/*
* ARM Nested Vectored Interrupt Controller
*
* Copyright (c) 2006-2007 CodeSourcery.
* Written by Paul Brook
*
* This code is licensed under the GPL.
*
* The ARMv7M System controller is fairly tightly tied in with the
* NVIC. Much of that is also implemented here.
*/
#include "qemu/osdep.h"
#include "qapi/error.h"
#include "qemu-common.h"
#include "cpu.h"
#include "hw/sysbus.h"
#include "qemu/timer.h"
#include "hw/arm/arm.h"
#include "target/arm/cpu.h"
#include "exec/address-spaces.h"
#include "qemu/log.h"
#include "trace.h"
/* IRQ number counting:
*
* the num-irq property counts the number of external IRQ lines
*
* NVICState::num_irq counts the total number of exceptions
* (external IRQs, the 15 internal exceptions including reset,
* and one for the unused exception number 0).
*
* NVIC_MAX_IRQ is the highest permitted number of external IRQ lines.
*
* NVIC_MAX_VECTORS is the highest permitted number of exceptions.
*
* Iterating through all exceptions should typically be done with
* for (i = 1; i < s->num_irq; i++) to avoid the unused slot 0.
*
* The external qemu_irq lines are the NVIC's external IRQ lines,
* so line 0 is exception 16.
*
* In the terminology of the architecture manual, "interrupts" are
* a subcategory of exception referring to the external interrupts
* (which are exception numbers NVIC_FIRST_IRQ and upward).
* For historical reasons QEMU tends to use "interrupt" and
* "exception" more or less interchangeably.
*/
#define NVIC_FIRST_IRQ 16
#define NVIC_MAX_VECTORS 512
#define NVIC_MAX_IRQ (NVIC_MAX_VECTORS - NVIC_FIRST_IRQ)
/* Effective running priority of the CPU when no exception is active
* (higher than the highest possible priority value)
*/
#define NVIC_NOEXC_PRIO 0x100
typedef struct VecInfo {
/* Exception priorities can range from -3 to 255; only the unmodifiable
* priority values for RESET, NMI and HardFault can be negative.
*/
int16_t prio;
uint8_t enabled;
uint8_t pending;
uint8_t active;
uint8_t level; /* exceptions <=15 never set level */
} VecInfo;
typedef struct NVICState {
/*< private >*/
SysBusDevice parent_obj;
/*< public >*/
ARMCPU *cpu;
VecInfo vectors[NVIC_MAX_VECTORS];
uint32_t prigroup;
/* vectpending and exception_prio are both cached state that can
* be recalculated from the vectors[] array and the prigroup field.
*/
unsigned int vectpending; /* highest prio pending enabled exception */
int exception_prio; /* group prio of the highest prio active exception */
struct {
uint32_t control;
uint32_t reload;
int64_t tick;
QEMUTimer *timer;
} systick;
MemoryRegion sysregmem;
MemoryRegion container;
uint32_t num_irq;
qemu_irq excpout;
qemu_irq sysresetreq;
} NVICState;
#define TYPE_NVIC "armv7m_nvic"
#define NVIC(obj) \
OBJECT_CHECK(NVICState, (obj), TYPE_NVIC)
static const uint8_t nvic_id[] = {
0x00, 0xb0, 0x1b, 0x00, 0x0d, 0xe0, 0x05, 0xb1
};
/* qemu timers run at 1GHz. We want something closer to 1MHz. */
#define SYSTICK_SCALE 1000ULL
#define SYSTICK_ENABLE (1 << 0)
#define SYSTICK_TICKINT (1 << 1)
#define SYSTICK_CLKSOURCE (1 << 2)
#define SYSTICK_COUNTFLAG (1 << 16)
int system_clock_scale;
/* Conversion factor from qemu timer to SysTick frequencies. */
static inline int64_t systick_scale(NVICState *s)
{
if (s->systick.control & SYSTICK_CLKSOURCE)
return system_clock_scale;
else
return 1000;
}
static void systick_reload(NVICState *s, int reset)
{
/* The Cortex-M3 Devices Generic User Guide says that "When the
* ENABLE bit is set to 1, the counter loads the RELOAD value from the
* SYST RVR register and then counts down". So, we need to check the
* ENABLE bit before reloading the value.
*/
if ((s->systick.control & SYSTICK_ENABLE) == 0) {
return;
}
if (reset)
s->systick.tick = qemu_clock_get_ns(QEMU_CLOCK_VIRTUAL);
s->systick.tick += (s->systick.reload + 1) * systick_scale(s);
timer_mod(s->systick.timer, s->systick.tick);
}
static void systick_timer_tick(void * opaque)
{
NVICState *s = (NVICState *)opaque;
s->systick.control |= SYSTICK_COUNTFLAG;
if (s->systick.control & SYSTICK_TICKINT) {
/* Trigger the interrupt. */
armv7m_nvic_set_pending(s, ARMV7M_EXCP_SYSTICK);
}
if (s->systick.reload == 0) {
s->systick.control &= ~SYSTICK_ENABLE;
} else {
systick_reload(s, 0);
}
}
static void systick_reset(NVICState *s)
{
s->systick.control = 0;
s->systick.reload = 0;
s->systick.tick = 0;
timer_del(s->systick.timer);
}
static int nvic_pending_prio(NVICState *s)
{
/* return the priority of the current pending interrupt,
* or NVIC_NOEXC_PRIO if no interrupt is pending
*/
return s->vectpending ? s->vectors[s->vectpending].prio : NVIC_NOEXC_PRIO;
}
/* Return the value of the ISCR RETTOBASE bit:
* 1 if there is exactly one active exception
* 0 if there is more than one active exception
* UNKNOWN if there are no active exceptions (we choose 1,
* which matches the choice Cortex-M3 is documented as making).
*
* NB: some versions of the documentation talk about this
* counting "active exceptions other than the one shown by IPSR";
* this is only different in the obscure corner case where guest
* code has manually deactivated an exception and is about
* to fail an exception-return integrity check. The definition
* above is the one from the v8M ARM ARM and is also in line
* with the behaviour documented for the Cortex-M3.
*/
static bool nvic_rettobase(NVICState *s)
{
int irq, nhand = 0;
for (irq = ARMV7M_EXCP_RESET; irq < s->num_irq; irq++) {
if (s->vectors[irq].active) {
nhand++;
if (nhand == 2) {
return 0;
}
}
}
return 1;
}
/* Return the value of the ISCR ISRPENDING bit:
* 1 if an external interrupt is pending
* 0 if no external interrupt is pending
*/
static bool nvic_isrpending(NVICState *s)
{
int irq;
/* We can shortcut if the highest priority pending interrupt
* happens to be external or if there is nothing pending.
*/
if (s->vectpending > NVIC_FIRST_IRQ) {
return true;
}
if (s->vectpending == 0) {
return false;
}
for (irq = NVIC_FIRST_IRQ; irq < s->num_irq; irq++) {
if (s->vectors[irq].pending) {
return true;
}
}
return false;
}
/* Return a mask word which clears the subpriority bits from
* a priority value for an M-profile exception, leaving only
* the group priority.
*/
static inline uint32_t nvic_gprio_mask(NVICState *s)
{
return ~0U << (s->prigroup + 1);
}
/* Recompute vectpending and exception_prio */
static void nvic_recompute_state(NVICState *s)
{
int i;
int pend_prio = NVIC_NOEXC_PRIO;
int active_prio = NVIC_NOEXC_PRIO;
int pend_irq = 0;
for (i = 1; i < s->num_irq; i++) {
VecInfo *vec = &s->vectors[i];
if (vec->enabled && vec->pending && vec->prio < pend_prio) {
pend_prio = vec->prio;
pend_irq = i;
}
if (vec->active && vec->prio < active_prio) {
active_prio = vec->prio;
}
}
s->vectpending = pend_irq;
s->exception_prio = active_prio & nvic_gprio_mask(s);
trace_nvic_recompute_state(s->vectpending, s->exception_prio);
}
/* Return the current execution priority of the CPU
* (equivalent to the pseudocode ExecutionPriority function).
* This is a value between -2 (NMI priority) and NVIC_NOEXC_PRIO.
*/
static inline int nvic_exec_prio(NVICState *s)
{
CPUARMState *env = &s->cpu->env;
int running;
if (env->daif & PSTATE_F) { /* FAULTMASK */
running = -1;
} else if (env->daif & PSTATE_I) { /* PRIMASK */
running = 0;
} else if (env->v7m.basepri > 0) {
running = env->v7m.basepri & nvic_gprio_mask(s);
} else {
running = NVIC_NOEXC_PRIO; /* lower than any possible priority */
}
/* consider priority of active handler */
return MIN(running, s->exception_prio);
}
/* caller must call nvic_irq_update() after this */
static void set_prio(NVICState *s, unsigned irq, uint8_t prio)
{
assert(irq > ARMV7M_EXCP_NMI); /* only use for configurable prios */
assert(irq < s->num_irq);
s->vectors[irq].prio = prio;
trace_nvic_set_prio(irq, prio);
}
/* Recompute state and assert irq line accordingly.
* Must be called after changes to:
* vec->active, vec->enabled, vec->pending or vec->prio for any vector
* prigroup
*/
static void nvic_irq_update(NVICState *s)
{
int lvl;
int pend_prio;
nvic_recompute_state(s);
pend_prio = nvic_pending_prio(s);
/* Raise NVIC output if this IRQ would be taken, except that we
* ignore the effects of the BASEPRI, FAULTMASK and PRIMASK (which
* will be checked for in arm_v7m_cpu_exec_interrupt()); changes
* to those CPU registers don't cause us to recalculate the NVIC
* pending info.
*/
lvl = (pend_prio < s->exception_prio);
trace_nvic_irq_update(s->vectpending, pend_prio, s->exception_prio, lvl);
qemu_set_irq(s->excpout, lvl);
}
static void armv7m_nvic_clear_pending(void *opaque, int irq)
{
NVICState *s = (NVICState *)opaque;
VecInfo *vec;
assert(irq > ARMV7M_EXCP_RESET && irq < s->num_irq);
vec = &s->vectors[irq];
trace_nvic_clear_pending(irq, vec->enabled, vec->prio);
if (vec->pending) {
vec->pending = 0;
nvic_irq_update(s);
}
}
void armv7m_nvic_set_pending(void *opaque, int irq)
{
NVICState *s = (NVICState *)opaque;
VecInfo *vec;
assert(irq > ARMV7M_EXCP_RESET && irq < s->num_irq);
vec = &s->vectors[irq];
trace_nvic_set_pending(irq, vec->enabled, vec->prio);
if (!vec->pending) {
vec->pending = 1;
nvic_irq_update(s);
}
}
/* Make pending IRQ active. */
int armv7m_nvic_acknowledge_irq(void *opaque)
{
NVICState *s = (NVICState *)opaque;
CPUARMState *env = &s->cpu->env;
const int pending = s->vectpending;
const int running = nvic_exec_prio(s);
int pendgroupprio;
VecInfo *vec;
assert(pending > ARMV7M_EXCP_RESET && pending < s->num_irq);
vec = &s->vectors[pending];
assert(vec->enabled);
assert(vec->pending);
pendgroupprio = vec->prio & nvic_gprio_mask(s);
assert(pendgroupprio < running);
trace_nvic_acknowledge_irq(pending, vec->prio);
vec->active = 1;
vec->pending = 0;
env->v7m.exception = s->vectpending;
nvic_irq_update(s);
return env->v7m.exception;
}
void armv7m_nvic_complete_irq(void *opaque, int irq)
{
NVICState *s = (NVICState *)opaque;
VecInfo *vec;
assert(irq > ARMV7M_EXCP_RESET && irq < s->num_irq);
vec = &s->vectors[irq];
trace_nvic_complete_irq(irq);
vec->active = 0;
if (vec->level) {
/* Re-pend the exception if it's still held high; only
* happens for extenal IRQs
*/
assert(irq >= NVIC_FIRST_IRQ);
vec->pending = 1;
}
nvic_irq_update(s);
}
/* callback when external interrupt line is changed */
static void set_irq_level(void *opaque, int n, int level)
{
NVICState *s = opaque;
VecInfo *vec;
n += NVIC_FIRST_IRQ;
assert(n >= NVIC_FIRST_IRQ && n < s->num_irq);
trace_nvic_set_irq_level(n, level);
/* The pending status of an external interrupt is
* latched on rising edge and exception handler return.
*
* Pulsing the IRQ will always run the handler
* once, and the handler will re-run until the
* level is low when the handler completes.
*/
vec = &s->vectors[n];
if (level != vec->level) {
vec->level = level;
if (level) {
armv7m_nvic_set_pending(s, n);
}
}
}
static uint32_t nvic_readl(NVICState *s, uint32_t offset)
{
ARMCPU *cpu = s->cpu;
uint32_t val;
switch (offset) {
case 4: /* Interrupt Control Type. */
return ((s->num_irq - NVIC_FIRST_IRQ) / 32) - 1;
case 0x10: /* SysTick Control and Status. */
val = s->systick.control;
s->systick.control &= ~SYSTICK_COUNTFLAG;
return val;
case 0x14: /* SysTick Reload Value. */
return s->systick.reload;
case 0x18: /* SysTick Current Value. */
{
int64_t t;
if ((s->systick.control & SYSTICK_ENABLE) == 0)
return 0;
t = qemu_clock_get_ns(QEMU_CLOCK_VIRTUAL);
if (t >= s->systick.tick)
return 0;
val = ((s->systick.tick - (t + 1)) / systick_scale(s)) + 1;
/* The interrupt in triggered when the timer reaches zero.
However the counter is not reloaded until the next clock
tick. This is a hack to return zero during the first tick. */
if (val > s->systick.reload)
val = 0;
return val;
}
case 0x1c: /* SysTick Calibration Value. */
return 10000;
case 0xd00: /* CPUID Base. */
return cpu->midr;
case 0xd04: /* Interrupt Control State. */
/* VECTACTIVE */
val = cpu->env.v7m.exception;
/* VECTPENDING */
val |= (s->vectpending & 0xff) << 12;
/* ISRPENDING - set if any external IRQ is pending */
if (nvic_isrpending(s)) {
val |= (1 << 22);
}
/* RETTOBASE - set if only one handler is active */
if (nvic_rettobase(s)) {
val |= (1 << 11);
}
/* PENDSTSET */
if (s->vectors[ARMV7M_EXCP_SYSTICK].pending) {
val |= (1 << 26);
}
/* PENDSVSET */
if (s->vectors[ARMV7M_EXCP_PENDSV].pending) {
val |= (1 << 28);
}
/* NMIPENDSET */
if (s->vectors[ARMV7M_EXCP_NMI].pending) {
val |= (1 << 31);
}
/* ISRPREEMPT not implemented */
return val;
case 0xd08: /* Vector Table Offset. */
return cpu->env.v7m.vecbase;
case 0xd0c: /* Application Interrupt/Reset Control. */
return 0xfa050000 | (s->prigroup << 8);
case 0xd10: /* System Control. */
/* TODO: Implement SLEEPONEXIT. */
return 0;
case 0xd14: /* Configuration Control. */
return cpu->env.v7m.ccr;
case 0xd24: /* System Handler Status. */
val = 0;
if (s->vectors[ARMV7M_EXCP_MEM].active) {
val |= (1 << 0);
}
if (s->vectors[ARMV7M_EXCP_BUS].active) {
val |= (1 << 1);
}
if (s->vectors[ARMV7M_EXCP_USAGE].active) {
val |= (1 << 3);
}
if (s->vectors[ARMV7M_EXCP_SVC].active) {
val |= (1 << 7);
}
if (s->vectors[ARMV7M_EXCP_DEBUG].active) {
val |= (1 << 8);
}
if (s->vectors[ARMV7M_EXCP_PENDSV].active) {
val |= (1 << 10);
}
if (s->vectors[ARMV7M_EXCP_SYSTICK].active) {
val |= (1 << 11);
}
if (s->vectors[ARMV7M_EXCP_USAGE].pending) {
val |= (1 << 12);
}
if (s->vectors[ARMV7M_EXCP_MEM].pending) {
val |= (1 << 13);
}
if (s->vectors[ARMV7M_EXCP_BUS].pending) {
val |= (1 << 14);
}
if (s->vectors[ARMV7M_EXCP_SVC].pending) {
val |= (1 << 15);
}
if (s->vectors[ARMV7M_EXCP_MEM].enabled) {
val |= (1 << 16);
}
if (s->vectors[ARMV7M_EXCP_BUS].enabled) {
val |= (1 << 17);
}
if (s->vectors[ARMV7M_EXCP_USAGE].enabled) {
val |= (1 << 18);
}
return val;
case 0xd28: /* Configurable Fault Status. */
return cpu->env.v7m.cfsr;
case 0xd2c: /* Hard Fault Status. */
return cpu->env.v7m.hfsr;
case 0xd30: /* Debug Fault Status. */
return cpu->env.v7m.dfsr;
case 0xd34: /* MMFAR MemManage Fault Address */
return cpu->env.v7m.mmfar;
case 0xd38: /* Bus Fault Address. */
return cpu->env.v7m.bfar;
case 0xd3c: /* Aux Fault Status. */
/* TODO: Implement fault status registers. */
qemu_log_mask(LOG_UNIMP,
"Aux Fault status registers unimplemented\n");
return 0;
case 0xd40: /* PFR0. */
return 0x00000030;
case 0xd44: /* PRF1. */
return 0x00000200;
case 0xd48: /* DFR0. */
return 0x00100000;
case 0xd4c: /* AFR0. */
return 0x00000000;
case 0xd50: /* MMFR0. */
return 0x00000030;
case 0xd54: /* MMFR1. */
return 0x00000000;
case 0xd58: /* MMFR2. */
return 0x00000000;
case 0xd5c: /* MMFR3. */
return 0x00000000;
case 0xd60: /* ISAR0. */
return 0x01141110;
case 0xd64: /* ISAR1. */
return 0x02111000;
case 0xd68: /* ISAR2. */
return 0x21112231;
case 0xd6c: /* ISAR3. */
return 0x01111110;
case 0xd70: /* ISAR4. */
return 0x01310102;
/* TODO: Implement debug registers. */
default:
qemu_log_mask(LOG_GUEST_ERROR, "NVIC: Bad read offset 0x%x\n", offset);
return 0;
}
}
static void nvic_writel(NVICState *s, uint32_t offset, uint32_t value)
{
ARMCPU *cpu = s->cpu;
uint32_t oldval;
switch (offset) {
case 0x10: /* SysTick Control and Status. */
oldval = s->systick.control;
s->systick.control &= 0xfffffff8;
s->systick.control |= value & 7;
if ((oldval ^ value) & SYSTICK_ENABLE) {
int64_t now = qemu_clock_get_ns(QEMU_CLOCK_VIRTUAL);
if (value & SYSTICK_ENABLE) {
if (s->systick.tick) {
s->systick.tick += now;
timer_mod(s->systick.timer, s->systick.tick);
} else {
systick_reload(s, 1);
}
} else {
timer_del(s->systick.timer);
s->systick.tick -= now;
if (s->systick.tick < 0)
s->systick.tick = 0;
}
} else if ((oldval ^ value) & SYSTICK_CLKSOURCE) {
/* This is a hack. Force the timer to be reloaded
when the reference clock is changed. */
systick_reload(s, 1);
}
break;
case 0x14: /* SysTick Reload Value. */
s->systick.reload = value;
break;
case 0x18: /* SysTick Current Value. Writes reload the timer. */
systick_reload(s, 1);
s->systick.control &= ~SYSTICK_COUNTFLAG;
break;
case 0xd04: /* Interrupt Control State. */
if (value & (1 << 31)) {
armv7m_nvic_set_pending(s, ARMV7M_EXCP_NMI);
}
if (value & (1 << 28)) {
armv7m_nvic_set_pending(s, ARMV7M_EXCP_PENDSV);
} else if (value & (1 << 27)) {
armv7m_nvic_clear_pending(s, ARMV7M_EXCP_PENDSV);
}
if (value & (1 << 26)) {
armv7m_nvic_set_pending(s, ARMV7M_EXCP_SYSTICK);
} else if (value & (1 << 25)) {
armv7m_nvic_clear_pending(s, ARMV7M_EXCP_SYSTICK);
}
break;
case 0xd08: /* Vector Table Offset. */
cpu->env.v7m.vecbase = value & 0xffffff80;
break;
case 0xd0c: /* Application Interrupt/Reset Control. */
if ((value >> 16) == 0x05fa) {
if (value & 4) {
qemu_irq_pulse(s->sysresetreq);
}
if (value & 2) {
qemu_log_mask(LOG_UNIMP, "VECTCLRACTIVE unimplemented\n");
}
if (value & 1) {
qemu_log_mask(LOG_UNIMP, "AIRCR system reset unimplemented\n");
}
s->prigroup = extract32(value, 8, 3);
nvic_irq_update(s);
}
break;
case 0xd10: /* System Control. */
/* TODO: Implement control registers. */
qemu_log_mask(LOG_UNIMP, "NVIC: SCR unimplemented\n");
break;
case 0xd14: /* Configuration Control. */
/* Enforce RAZ/WI on reserved and must-RAZ/WI bits */
value &= (R_V7M_CCR_STKALIGN_MASK |
R_V7M_CCR_BFHFNMIGN_MASK |
R_V7M_CCR_DIV_0_TRP_MASK |
R_V7M_CCR_UNALIGN_TRP_MASK |
R_V7M_CCR_USERSETMPEND_MASK |
R_V7M_CCR_NONBASETHRDENA_MASK);
cpu->env.v7m.ccr = value;
break;
case 0xd24: /* System Handler Control. */
/* TODO: Real hardware allows you to set/clear the active bits
under some circumstances. We don't implement this. */
s->vectors[ARMV7M_EXCP_MEM].enabled = (value & (1 << 16)) != 0;
s->vectors[ARMV7M_EXCP_BUS].enabled = (value & (1 << 17)) != 0;
s->vectors[ARMV7M_EXCP_USAGE].enabled = (value & (1 << 18)) != 0;
nvic_irq_update(s);
break;
case 0xd28: /* Configurable Fault Status. */
cpu->env.v7m.cfsr &= ~value; /* W1C */
break;
case 0xd2c: /* Hard Fault Status. */
cpu->env.v7m.hfsr &= ~value; /* W1C */
break;
case 0xd30: /* Debug Fault Status. */
cpu->env.v7m.dfsr &= ~value; /* W1C */
break;
case 0xd34: /* Mem Manage Address. */
cpu->env.v7m.mmfar = value;
return;
case 0xd38: /* Bus Fault Address. */
cpu->env.v7m.bfar = value;
return;
case 0xd3c: /* Aux Fault Status. */
qemu_log_mask(LOG_UNIMP,
"NVIC: Aux fault status registers unimplemented\n");
break;
case 0xf00: /* Software Triggered Interrupt Register */
{
/* user mode can only write to STIR if CCR.USERSETMPEND permits it */
int excnum = (value & 0x1ff) + NVIC_FIRST_IRQ;
if (excnum < s->num_irq &&
(arm_current_el(&cpu->env) ||
(cpu->env.v7m.ccr & R_V7M_CCR_USERSETMPEND_MASK))) {
armv7m_nvic_set_pending(s, excnum);
}
break;
}
default:
qemu_log_mask(LOG_GUEST_ERROR,
"NVIC: Bad write offset 0x%x\n", offset);
}
}
static uint64_t nvic_sysreg_read(void *opaque, hwaddr addr,
unsigned size)
{
NVICState *s = (NVICState *)opaque;
uint32_t offset = addr;
unsigned i, startvec, end;
uint32_t val;
switch (offset) {
/* reads of set and clear both return the status */
case 0x100 ... 0x13f: /* NVIC Set enable */
offset += 0x80;
/* fall through */
case 0x180 ... 0x1bf: /* NVIC Clear enable */
val = 0;
startvec = offset - 0x180 + NVIC_FIRST_IRQ; /* vector # */
for (i = 0, end = size * 8; i < end && startvec + i < s->num_irq; i++) {
if (s->vectors[startvec + i].enabled) {
val |= (1 << i);
}
}
break;
case 0x200 ... 0x23f: /* NVIC Set pend */
offset += 0x80;
/* fall through */
case 0x280 ... 0x2bf: /* NVIC Clear pend */
val = 0;
startvec = offset - 0x280 + NVIC_FIRST_IRQ; /* vector # */
for (i = 0, end = size * 8; i < end && startvec + i < s->num_irq; i++) {
if (s->vectors[startvec + i].pending) {
val |= (1 << i);
}
}
break;
case 0x300 ... 0x33f: /* NVIC Active */
val = 0;
startvec = offset - 0x300 + NVIC_FIRST_IRQ; /* vector # */
for (i = 0, end = size * 8; i < end && startvec + i < s->num_irq; i++) {
if (s->vectors[startvec + i].active) {
val |= (1 << i);
}
}
break;
case 0x400 ... 0x5ef: /* NVIC Priority */
val = 0;
startvec = offset - 0x400 + NVIC_FIRST_IRQ; /* vector # */
for (i = 0; i < size && startvec + i < s->num_irq; i++) {
val |= s->vectors[startvec + i].prio << (8 * i);
}
break;
case 0xd18 ... 0xd23: /* System Handler Priority. */
val = 0;
for (i = 0; i < size; i++) {
val |= s->vectors[(offset - 0xd14) + i].prio << (i * 8);
}
break;
case 0xfe0 ... 0xfff: /* ID. */
if (offset & 3) {
val = 0;
} else {
val = nvic_id[(offset - 0xfe0) >> 2];
}
break;
default:
if (size == 4) {
val = nvic_readl(s, offset);
} else {
qemu_log_mask(LOG_GUEST_ERROR,
"NVIC: Bad read of size %d at offset 0x%x\n",
size, offset);
val = 0;
}
}
trace_nvic_sysreg_read(addr, val, size);
return val;
}
static void nvic_sysreg_write(void *opaque, hwaddr addr,
uint64_t value, unsigned size)
{
NVICState *s = (NVICState *)opaque;
uint32_t offset = addr;
unsigned i, startvec, end;
unsigned setval = 0;
trace_nvic_sysreg_write(addr, value, size);
switch (offset) {
case 0x100 ... 0x13f: /* NVIC Set enable */
offset += 0x80;
setval = 1;
/* fall through */
case 0x180 ... 0x1bf: /* NVIC Clear enable */
startvec = 8 * (offset - 0x180) + NVIC_FIRST_IRQ;
for (i = 0, end = size * 8; i < end && startvec + i < s->num_irq; i++) {
if (value & (1 << i)) {
s->vectors[startvec + i].enabled = setval;
}
}
nvic_irq_update(s);
return;
case 0x200 ... 0x23f: /* NVIC Set pend */
/* the special logic in armv7m_nvic_set_pending()
* is not needed since IRQs are never escalated
*/
offset += 0x80;
setval = 1;
/* fall through */
case 0x280 ... 0x2bf: /* NVIC Clear pend */
startvec = 8 * (offset - 0x280) + NVIC_FIRST_IRQ; /* vector # */
for (i = 0, end = size * 8; i < end && startvec + i < s->num_irq; i++) {
if (value & (1 << i)) {
s->vectors[startvec + i].pending = setval;
}
}
nvic_irq_update(s);
return;
case 0x300 ... 0x33f: /* NVIC Active */
return; /* R/O */
case 0x400 ... 0x5ef: /* NVIC Priority */
startvec = 8 * (offset - 0x400) + NVIC_FIRST_IRQ; /* vector # */
for (i = 0; i < size && startvec + i < s->num_irq; i++) {
set_prio(s, startvec + i, (value >> (i * 8)) & 0xff);
}
nvic_irq_update(s);
return;
case 0xd18 ... 0xd23: /* System Handler Priority. */
for (i = 0; i < size; i++) {
unsigned hdlidx = (offset - 0xd14) + i;
set_prio(s, hdlidx, (value >> (i * 8)) & 0xff);
}
nvic_irq_update(s);
return;
}
if (size == 4) {
nvic_writel(s, offset, value);
return;
}
qemu_log_mask(LOG_GUEST_ERROR,
"NVIC: Bad write of size %d at offset 0x%x\n", size, offset);
}
static const MemoryRegionOps nvic_sysreg_ops = {
.read = nvic_sysreg_read,
.write = nvic_sysreg_write,
.endianness = DEVICE_NATIVE_ENDIAN,
};
static int nvic_post_load(void *opaque, int version_id)
{
NVICState *s = opaque;
unsigned i;
/* Check for out of range priority settings */
if (s->vectors[ARMV7M_EXCP_RESET].prio != -3 ||
s->vectors[ARMV7M_EXCP_NMI].prio != -2 ||
s->vectors[ARMV7M_EXCP_HARD].prio != -1) {
return 1;
}
for (i = ARMV7M_EXCP_MEM; i < s->num_irq; i++) {
if (s->vectors[i].prio & ~0xff) {
return 1;
}
}
nvic_recompute_state(s);
return 0;
}
static const VMStateDescription vmstate_VecInfo = {
.name = "armv7m_nvic_info",
.version_id = 1,
.minimum_version_id = 1,
.fields = (VMStateField[]) {
VMSTATE_INT16(prio, VecInfo),
VMSTATE_UINT8(enabled, VecInfo),
VMSTATE_UINT8(pending, VecInfo),
VMSTATE_UINT8(active, VecInfo),
VMSTATE_UINT8(level, VecInfo),
VMSTATE_END_OF_LIST()
}
};
static const VMStateDescription vmstate_nvic = {
.name = "armv7m_nvic",
.version_id = 3,
.minimum_version_id = 3,
.post_load = &nvic_post_load,
.fields = (VMStateField[]) {
VMSTATE_STRUCT_ARRAY(vectors, NVICState, NVIC_MAX_VECTORS, 1,
vmstate_VecInfo, VecInfo),
VMSTATE_UINT32(systick.control, NVICState),
VMSTATE_UINT32(systick.reload, NVICState),
VMSTATE_INT64(systick.tick, NVICState),
VMSTATE_TIMER_PTR(systick.timer, NVICState),
VMSTATE_UINT32(prigroup, NVICState),
VMSTATE_END_OF_LIST()
}
};
static Property props_nvic[] = {
/* Number of external IRQ lines (so excluding the 16 internal exceptions) */
DEFINE_PROP_UINT32("num-irq", NVICState, num_irq, 64),
DEFINE_PROP_END_OF_LIST()
};
static void armv7m_nvic_reset(DeviceState *dev)
{
NVICState *s = NVIC(dev);
s->vectors[ARMV7M_EXCP_NMI].enabled = 1;
s->vectors[ARMV7M_EXCP_HARD].enabled = 1;
/* MEM, BUS, and USAGE are enabled through
* the System Handler Control register
*/
s->vectors[ARMV7M_EXCP_SVC].enabled = 1;
s->vectors[ARMV7M_EXCP_DEBUG].enabled = 1;
s->vectors[ARMV7M_EXCP_PENDSV].enabled = 1;
s->vectors[ARMV7M_EXCP_SYSTICK].enabled = 1;
s->vectors[ARMV7M_EXCP_RESET].prio = -3;
s->vectors[ARMV7M_EXCP_NMI].prio = -2;
s->vectors[ARMV7M_EXCP_HARD].prio = -1;
/* Strictly speaking the reset handler should be enabled.
* However, we don't simulate soft resets through the NVIC,
* and the reset vector should never be pended.
* So we leave it disabled to catch logic errors.
*/
s->exception_prio = NVIC_NOEXC_PRIO;
s->vectpending = 0;
systick_reset(s);
}
static void armv7m_nvic_realize(DeviceState *dev, Error **errp)
{
NVICState *s = NVIC(dev);
s->cpu = ARM_CPU(qemu_get_cpu(0));
assert(s->cpu);
if (s->num_irq > NVIC_MAX_IRQ) {
error_setg(errp, "num-irq %d exceeds NVIC maximum", s->num_irq);
return;
}
qdev_init_gpio_in(dev, set_irq_level, s->num_irq);
/* include space for internal exception vectors */
s->num_irq += NVIC_FIRST_IRQ;
/* The NVIC and System Control Space (SCS) starts at 0xe000e000
* and looks like this:
* 0x004 - ICTR
* 0x010 - 0x1c - systick
* 0x100..0x7ec - NVIC
* 0x7f0..0xcff - Reserved
* 0xd00..0xd3c - SCS registers
* 0xd40..0xeff - Reserved or Not implemented
* 0xf00 - STIR
*
* At the moment there is only one thing in the container region,
* but we leave it in place to allow us to pull systick out into
* its own device object later.
*/
memory_region_init(&s->container, OBJECT(s), "nvic", 0x1000);
/* The system register region goes at the bottom of the priority
* stack as it covers the whole page.
*/
memory_region_init_io(&s->sysregmem, OBJECT(s), &nvic_sysreg_ops, s,
"nvic_sysregs", 0x1000);
memory_region_add_subregion(&s->container, 0, &s->sysregmem);
/* Map the whole thing into system memory at the location required
* by the v7M architecture.
*/
memory_region_add_subregion(get_system_memory(), 0xe000e000, &s->container);
s->systick.timer = timer_new_ns(QEMU_CLOCK_VIRTUAL, systick_timer_tick, s);
}
static void armv7m_nvic_instance_init(Object *obj)
{
/* We have a different default value for the num-irq property
* than our superclass. This function runs after qdev init
* has set the defaults from the Property array and before
* any user-specified property setting, so just modify the
* value in the GICState struct.
*/
DeviceState *dev = DEVICE(obj);
NVICState *nvic = NVIC(obj);
SysBusDevice *sbd = SYS_BUS_DEVICE(obj);
sysbus_init_irq(sbd, &nvic->excpout);
qdev_init_gpio_out_named(dev, &nvic->sysresetreq, "SYSRESETREQ", 1);
}
static void armv7m_nvic_class_init(ObjectClass *klass, void *data)
{
DeviceClass *dc = DEVICE_CLASS(klass);
dc->vmsd = &vmstate_nvic;
dc->props = props_nvic;
dc->reset = armv7m_nvic_reset;
dc->realize = armv7m_nvic_realize;
}
static const TypeInfo armv7m_nvic_info = {
.name = TYPE_NVIC,
.parent = TYPE_SYS_BUS_DEVICE,
.instance_init = armv7m_nvic_instance_init,
.instance_size = sizeof(NVICState),
.class_init = armv7m_nvic_class_init,
.class_size = sizeof(SysBusDeviceClass),
};
static void armv7m_nvic_register_types(void)
{
type_register_static(&armv7m_nvic_info);
}
type_init(armv7m_nvic_register_types)