_irq[n]) {
/* Under KVM, Kernel will forward to both PIC and IOAPIC */
qemu_set_irq(s->i8259_irq[n], level);
}
/* fall through */
case ISA_NUM_IRQS ... IOAPIC_NUM_PINS - 1:
qemu_set_irq(s->ioapic_irq[n], level);
break;
case IO_APIC_SECONDARY_IRQBASE
... IO_APIC_SECONDARY_IRQBASE + IOAPIC_NUM_PINS - 1:
qemu_set_irq(s->ioapic2_irq[n - IO_APIC_SECONDARY_IRQBASE], level);
break;
}
}
void ioapic_init_gsi(GSIState *gsi_state, const char *parent_name)
{
DeviceState *dev;
SysBusDevice *d;
unsigned int i;
assert(parent_name);
if (kvm_ioapic_in_kernel()) {
dev = qdev_new(TYPE_KVM_IOAPIC);
} else {
dev = qdev_new(TYPE_IOAPIC);
}
object_property_add_child(object_resolve_path(parent_name, NULL),
"ioapic", OBJECT(dev));
d = SYS_BUS_DEVICE(dev);
sysbus_realize_and_unref(d, &error_fatal);
sysbus_mmio_map(d, 0, IO_APIC_DEFAULT_ADDRESS);
for (i = 0; i < IOAPIC_NUM_PINS; i++) {
gsi_state->ioapic_irq[i] = qdev_get_gpio_in(dev, i);
}
}
DeviceState *ioapic_init_secondary(GSIState *gsi_state)
{
DeviceState *dev;
SysBusDevice *d;
unsigned int i;
dev = qdev_new(TYPE_IOAPIC);
d = SYS_BUS_DEVICE(dev);
sysbus_realize_and_unref(d, &error_fatal);
sysbus_mmio_map(d, 0, IO_APIC_SECONDARY_ADDRESS);
for (i = 0; i < IOAPIC_NUM_PINS; i++) {
gsi_state->ioapic2_irq[i] = qdev_get_gpio_in(dev, i);
}
return dev;
}
struct setup_data {
uint64_t next;
uint32_t type;
uint32_t len;
uint8_t data[];
} __attribute__((packed));
/*
* The entry point into the kernel for PVH boot is different from
* the native entry point. The PVH entry is defined by the x86/HVM
* direct boot ABI and is available in an ELFNOTE in the kernel binary.
*
* This function is passed to load_elf() when it is called from
* load_elfboot() which then additionally checks for an ELF Note of
* type XEN_ELFNOTE_PHYS32_ENTRY and passes it to this function to
* parse the PVH entry address from the ELF Note.
*
* Due to trickery in elf_opts.h, load_elf() is actually available as
* load_elf32() or load_elf64() and this routine needs to be able
* to deal with being called as 32 or 64 bit.
*
* The address of the PVH entry point is saved to the 'pvh_start_addr'
* global variable. (although the entry point is 32-bit, the kernel
* binary can be either 32-bit or 64-bit).
*/
static uint64_t read_pvh_start_addr(void *arg1, void *arg2, bool is64)
{
size_t *elf_note_data_addr;
/* Check if ELF Note header passed in is valid */
if (arg1 == NULL) {
return 0;
}
if (is64) {
struct elf64_note *nhdr64 = (struct elf64_note *)arg1;
uint64_t nhdr_size64 = sizeof(struct elf64_note);
uint64_t phdr_align = *(uint64_t *)arg2;
uint64_t nhdr_namesz = nhdr64->n_namesz;
elf_note_data_addr =
((void *)nhdr64) + nhdr_size64 +
QEMU_ALIGN_UP(nhdr_namesz, phdr_align);
pvh_start_addr = *elf_note_data_addr;
} else {
struct elf32_note *nhdr32 = (struct elf32_note *)arg1;
uint32_t nhdr_size32 = sizeof(struct elf32_note);
uint32_t phdr_align = *(uint32_t *)arg2;
uint32_t nhdr_namesz = nhdr32->n_namesz;
elf_note_data_addr =
((void *)nhdr32) + nhdr_size32 +
QEMU_ALIGN_UP(nhdr_namesz, phdr_align);
pvh_start_addr = *(uint32_t *)elf_note_data_addr;
}
return pvh_start_addr;
}
static bool load_elfboot(const char *kernel_filename,
int kernel_file_size,
uint8_t *header,
size_t pvh_xen_start_addr,
FWCfgState *fw_cfg)
{
uint32_t flags = 0;
uint32_t mh_load_addr = 0;
uint32_t elf_kernel_size = 0;
uint64_t elf_entry;
uint64_t elf_low, elf_high;
int kernel_size;
if (ldl_p(header) != 0x464c457f) {
return false; /* no elfboot */
}
bool elf_is64 = header[EI_CLASS] == ELFCLASS64;
flags = elf_is64 ?
((Elf64_Ehdr *)header)->e_flags : ((Elf32_Ehdr *)header)->e_flags;
if (flags & 0x00010004) { /* LOAD_ELF_HEADER_HAS_ADDR */
error_report("elfboot unsupported flags = %x", flags);
exit(1);
}
uint64_t elf_note_type = XEN_ELFNOTE_PHYS32_ENTRY;
kernel_size = load_elf(kernel_filename, read_pvh_start_addr,
NULL, &elf_note_type, &elf_entry,
&elf_low, &elf_high, NULL, 0, I386_ELF_MACHINE,
0, 0);
if (kernel_size < 0) {
error_report("Error while loading elf kernel");
exit(1);
}
mh_load_addr = elf_low;
elf_kernel_size = elf_high - elf_low;
if (pvh_start_addr == 0) {
error_report("Error loading uncompressed kernel without PVH ELF Note");
exit(1);
}
fw_cfg_add_i32(fw_cfg, FW_CFG_KERNEL_ENTRY, pvh_start_addr);
fw_cfg_add_i32(fw_cfg, FW_CFG_KERNEL_ADDR, mh_load_addr);
fw_cfg_add_i32(fw_cfg, FW_CFG_KERNEL_SIZE, elf_kernel_size);
return true;
}
void x86_load_linux(X86MachineState *x86ms,
FWCfgState *fw_cfg,
int acpi_data_size,
bool pvh_enabled,
bool legacy_no_rng_seed)
{
bool linuxboot_dma_enabled = X86_MACHINE_GET_CLASS(x86ms)->fwcfg_dma_enabled;
uint16_t protocol;
int setup_size, kernel_size, cmdline_size;
int dtb_size, setup_data_offset;
uint32_t initrd_max;
uint8_t header[8192], *setup, *kernel;
hwaddr real_addr, prot_addr, cmdline_addr, initrd_addr = 0, first_setup_data = 0;
FILE *f;
char *vmode;
MachineState *machine = MACHINE(x86ms);
struct setup_data *setup_data;
const char *kernel_filename = machine->kernel_filename;
const char *initrd_filename = machine->initrd_filename;
const char *dtb_filename = machine->dtb;
const char *kernel_cmdline = machine->kernel_cmdline;
SevKernelLoaderContext sev_load_ctx = {};
enum { RNG_SEED_LENGTH = 32 };
/* Align to 16 bytes as a paranoia measure */
cmdline_size = (strlen(kernel_cmdline) + 16) & ~15;
/* load the kernel header */
f = fopen(kernel_filename, "rb");
if (!f) {
fprintf(stderr, "qemu: could not open kernel file '%s': %s\n",
kernel_filename, strerror(errno));
exit(1);
}
kernel_size = get_file_size(f);
if (!kernel_size ||
fread(header, 1, MIN(ARRAY_SIZE(header), kernel_size), f) !=
MIN(ARRAY_SIZE(header), kernel_size)) {
fprintf(stderr, "qemu: could not load kernel '%s': %s\n",
kernel_filename, strerror(errno));
exit(1);
}
/* kernel protocol version */
if (ldl_p(header + 0x202) == 0x53726448) {
protocol = lduw_p(header + 0x206);
} else {
/*
* This could be a multiboot kernel. If it is, let's stop treating it
* like a Linux kernel.
* Note: some multiboot images could be in the ELF format (the same of
* PVH), so we try multiboot first since we check the multiboot magic
* header before to load it.
*/
if (load_multiboot(x86ms, fw_cfg, f, kernel_filename, initrd_filename,
kernel_cmdline, kernel_size, header)) {
return;
}
/*
* Check if the file is an uncompressed kernel file (ELF) and load it,
* saving the PVH entry point used by the x86/HVM direct boot ABI.
* If load_elfboot() is successful, populate the fw_cfg info.
*/
if (pvh_enabled &&
load_elfboot(kernel_filename, kernel_size,
header, pvh_start_addr, fw_cfg)) {
fclose(f);
fw_cfg_add_i32(fw_cfg, FW_CFG_CMDLINE_SIZE,
strlen(kernel_cmdline) + 1);
fw_cfg_add_string(fw_cfg, FW_CFG_CMDLINE_DATA, kernel_cmdline);
fw_cfg_add_i32(fw_cfg, FW_CFG_SETUP_SIZE, sizeof(header));
fw_cfg_add_bytes(fw_cfg, FW_CFG_SETUP_DATA,
header, sizeof(header));
/* load initrd */
if (initrd_filename) {
GMappedFile *mapped_file;
gsize initrd_size;
gchar *initrd_data;
GError *gerr = NULL;
mapped_file = g_mapped_file_new(initrd_filename, false, &gerr);
if (!mapped_file) {
fprintf(stderr, "qemu: error reading initrd %s: %s\n",
initrd_filename, gerr->message);
exit(1);
}
x86ms->initrd_mapped_file = mapped_file;
initrd_data = g_mapped_file_get_contents(mapped_file);
initrd_size = g_mapped_file_get_length(mapped_file);
initrd_max = x86ms->below_4g_mem_size - acpi_data_size - 1;
if (initrd_size >= initrd_max) {
fprintf(stderr, "qemu: initrd is too large, cannot support."
"(max: %"PRIu32", need %"PRId64")\n",
initrd_max, (uint64_t)initrd_size);
exit(1);
}
initrd_addr = (initrd_max - initrd_size) & ~4095;
fw_cfg_add_i32(fw_cfg, FW_CFG_INITRD_ADDR, initrd_addr);
fw_cfg_add_i32(fw_cfg, FW_CFG_INITRD_SIZE, initrd_size);
fw_cfg_add_bytes(fw_cfg, FW_CFG_INITRD_DATA, initrd_data,
initrd_size);
}
option_rom[nb_option_roms].bootindex = 0;
option_rom[nb_option_roms].name = "pvh.bin";
nb_option_roms++;
return;
}
protocol = 0;
}
if (protocol < 0x200 || !(header[0x211] & 0x01)) {
/* Low kernel */
real_addr = 0x90000;
cmdline_addr = 0x9a000 - cmdline_size;
prot_addr = 0x10000;
} else if (protocol < 0x202) {
/* High but ancient kernel */
real_addr = 0x90000;
cmdline_addr = 0x9a000 - cmdline_size;
prot_addr = 0x100000;
} else {
/* High and recent kernel */
real_addr = 0x10000;
cmdline_addr = 0x20000;
prot_addr = 0x100000;
}
/* highest address for loading the initrd */
if (protocol >= 0x20c &&
lduw_p(header + 0x236) & XLF_CAN_BE_LOADED_ABOVE_4G) {
/*
* Linux has supported initrd up to 4 GB for a very long time (2007,
* long before XLF_CAN_BE_LOADED_ABOVE_4G which was added in 2013),
* though it only sets initrd_max to 2 GB to "work around bootloader
* bugs". Luckily, QEMU firmware(which does something like bootloader)
* has supported this.
*
* It's believed that if XLF_CAN_BE_LOADED_ABOVE_4G is set, initrd can
* be loaded into any address.
*
* In addition, initrd_max is uint32_t simply because QEMU doesn't
* support the 64-bit boot protocol (specifically the ext_ramdisk_image
* field).
*
* Therefore here just limit initrd_max to UINT32_MAX simply as well.
*/
initrd_max = UINT32_MAX;
} else if (protocol >= 0x203) {
initrd_max = ldl_p(header + 0x22c);
} else {
initrd_max = 0x37ffffff;
}
if (initrd_max >= x86ms->below_4g_mem_size - acpi_data_size) {
initrd_max = x86ms->below_4g_mem_size - acpi_data_size - 1;
}
fw_cfg_add_i32(fw_cfg, FW_CFG_CMDLINE_ADDR, cmdline_addr);
fw_cfg_add_i32(fw_cfg, FW_CFG_CMDLINE_SIZE, strlen(kernel_cmdline) + 1);
fw_cfg_add_string(fw_cfg, FW_CFG_CMDLINE_DATA, kernel_cmdline);
sev_load_ctx.cmdline_data = (char *)kernel_cmdline;
sev_load_ctx.cmdline_size = strlen(kernel_cmdline) + 1;
if (protocol >= 0x202) {
stl_p(header + 0x228, cmdline_addr);
} else {
stw_p(header + 0x20, 0xA33F);
stw_p(header + 0x22, cmdline_addr - real_addr);
}
/* handle vga= parameter */
vmode = strstr(kernel_cmdline, "vga=");
if (vmode) {
unsigned int video_mode;
const char *end;
int ret;
/* skip "vga=" */
vmode += 4;
if (!strncmp(vmode, "normal", 6)) {
video_mode = 0xffff;
} else if (!strncmp(vmode, "ext", 3)) {
video_mode = 0xfffe;
} else if (!strncmp(vmode, "ask", 3)) {
video_mode = 0xfffd;
} else {
ret = qemu_strtoui(vmode, &end, 0, &video_mode);
if (ret != 0 || (*end && *end != ' ')) {
fprintf(stderr, "qemu: invalid 'vga=' kernel parameter.\n");
exit(1);
}
}
stw_p(header + 0x1fa, video_mode);
}
/* loader type */
/*
* High nybble = B reserved for QEMU; low nybble is revision number.
* If this code is substantially changed, you may want to consider
* incrementing the revision.
*/
if (protocol >= 0x200) {
header[0x210] = 0xB0;
}
/* heap */
if (protocol >= 0x201) {
header[0x211] |= 0x80; /* CAN_USE_HEAP */
stw_p(header + 0x224, cmdline_addr - real_addr - 0x200);
}
/* load initrd */
if (initrd_filename) {
GMappedFile *mapped_file;
gsize initrd_size;
gchar *initrd_data;
GError *gerr = NULL;
if (protocol < 0x200) {
fprintf(stderr, "qemu: linux kernel too old to load a ram disk\n");
exit(1);
}
mapped_file = g_mapped_file_new(initrd_filename, false, &gerr);
if (!mapped_file) {
fprintf(stderr, "qemu: error reading initrd %s: %s\n",
initrd_filename, gerr->message);
exit(1);
}
x86ms->initrd_mapped_file = mapped_file;
initrd_data = g_mapped_file_get_contents(mapped_file);
initrd_size = g_mapped_file_get_length(mapped_file);
if (initrd_size >= initrd_max) {
fprintf(stderr, "qemu: initrd is too large, cannot support."
"(max: %"PRIu32", need %"PRId64")\n",
initrd_max, (uint64_t)initrd_size);
exit(1);
}
initrd_addr = (initrd_max - initrd_size) & ~4095;
fw_cfg_add_i32(fw_cfg, FW_CFG_INITRD_ADDR, initrd_addr);
fw_cfg_add_i32(fw_cfg, FW_CFG_INITRD_SIZE, initrd_size);
fw_cfg_add_bytes(fw_cfg, FW_CFG_INITRD_DATA, initrd_data, initrd_size);
sev_load_ctx.initrd_data = initrd_data;
sev_load_ctx.initrd_size = initrd_size;
stl_p(header + 0x218, initrd_addr);
stl_p(header + 0x21c, initrd_size);
}
/* load kernel and setup */
setup_size = header[0x1f1];
if (setup_size == 0) {
setup_size = 4;
}
setup_size = (setup_size + 1) * 512;
if (setup_size > kernel_size) {
fprintf(stderr, "qemu: invalid kernel header\n");
exit(1);
}
kernel_size -= setup_size;
setup = g_malloc(setup_size);
kernel = g_malloc(kernel_size);
fseek(f, 0, SEEK_SET);
if (fread(setup, 1, setup_size, f) != setup_size) {
fprintf(stderr, "fread() failed\n");
exit(1);
}
if (fread(kernel, 1, kernel_size, f) != kernel_size) {
fprintf(stderr, "fread() failed\n");
exit(1);
}
fclose(f);
/* append dtb to kernel */
if (dtb_filename) {
if (protocol < 0x209) {
fprintf(stderr, "qemu: Linux kernel too old to load a dtb\n");
exit(1);
}
dtb_size = get_image_size(dtb_filename);
if (dtb_size <= 0) {
fprintf(stderr, "qemu: error reading dtb %s: %s\n",
dtb_filename, strerror(errno));
exit(1);
}
setup_data_offset = QEMU_ALIGN_UP(kernel_size, 16);
kernel_size = setup_data_offset + sizeof(struct setup_data) + dtb_size;
kernel = g_realloc(kernel, kernel_size);
setup_data = (struct setup_data *)(kernel + setup_data_offset);
setup_data->next = cpu_to_le64(first_setup_data);
first_setup_data = prot_addr + setup_data_offset;
setup_data->type = cpu_to_le32(SETUP_DTB);
setup_data->len = cpu_to_le32(dtb_size);
load_image_size(dtb_filename, setup_data->data, dtb_size);
}
if (!legacy_no_rng_seed) {
setup_data_offset = QEMU_ALIGN_UP(kernel_size, 16);
kernel_size = setup_data_offset + sizeof(struct setup_data) + RNG_SEED_LENGTH;
kernel = g_realloc(kernel, kernel_size);
setup_data = (struct setup_data *)(kernel + setup_data_offset);
setup_data->next = cpu_to_le64(first_setup_data);
first_setup_data = prot_addr + setup_data_offset;
setup_data->type = cpu_to_le32(SETUP_RNG_SEED);
setup_data->len = cpu_to_le32(RNG_SEED_LENGTH);
qemu_guest_getrandom_nofail(setup_data->data, RNG_SEED_LENGTH);
}
/* Offset 0x250 is a pointer to the first setup_data link. */
stq_p(header + 0x250, first_setup_data);
/*
* If we're starting an encrypted VM, it will be OVMF based, which uses the
* efi stub for booting and doesn't require any values to be placed in the
* kernel header. We therefore don't update the header so the hash of the
* kernel on the other side of the fw_cfg interface matches the hash of the
* file the user passed in.
*/
if (!sev_enabled()) {
memcpy(setup, header, MIN(sizeof(header), setup_size));
}
fw_cfg_add_i32(fw_cfg, FW_CFG_KERNEL_ADDR, prot_addr);
fw_cfg_add_i32(fw_cfg, FW_CFG_KERNEL_SIZE, kernel_size);
fw_cfg_add_bytes(fw_cfg, FW_CFG_KERNEL_DATA, kernel, kernel_size);
sev_load_ctx.kernel_data = (char *)kernel;
sev_load_ctx.kernel_size = kernel_size;
fw_cfg_add_i32(fw_cfg, FW_CFG_SETUP_ADDR, real_addr);
fw_cfg_add_i32(fw_cfg, FW_CFG_SETUP_SIZE, setup_size);
fw_cfg_add_bytes(fw_cfg, FW_CFG_SETUP_DATA, setup, setup_size);
sev_load_ctx.setup_data = (char *)setup;
sev_load_ctx.setup_size = setup_size;
if (sev_enabled()) {
sev_add_kernel_loader_hashes(&sev_load_ctx, &error_fatal);
}
option_rom[nb_option_roms].bootindex = 0;
option_rom[nb_option_roms].name = "linuxboot.bin";
if (linuxboot_dma_enabled && fw_cfg_dma_enabled(fw_cfg)) {
option_rom[nb_option_roms].name = "linuxboot_dma.bin";
}
nb_option_roms++;
}
void x86_bios_rom_init(MachineState *ms, const char *default_firmware,
MemoryRegion *rom_memory, bool isapc_ram_fw)
{
const char *bios_name;
char *filename;
MemoryRegion *bios, *isa_bios;
int bios_size, isa_bios_size;
ssize_t ret;
/* BIOS load */
bios_name = ms->firmware ?: default_firmware;
filename = qemu_find_file(QEMU_FILE_TYPE_BIOS, bios_name);
if (filename) {
bios_size = get_image_size(filename);
} else {
bios_size = -1;
}
if (bios_size <= 0 ||
(bios_size % 65536) != 0) {
goto bios_error;
}
bios = g_malloc(sizeof(*bios));
memory_region_init_ram(bios, NULL, "pc.bios", bios_size, &error_fatal);
if (sev_enabled()) {
/*
* The concept of a "reset" simply doesn't exist for
* confidential computing guests, we have to destroy and
* re-launch them instead. So there is no need to register
* the firmware as rom to properly re-initialize on reset.
* Just go for a straight file load instead.
*/
void *ptr = memory_region_get_ram_ptr(bios);
load_image_size(filename, ptr, bios_size);
x86_firmware_configure(ptr, bios_size);
} else {
if (!isapc_ram_fw) {
memory_region_set_readonly(bios, true);
}
ret = rom_add_file_fixed(bios_name, (uint32_t)(-bios_size), -1);
if (ret != 0) {
goto bios_error;
}
}
g_free(filename);
/* map the last 128KB of the BIOS in ISA space */
isa_bios_size = MIN(bios_size, 128 * KiB);
isa_bios = g_malloc(sizeof(*isa_bios));
memory_region_init_alias(isa_bios, NULL, "isa-bios", bios,
bios_size - isa_bios_size, isa_bios_size);
memory_region_add_subregion_overlap(rom_memory,
0x100000 - isa_bios_size,
isa_bios,
1);
if (!isapc_ram_fw) {
memory_region_set_readonly(isa_bios, true);
}
/* map all the bios at the top of memory */
memory_region_add_subregion(rom_memory,
(uint32_t)(-bios_size),
bios);
return;
bios_error:
fprintf(stderr, "qemu: could not load PC BIOS '%s'\n", bios_name);
exit(1);
}
bool x86_machine_is_smm_enabled(const X86MachineState *x86ms)
{
bool smm_available = false;
if (x86ms->smm == ON_OFF_AUTO_OFF) {
return false;
}
if (tcg_enabled() || qtest_enabled()) {
smm_available = true;
} else if (kvm_enabled()) {
smm_available = kvm_has_smm();
}
if (smm_available) {
return true;
}
if (x86ms->smm == ON_OFF_AUTO_ON) {
error_report("System Management Mode not supported by this hypervisor.");
exit(1);
}
return false;
}
static void x86_machine_get_smm(Object *obj, Visitor *v, const char *name,
void *opaque, Error **errp)
{
X86MachineState *x86ms = X86_MACHINE(obj);
OnOffAuto smm = x86ms->smm;
visit_type_OnOffAuto(v, name, &smm, errp);
}
static void x86_machine_set_smm(Object *obj, Visitor *v, const char *name,
void *opaque, Error **errp)
{
X86MachineState *x86ms = X86_MACHINE(obj);
visit_type_OnOffAuto(v, name, &x86ms->smm, errp);
}
bool x86_machine_is_acpi_enabled(const X86MachineState *x86ms)
{
if (x86ms->acpi == ON_OFF_AUTO_OFF) {
return false;
}
return true;
}
static void x86_machine_get_acpi(Object *obj, Visitor *v, const char *name,
void *opaque, Error **errp)
{
X86MachineState *x86ms = X86_MACHINE(obj);
OnOffAuto acpi = x86ms->acpi;
visit_type_OnOffAuto(v, name, &acpi, errp);
}
static void x86_machine_set_acpi(Object *obj, Visitor *v, const char *name,
void *opaque, Error **errp)
{
X86MachineState *x86ms = X86_MACHINE(obj);
visit_type_OnOffAuto(v, name, &x86ms->acpi, errp);
}
static void x86_machine_get_pit(Object *obj, Visitor *v, const char *name,
void *opaque, Error **errp)
{
X86MachineState *x86ms = X86_MACHINE(obj);
OnOffAuto pit = x86ms->pit;
visit_type_OnOffAuto(v, name, &pit, errp);
}
static void x86_machine_set_pit(Object *obj, Visitor *v, const char *name,
void *opaque, Error **errp)
{
X86MachineState *x86ms = X86_MACHINE(obj);;
visit_type_OnOffAuto(v, name, &x86ms->pit, errp);
}
static void x86_machine_get_pic(Object *obj, Visitor *v, const char *name,
void *opaque, Error **errp)
{
X86MachineState *x86ms = X86_MACHINE(obj);
OnOffAuto pic = x86ms->pic;
visit_type_OnOffAuto(v, name, &pic, errp);
}
static void x86_machine_set_pic(Object *obj, Visitor *v, const char *name,
void *opaque, Error **errp)
{
X86MachineState *x86ms = X86_MACHINE(obj);
visit_type_OnOffAuto(v, name, &x86ms->pic, errp);
}
static char *x86_machine_get_oem_id(Object *obj, Error **errp)
{
X86MachineState *x86ms = X86_MACHINE(obj);
return g_strdup(x86ms->oem_id);
}
static void x86_machine_set_oem_id(Object *obj, const char *value, Error **errp)
{
X86MachineState *x86ms = X86_MACHINE(obj);
size_t len = strlen(value);
if (len > 6) {
error_setg(errp,
"User specified "X86_MACHINE_OEM_ID" value is bigger than "
"6 bytes in size");
return;
}
strncpy(x86ms->oem_id, value, 6);
}
static char *x86_machine_get_oem_table_id(Object *obj, Error **errp)
{
X86MachineState *x86ms = X86_MACHINE(obj);
return g_strdup(x86ms->oem_table_id);
}
static void x86_machine_set_oem_table_id(Object *obj, const char *value,
Error **errp)
{
X86MachineState *x86ms = X86_MACHINE(obj);
size_t len = strlen(value);
if (len > 8) {
error_setg(errp,
"User specified "X86_MACHINE_OEM_TABLE_ID
" value is bigger than "
"8 bytes in size");
return;
}
strncpy(x86ms->oem_table_id, value, 8);
}
static void x86_machine_get_bus_lock_ratelimit(Object *obj, Visitor *v,
const char *name, void *opaque, Error **errp)
{
X86MachineState *x86ms = X86_MACHINE(obj);
uint64_t bus_lock_ratelimit = x86ms->bus_lock_ratelimit;
visit_type_uint64(v, name, &bus_lock_ratelimit, errp);
}
static void x86_machine_set_bus_lock_ratelimit(Object *obj, Visitor *v,
const char *name, void *opaque, Error **errp)
{
X86MachineState *x86ms = X86_MACHINE(obj);
visit_type_uint64(v, name, &x86ms->bus_lock_ratelimit, errp);
}
static void machine_get_sgx_epc(Object *obj, Visitor *v, const char *name,
void *opaque, Error **errp)
{
X86MachineState *x86ms = X86_MACHINE(obj);
SgxEPCList *list = x86ms->sgx_epc_list;
visit_type_SgxEPCList(v, name, &list, errp);
}
static void machine_set_sgx_epc(Object *obj, Visitor *v, const char *name,
void *opaque, Error **errp)
{
X86MachineState *x86ms = X86_MACHINE(obj);
SgxEPCList *list;
list = x86ms->sgx_epc_list;
visit_type_SgxEPCList(v, name, &x86ms->sgx_epc_list, errp);
qapi_free_SgxEPCList(list);
}
static void x86_machine_initfn(Object *obj)
{
X86MachineState *x86ms = X86_MACHINE(obj);
x86ms->smm = ON_OFF_AUTO_AUTO;
x86ms->acpi = ON_OFF_AUTO_AUTO;
x86ms->pit = ON_OFF_AUTO_AUTO;
x86ms->pic = ON_OFF_AUTO_AUTO;
x86ms->pci_irq_mask = ACPI_BUILD_PCI_IRQS;
x86ms->oem_id = g_strndup(ACPI_BUILD_APPNAME6, 6);
x86ms->oem_table_id = g_strndup(ACPI_BUILD_APPNAME8, 8);
x86ms->bus_lock_ratelimit = 0;
x86ms->above_4g_mem_start = 4 * GiB;
}
static void x86_machine_class_init(ObjectClass *oc, void *data)
{
MachineClass *mc = MACHINE_CLASS(oc);
X86MachineClass *x86mc = X86_MACHINE_CLASS(oc);
NMIClass *nc = NMI_CLASS(oc);
mc->cpu_index_to_instance_props = x86_cpu_index_to_props;
mc->get_default_cpu_node_id = x86_get_default_cpu_node_id;
mc->possible_cpu_arch_ids = x86_possible_cpu_arch_ids;
x86mc->save_tsc_khz = true;
x86mc->fwcfg_dma_enabled = true;
nc->nmi_monitor_handler = x86_nmi;
object_class_property_add(oc, X86_MACHINE_SMM, "OnOffAuto",
x86_machine_get_smm, x86_machine_set_smm,
NULL, NULL);
object_class_property_set_description(oc, X86_MACHINE_SMM,
"Enable SMM");
object_class_property_add(oc, X86_MACHINE_ACPI, "OnOffAuto",
x86_machine_get_acpi, x86_machine_set_acpi,
NULL, NULL);
object_class_property_set_description(oc, X86_MACHINE_ACPI,
"Enable ACPI");
object_class_property_add(oc, X86_MACHINE_PIT, "OnOffAuto",
x86_machine_get_pit,
x86_machine_set_pit,
NULL, NULL);
object_class_property_set_description(oc, X86_MACHINE_PIT,
"Enable i8254 PIT");
object_class_property_add(oc, X86_MACHINE_PIC, "OnOffAuto",
x86_machine_get_pic,
x86_machine_set_pic,
NULL, NULL);
object_class_property_set_description(oc, X86_MACHINE_PIC,
"Enable i8259 PIC");
object_class_property_add_str(oc, X86_MACHINE_OEM_ID,
x86_machine_get_oem_id,
x86_machine_set_oem_id);
object_class_property_set_description(oc, X86_MACHINE_OEM_ID,
"Override the default value of field OEMID "
"in ACPI table header."
"The string may be up to 6 bytes in size");
object_class_property_add_str(oc, X86_MACHINE_OEM_TABLE_ID,
x86_machine_get_oem_table_id,
x86_machine_set_oem_table_id);
object_class_property_set_description(oc, X86_MACHINE_OEM_TABLE_ID,
"Override the default value of field OEM Table ID "
"in ACPI table header."
"The string may be up to 8 bytes in size");
object_class_property_add(oc, X86_MACHINE_BUS_LOCK_RATELIMIT, "uint64_t",
x86_machine_get_bus_lock_ratelimit,
x86_machine_set_bus_lock_ratelimit, NULL, NULL);
object_class_property_set_description(oc, X86_MACHINE_BUS_LOCK_RATELIMIT,
"Set the ratelimit for the bus locks acquired in VMs");
object_class_property_add(oc, "sgx-epc", "SgxEPC",
machine_get_sgx_epc, machine_set_sgx_epc,
NULL, NULL);
object_class_property_set_description(oc, "sgx-epc",
"SGX EPC device");
}
static const TypeInfo x86_machine_info = {
.name = TYPE_X86_MACHINE,
.parent = TYPE_MACHINE,
.abstract = true,
.instance_size = sizeof(X86MachineState),
.instance_init = x86_machine_initfn,
.class_size = sizeof(X86MachineClass),
.class_init = x86_machine_class_init,
.interfaces = (InterfaceInfo[]) {
{ TYPE_NMI },
{ }
},
};
static void x86_machine_register_types(void)
{
type_register_static(&x86_machine_info);
}
type_init(x86_machine_register_types)