summaryrefslogblamecommitdiffstats
path: root/hw/lsi53c895a.c
blob: 06107b5f765a6f702cb3b2179e0a625fb18cba51 (plain) (tree)
1444
1445
1446
1447
1448
1449
1450
1451
1452
1453
1454
1455
1456
1457
1458
1459
1460
1461
1462
1463
1464
1465
1466
1467
1468
1469
1470
1471
1472
1473
1474
1475
1476
1477
1478
1479
1480
1481
1482
1483
1484
1485
1486
1487
1488
1489
1490
1491
1492
1493
1494
1495
1496
1497
1498
1499
1500
1501
1502
1503
1504
1505
1506
1507
1508
1509
1510
1511
1512
1513
1514
1515
1516
1517
1518
1519
1520
1521
1522
1523
1524
1525
1526
1527
1528
1529
1530
1531
1532
1533
1534
1535
1536
1537
1538
1539
1540
1541
1542
1543
1544
1545
1546
1547
1548
1549
1550
1551
1552
1553
1554
1555
1556
1557
1558
1559
1560
1561
1562
1563
1564
1565
1566
1567
1568
1569
1570
1571
1572
1573
1574
1575
1576
1577
1578
1579
1580
1581
1582
1583
1584
1585
1586
1587
1588
1589
1590
1591
1592
1593
1594
1595
1596
1597
1598
1599
1600
1601
1602
1603
1604
1605
1606
1607
1608
1609
1610
1611
1612
1613
1614
1615
1616
1617
1618
1619
1620
1621
1622
1623
1624
1625
1626
1627
1628
1629
1630
1631
1632
1633
1634
1635
1636
1637
1638
1639
1640
1641
1642
1643
1644
1645
1646
1647
1648
1649
1650
1651
1652
1653
1654
1655
1656
1657
1658
1659
1660
1661
1662
1663
1664
1665
1666
1667
1668
1669
1670
1671
1672
1673
1674
1675
1676
1677
1678
1679
1680
1681
1682
1683
1684
1685
1686
1687
1688
1689
1690
1691
1692
1693
1694
1695
1696
1697
1698
1699
1700
1701
1702
1703
1704
1705
1706
1707
1708
1709
1710
1711
1712
1713
1714
1715
1716
1717
1718
1719
1720
1721
1722
1723
1724
1725
1726
1727
1728
1729
1730
1731
1732
1733
1734
1735
1736
1737
1738
1739
1740
1741
1742
1743
1744
1745
1746
1747
1748
1749
1750
1751
1752
1753
1754
1755
1756
1757
1758
1759
1760
1761
1762
1763
1764
1765
1766
1767
1768
1769
1770
1771




















                                                                      
                                                                           


                                            
                                                                  































































































































                                                              










                                            
 




                             


                                                                         




                                                                 

                                                        

                                                   



                                       






                                                                      



































                   
                 



                   
                 
















                    
                                                 
















































                                                                  
                




















                                                                 
                                            

















































                                                                       
                                           























































                                                                          











                                                      
                                           

                                            
                   
                  
 



                                            

     





                                                        
                     





                                                                  

                                           










































                                                                       
            

                                         
     


































































                                                                       

 
                                                                         

                                                                        

                                     

            
                                               
                                     









                                                            

     










                                                      
                           

     










                                                   
                                                                               
                
                                   
                                                       
                       
                                   








                                                                  


     

                                      
                  



                                                              


                                                  
                               

                                                  









                                       











                                                                 


                                                                       















                                        


     









                                                


                                      
            

                                        


















































                                                                      
     





                                                























                                                                           
















                                              











































                                                                           
                           
                             

                               

                      
                           
                             

                               










































                                                                     




                                                                     

                                              











                                                                     
                                         










                                             
                                     















































                                                                        
                                                                  
                                                  
                                                             



































                                                       
                           






                                                   
                               
























































































































                                                                        
                                                        

                                                                             



















































                                                                              

                        























































































                                                                 



                                                                            





                           





                                                                         






































































                                                                        




                                                         

                           




                                                                         












                                                                   
                                                       







                                       
              

                          
              

                          
              







































































































































































































































































































































                                                                                
                                                    






















































                                                                    
                                                                     






























                                                                       


                                              





                      
/* 
 * QEMU LSI53C895A SCSI Host Bus Adapter emulation
 *
 * Copyright (c) 2006 CodeSourcery.
 * Written by Paul Brook
 *
 * This code is licenced under the LGPL.
 */

/* ??? Need to check if the {read,write}[wl] routines work properly on
   big-endian targets.  */

#include "vl.h"

//#define DEBUG_LSI
//#define DEBUG_LSI_REG

#ifdef DEBUG_LSI
#define DPRINTF(fmt, args...) \
do { printf("lsi_scsi: " fmt , ##args); } while (0)
#define BADF(fmt, args...) \
do { fprintf(stderr, "lsi_scsi: error: " fmt , ##args); exit(1);} while (0)
#else
#define DPRINTF(fmt, args...) do {} while(0)
#define BADF(fmt, args...) \
do { fprintf(stderr, "lsi_scsi: error: " fmt , ##args);} while (0)
#endif

#define LSI_SCNTL0_TRG    0x01
#define LSI_SCNTL0_AAP    0x02
#define LSI_SCNTL0_EPC    0x08
#define LSI_SCNTL0_WATN   0x10
#define LSI_SCNTL0_START  0x20

#define LSI_SCNTL1_SST    0x01
#define LSI_SCNTL1_IARB   0x02
#define LSI_SCNTL1_AESP   0x04
#define LSI_SCNTL1_RST    0x08
#define LSI_SCNTL1_CON    0x10
#define LSI_SCNTL1_DHP    0x20
#define LSI_SCNTL1_ADB    0x40
#define LSI_SCNTL1_EXC    0x80

#define LSI_SCNTL2_WSR    0x01
#define LSI_SCNTL2_VUE0   0x02
#define LSI_SCNTL2_VUE1   0x04
#define LSI_SCNTL2_WSS    0x08
#define LSI_SCNTL2_SLPHBEN 0x10
#define LSI_SCNTL2_SLPMD  0x20
#define LSI_SCNTL2_CHM    0x40
#define LSI_SCNTL2_SDU    0x80

#define LSI_ISTAT0_DIP    0x01
#define LSI_ISTAT0_SIP    0x02
#define LSI_ISTAT0_INTF   0x04
#define LSI_ISTAT0_CON    0x08
#define LSI_ISTAT0_SEM    0x10
#define LSI_ISTAT0_SIGP   0x20
#define LSI_ISTAT0_SRST   0x40
#define LSI_ISTAT0_ABRT   0x80

#define LSI_ISTAT1_SI     0x01
#define LSI_ISTAT1_SRUN   0x02
#define LSI_ISTAT1_FLSH   0x04

#define LSI_SSTAT0_SDP0   0x01
#define LSI_SSTAT0_RST    0x02
#define LSI_SSTAT0_WOA    0x04
#define LSI_SSTAT0_LOA    0x08
#define LSI_SSTAT0_AIP    0x10
#define LSI_SSTAT0_OLF    0x20
#define LSI_SSTAT0_ORF    0x40
#define LSI_SSTAT0_ILF    0x80

#define LSI_SIST0_PAR     0x01
#define LSI_SIST0_RST     0x02
#define LSI_SIST0_UDC     0x04
#define LSI_SIST0_SGE     0x08
#define LSI_SIST0_RSL     0x10
#define LSI_SIST0_SEL     0x20
#define LSI_SIST0_CMP     0x40
#define LSI_SIST0_MA      0x80

#define LSI_SIST1_HTH     0x01
#define LSI_SIST1_GEN     0x02
#define LSI_SIST1_STO     0x04
#define LSI_SIST1_SBMC    0x10

#define LSI_SOCL_IO       0x01
#define LSI_SOCL_CD       0x02
#define LSI_SOCL_MSG      0x04
#define LSI_SOCL_ATN      0x08
#define LSI_SOCL_SEL      0x10
#define LSI_SOCL_BSY      0x20
#define LSI_SOCL_ACK      0x40
#define LSI_SOCL_REQ      0x80

#define LSI_DSTAT_IID     0x01
#define LSI_DSTAT_SIR     0x04
#define LSI_DSTAT_SSI     0x08
#define LSI_DSTAT_ABRT    0x10
#define LSI_DSTAT_BF      0x20
#define LSI_DSTAT_MDPE    0x40
#define LSI_DSTAT_DFE     0x80

#define LSI_DCNTL_COM     0x01
#define LSI_DCNTL_IRQD    0x02
#define LSI_DCNTL_STD     0x04
#define LSI_DCNTL_IRQM    0x08
#define LSI_DCNTL_SSM     0x10
#define LSI_DCNTL_PFEN    0x20
#define LSI_DCNTL_PFF     0x40
#define LSI_DCNTL_CLSE    0x80

#define LSI_DMODE_MAN     0x01
#define LSI_DMODE_BOF     0x02
#define LSI_DMODE_ERMP    0x04
#define LSI_DMODE_ERL     0x08
#define LSI_DMODE_DIOM    0x10
#define LSI_DMODE_SIOM    0x20

#define LSI_CTEST2_DACK   0x01
#define LSI_CTEST2_DREQ   0x02
#define LSI_CTEST2_TEOP   0x04
#define LSI_CTEST2_PCICIE 0x08
#define LSI_CTEST2_CM     0x10
#define LSI_CTEST2_CIO    0x20
#define LSI_CTEST2_SIGP   0x40
#define LSI_CTEST2_DDIR   0x80

#define LSI_CTEST5_BL2    0x04
#define LSI_CTEST5_DDIR   0x08
#define LSI_CTEST5_MASR   0x10
#define LSI_CTEST5_DFSN   0x20
#define LSI_CTEST5_BBCK   0x40
#define LSI_CTEST5_ADCK   0x80

#define LSI_CCNTL0_DILS   0x01
#define LSI_CCNTL0_DISFC  0x10
#define LSI_CCNTL0_ENNDJ  0x20
#define LSI_CCNTL0_PMJCTL 0x40
#define LSI_CCNTL0_ENPMJ  0x80

#define PHASE_DO          0
#define PHASE_DI          1
#define PHASE_CMD         2
#define PHASE_ST          3
#define PHASE_MO          6
#define PHASE_MI          7
#define PHASE_MASK        7

/* The HBA is ID 7, so for simplicitly limit to 7 devices.  */
#define LSI_MAX_DEVS      7

/* Maximum length of MSG IN data.  */
#define LSI_MAX_MSGIN_LEN 8

/* Flag set if this is a tagged command.  */
#define LSI_TAG_VALID     (1 << 16)

typedef struct {
    uint32_t tag;
    uint32_t pending;
    int out;
} lsi_queue;

typedef struct {
    PCIDevice pci_dev;
    int mmio_io_addr;
    int ram_io_addr;
    uint32_t script_ram_base;

    int carry; /* ??? Should this be an a visible register somewhere?  */
    int sense;
    /* Action to take at the end of a MSG IN phase.
       0 = COMMAND, 1 = disconect, 2 = DATA OUT, 3 = DATA IN.  */
    int msg_action;
    int msg_len;
    uint8_t msg[LSI_MAX_MSGIN_LEN];
    /* 0 if SCRIPTS are running or stopped.
     * 1 if a Wait Reselect instruction has been issued.
     * 2 if processing DMA from lsi_execute_script.
     * 3 if a DMA operation is in progress.  */
    int waiting;
    SCSIDevice *scsi_dev[LSI_MAX_DEVS];
    SCSIDevice *current_dev;
    int current_lun;
    /* The tag is a combination of the device ID and the SCSI tag.  */
    uint32_t current_tag;
    uint32_t current_dma_len;
    uint8_t *dma_buf;
    lsi_queue *queue;
    int queue_len;
    int active_commands;

    uint32_t dsa;
    uint32_t temp;
    uint32_t dnad;
    uint32_t dbc;
    uint8_t istat0;
    uint8_t istat1;
    uint8_t dcmd;
    uint8_t dstat;
    uint8_t dien;
    uint8_t sist0;
    uint8_t sist1;
    uint8_t sien0;
    uint8_t sien1;
    uint8_t mbox0;
    uint8_t mbox1;
    uint8_t dfifo;
    uint8_t ctest3;
    uint8_t ctest4;
    uint8_t ctest5;
    uint8_t ccntl0;
    uint8_t ccntl1;
    uint32_t dsp;
    uint32_t dsps;
    uint8_t dmode;
    uint8_t dcntl;
    uint8_t scntl0;
    uint8_t scntl1;
    uint8_t scntl2;
    uint8_t scntl3;
    uint8_t sstat0;
    uint8_t sstat1;
    uint8_t scid;
    uint8_t sxfer;
    uint8_t socl;
    uint8_t sdid;
    uint8_t ssid;
    uint8_t sfbr;
    uint8_t stest1;
    uint8_t stest2;
    uint8_t stest3;
    uint8_t sidl;
    uint8_t stime0;
    uint8_t respid0;
    uint8_t respid1;
    uint32_t mmrs;
    uint32_t mmws;
    uint32_t sfs;
    uint32_t drs;
    uint32_t sbms;
    uint32_t dmbs;
    uint32_t dnad64;
    uint32_t pmjad1;
    uint32_t pmjad2;
    uint32_t rbc;
    uint32_t ua;
    uint32_t ia;
    uint32_t sbc;
    uint32_t csbc;
    uint32_t scratch[18]; /* SCRATCHA-SCRATCHR */

    /* Script ram is stored as 32-bit words in host byteorder.  */
    uint32_t script_ram[2048];
} LSIState;

static void lsi_soft_reset(LSIState *s)
{
    DPRINTF("Reset\n");
    s->carry = 0;

    s->waiting = 0;
    s->dsa = 0;
    s->dnad = 0;
    s->dbc = 0;
    s->temp = 0;
    memset(s->scratch, 0, sizeof(s->scratch));
    s->istat0 = 0;
    s->istat1 = 0;
    s->dcmd = 0;
    s->dstat = 0;
    s->dien = 0;
    s->sist0 = 0;
    s->sist1 = 0;
    s->sien0 = 0;
    s->sien1 = 0;
    s->mbox0 = 0;
    s->mbox1 = 0;
    s->dfifo = 0;
    s->ctest3 = 0;
    s->ctest4 = 0;
    s->ctest5 = 0;
    s->ccntl0 = 0;
    s->ccntl1 = 0;
    s->dsp = 0;
    s->dsps = 0;
    s->dmode = 0;
    s->dcntl = 0;
    s->scntl0 = 0xc0;
    s->scntl1 = 0;
    s->scntl2 = 0;
    s->scntl3 = 0;
    s->sstat0 = 0;
    s->sstat1 = 0;
    s->scid = 7;
    s->sxfer = 0;
    s->socl = 0;
    s->stest1 = 0;
    s->stest2 = 0;
    s->stest3 = 0;
    s->sidl = 0;
    s->stime0 = 0;
    s->respid0 = 0x80;
    s->respid1 = 0;
    s->mmrs = 0;
    s->mmws = 0;
    s->sfs = 0;
    s->drs = 0;
    s->sbms = 0;
    s->dmbs = 0;
    s->dnad64 = 0;
    s->pmjad1 = 0;
    s->pmjad2 = 0;
    s->rbc = 0;
    s->ua = 0;
    s->ia = 0;
    s->sbc = 0;
    s->csbc = 0;
}

static uint8_t lsi_reg_readb(LSIState *s, int offset);
static void lsi_reg_writeb(LSIState *s, int offset, uint8_t val);
static void lsi_execute_script(LSIState *s);

static inline uint32_t read_dword(LSIState *s, uint32_t addr)
{
    uint32_t buf;

    /* Optimize reading from SCRIPTS RAM.  */
    if ((addr & 0xffffe000) == s->script_ram_base) {
        return s->script_ram[(addr & 0x1fff) >> 2];
    }
    cpu_physical_memory_read(addr, (uint8_t *)&buf, 4);
    return cpu_to_le32(buf);
}

static void lsi_stop_script(LSIState *s)
{
    s->istat1 &= ~LSI_ISTAT1_SRUN;
}

static void lsi_update_irq(LSIState *s)
{
    int level;
    static int last_level;

    /* It's unclear whether the DIP/SIP bits should be cleared when the
       Interrupt Status Registers are cleared or when istat0 is read.
       We currently do the formwer, which seems to work.  */
    level = 0;
    if (s->dstat) {
        if (s->dstat & s->dien)
            level = 1;
        s->istat0 |= LSI_ISTAT0_DIP;
    } else {
        s->istat0 &= ~LSI_ISTAT0_DIP;
    }

    if (s->sist0 || s->sist1) {
        if ((s->sist0 & s->sien0) || (s->sist1 & s->sien1))
            level = 1;
        s->istat0 |= LSI_ISTAT0_SIP;
    } else {
        s->istat0 &= ~LSI_ISTAT0_SIP;
    }
    if (s->istat0 & LSI_ISTAT0_INTF)
        level = 1;

    if (level != last_level) {
        DPRINTF("Update IRQ level %d dstat %02x sist %02x%02x\n",
                level, s->dstat, s->sist1, s->sist0);
        last_level = level;
    }
    qemu_set_irq(s->pci_dev.irq[0], level);
}

/* Stop SCRIPTS execution and raise a SCSI interrupt.  */
static void lsi_script_scsi_interrupt(LSIState *s, int stat0, int stat1)
{
    uint32_t mask0;
    uint32_t mask1;

    DPRINTF("SCSI Interrupt 0x%02x%02x prev 0x%02x%02x\n",
            stat1, stat0, s->sist1, s->sist0);
    s->sist0 |= stat0;
    s->sist1 |= stat1;
    /* Stop processor on fatal or unmasked interrupt.  As a special hack
       we don't stop processing when raising STO.  Instead continue
       execution and stop at the next insn that accesses the SCSI bus.  */
    mask0 = s->sien0 | ~(LSI_SIST0_CMP | LSI_SIST0_SEL | LSI_SIST0_RSL);
    mask1 = s->sien1 | ~(LSI_SIST1_GEN | LSI_SIST1_HTH);
    mask1 &= ~LSI_SIST1_STO;
    if (s->sist0 & mask0 || s->sist1 & mask1) {
        lsi_stop_script(s);
    }
    lsi_update_irq(s);
}

/* Stop SCRIPTS execution and raise a DMA interrupt.  */
static void lsi_script_dma_interrupt(LSIState *s, int stat)
{
    DPRINTF("DMA Interrupt 0x%x prev 0x%x\n", stat, s->dstat);
    s->dstat |= stat;
    lsi_update_irq(s);
    lsi_stop_script(s);
}

static inline void lsi_set_phase(LSIState *s, int phase)
{
    s->sstat1 = (s->sstat1 & ~PHASE_MASK) | phase;
}

static void lsi_bad_phase(LSIState *s, int out, int new_phase)
{
    /* Trigger a phase mismatch.  */
    if (s->ccntl0 & LSI_CCNTL0_ENPMJ) {
        if ((s->ccntl0 & LSI_CCNTL0_PMJCTL) || out) {
            s->dsp = s->pmjad1;
        } else {
            s->dsp = s->pmjad2;
        }
        DPRINTF("Data phase mismatch jump to %08x\n", s->dsp);
    } else {
        DPRINTF("Phase mismatch interrupt\n");
        lsi_script_scsi_interrupt(s, LSI_SIST0_MA, 0);
        lsi_stop_script(s);
    }
    lsi_set_phase(s, new_phase);
}


/* Resume SCRIPTS execution after a DMA operation.  */
static void lsi_resume_script(LSIState *s)
{
    if (s->waiting != 2) {
        s->waiting = 0;
        lsi_execute_script(s);
    } else {
        s->waiting = 0;
    }
}

/* Initiate a SCSI layer data transfer.  */
static void lsi_do_dma(LSIState *s, int out)
{
    uint32_t count;
    uint32_t addr;

    if (!s->current_dma_len) {
        /* Wait until data is available.  */
        DPRINTF("DMA no data available\n");
        return;
    }

    count = s->dbc;
    if (count > s->current_dma_len)
        count = s->current_dma_len;
    DPRINTF("DMA addr=0x%08x len=%d\n", s->dnad, count);

    addr = s->dnad;
    s->csbc += count;
    s->dnad += count;
    s->dbc -= count;

    if (s->dma_buf == NULL) {
        s->dma_buf = scsi_get_buf(s->current_dev, s->current_tag);
    }

    /* ??? Set SFBR to first data byte.  */
    if (out) {
        cpu_physical_memory_read(addr, s->dma_buf, count);
    } else {
        cpu_physical_memory_write(addr, s->dma_buf, count);
    }
    s->current_dma_len -= count;
    if (s->current_dma_len == 0) {
        s->dma_buf = NULL;
        if (out) {
            /* Write the data.  */
            scsi_write_data(s->current_dev, s->current_tag);
        } else {
            /* Request any remaining data.  */
            scsi_read_data(s->current_dev, s->current_tag);
        }
    } else {
        s->dma_buf += count;
        lsi_resume_script(s);
    }
}


/* Add a command to the queue.  */
static void lsi_queue_command(LSIState *s)
{
    lsi_queue *p;

    DPRINTF("Queueing tag=0x%x\n", s->current_tag);
    if (s->queue_len == s->active_commands) {
        s->queue_len++;
        s->queue = realloc(s->queue, s->queue_len * sizeof(lsi_queue));
    }
    p = &s->queue[s->active_commands++];
    p->tag = s->current_tag;
    p->pending = 0;
    p->out = (s->sstat1 & PHASE_MASK) == PHASE_DO;
}

/* Queue a byte for a MSG IN phase.  */
static void lsi_add_msg_byte(LSIState *s, uint8_t data)
{
    if (s->msg_len >= LSI_MAX_MSGIN_LEN) {
        BADF("MSG IN data too long\n");
    } else {
        DPRINTF("MSG IN 0x%02x\n", data);
        s->msg[s->msg_len++] = data;
    }
}

/* Perform reselection to continue a command.  */
static void lsi_reselect(LSIState *s, uint32_t tag)
{
    lsi_queue *p;
    int n;
    int id;

    p = NULL;
    for (n = 0; n < s->active_commands; n++) {
        p = &s->queue[n];
        if (p->tag == tag)
            break;
    }
    if (n == s->active_commands) {
        BADF("Reselected non-existant command tag=0x%x\n", tag);
        return;
    }
    id = (tag >> 8) & 0xf;
    s->ssid = id | 0x80;
    DPRINTF("Reselected target %d\n", id);
    s->current_dev = s->scsi_dev[id];
    s->current_tag = tag;
    s->scntl1 |= LSI_SCNTL1_CON;
    lsi_set_phase(s, PHASE_MI);
    s->msg_action = p->out ? 2 : 3;
    s->current_dma_len = p->pending;
    s->dma_buf = NULL;
    lsi_add_msg_byte(s, 0x80);
    if (s->current_tag & LSI_TAG_VALID) {
        lsi_add_msg_byte(s, 0x20);
        lsi_add_msg_byte(s, tag & 0xff);
    }

    s->active_commands--;
    if (n != s->active_commands) {
        s->queue[n] = s->queue[s->active_commands];
    }
}

/* Record that data is available for a queued command.  Returns zero if
   the device was reselected, nonzero if the IO is deferred.  */
static int lsi_queue_tag(LSIState *s, uint32_t tag, uint32_t arg)
{
    lsi_queue *p;
    int i;
    for (i = 0; i < s->active_commands; i++) {
        p = &s->queue[i];
        if (p->tag == tag) {
            if (p->pending) {
                BADF("Multiple IO pending for tag %d\n", tag);
            }
            p->pending = arg;
            if (s->waiting == 1) {
                /* Reselect device.  */
                lsi_reselect(s, tag);
                return 0;
            } else {
               DPRINTF("Queueing IO tag=0x%x\n", tag);
                p->pending = arg;
                return 1;
            }
        }
    }
    BADF("IO with unknown tag %d\n", tag);
    return 1;
}

/* Callback to indicate that the SCSI layer has completed a transfer.  */
static void lsi_command_complete(void *opaque, int reason, uint32_t tag,
                                 uint32_t arg)
{
    LSIState *s = (LSIState *)opaque;
    int out;

    out = (s->sstat1 & PHASE_MASK) == PHASE_DO;
    if (reason == SCSI_REASON_DONE) {
        DPRINTF("Command complete sense=%d\n", (int)arg);
        s->sense = arg;
        if (s->waiting && s->dbc != 0) {
            /* Raise phase mismatch for short transfers.  */
            lsi_bad_phase(s, out, PHASE_ST);
        } else {
            lsi_set_phase(s, PHASE_ST);
        }
        lsi_resume_script(s);
        return;
    }

    if (s->waiting == 1 || tag != s->current_tag) {
        if (lsi_queue_tag(s, tag, arg))
            return;
    }
    DPRINTF("Data ready tag=0x%x len=%d\n", tag, arg);
    s->current_dma_len = arg;
    if (!s->waiting)
        return;
    if (s->waiting == 1 || s->dbc == 0) {
        lsi_resume_script(s);
    } else {
        lsi_do_dma(s, out);
    }
}

static void lsi_do_command(LSIState *s)
{
    uint8_t buf[16];
    int n;

    DPRINTF("Send command len=%d\n", s->dbc);
    if (s->dbc > 16)
        s->dbc = 16;
    cpu_physical_memory_read(s->dnad, buf, s->dbc);
    s->sfbr = buf[0];
    n = scsi_send_command(s->current_dev, s->current_tag, buf, s->current_lun);
    if (n > 0) {
        lsi_set_phase(s, PHASE_DI);
        scsi_read_data(s->current_dev, s->current_tag);
    } else if (n < 0) {
        lsi_set_phase(s, PHASE_DO);
        scsi_write_data(s->current_dev, s->current_tag);
    }
    if (n && s->current_dma_len == 0) {
        /* Command did not complete immediately so disconnect.  */
        lsi_add_msg_byte(s, 2); /* SAVE DATA POINTER */
        lsi_add_msg_byte(s, 4); /* DISCONNECT */
        lsi_set_phase(s, PHASE_MI);
        s->msg_action = 1;
        lsi_queue_command(s);
    }
}

static void lsi_do_status(LSIState *s)
{
    uint8_t sense;
    DPRINTF("Get status len=%d sense=%d\n", s->dbc, s->sense);
    if (s->dbc != 1)
        BADF("Bad Status move\n");
    s->dbc = 1;
    sense = s->sense;
    s->sfbr = sense;
    cpu_physical_memory_write(s->dnad, &sense, 1);
    lsi_set_phase(s, PHASE_MI);
    s->msg_action = 1;
    lsi_add_msg_byte(s, 0); /* COMMAND COMPLETE */
}

static void lsi_disconnect(LSIState *s)
{
    s->scntl1 &= ~LSI_SCNTL1_CON;
    s->sstat1 &= ~PHASE_MASK;
}

static void lsi_do_msgin(LSIState *s)
{
    int len;
    DPRINTF("Message in len=%d/%d\n", s->dbc, s->msg_len);
    s->sfbr = s->msg[0];
    len = s->msg_len;
    if (len > s->dbc)
        len = s->dbc;
    cpu_physical_memory_write(s->dnad, s->msg, len);
    /* Linux drivers rely on the last byte being in the SIDL.  */
    s->sidl = s->msg[len - 1];
    s->msg_len -= len;
    if (s->msg_len) {
        memmove(s->msg, s->msg + len, s->msg_len);
    } else {
        /* ??? Check if ATN (not yet implemented) is asserted and maybe
           switch to PHASE_MO.  */
        switch (s->msg_action) {
        case 0:
            lsi_set_phase(s, PHASE_CMD);
            break;
        case 1:
            lsi_disconnect(s);
            break;
        case 2:
            lsi_set_phase(s, PHASE_DO);
            break;
        case 3:
            lsi_set_phase(s, PHASE_DI);
            break;
        default:
            abort();
        }
    }
}

/* Read the next byte during a MSGOUT phase.  */
static uint8_t lsi_get_msgbyte(LSIState *s)
{
    uint8_t data;
    cpu_physical_memory_read(s->dnad, &data, 1);
    s->dnad++;
    s->dbc--;
    return data;
}

static void lsi_do_msgout(LSIState *s)
{
    uint8_t msg;
    int len;

    DPRINTF("MSG out len=%d\n", s->dbc);
    while (s->dbc) {
        msg = lsi_get_msgbyte(s);
        s->sfbr = msg;

        switch (msg) {
        case 0x00:
            DPRINTF("MSG: Disconnect\n");
            lsi_disconnect(s);
            break;
        case 0x08:
            DPRINTF("MSG: No Operation\n");
            lsi_set_phase(s, PHASE_CMD);
            break;
        case 0x01:
            len = lsi_get_msgbyte(s);
            msg = lsi_get_msgbyte(s);
            DPRINTF("Extended message 0x%x (len %d)\n", msg, len);
            switch (msg) {
            case 1:
                DPRINTF("SDTR (ignored)\n");
                s->dbc -= 2;
                break;
            case 3:
                DPRINTF("WDTR (ignored)\n");
                s->dbc -= 1;
                break;
            default:
                goto bad;
            }
            break;
        case 0x20: /* SIMPLE queue */
            s->current_tag |= lsi_get_msgbyte(s) | LSI_TAG_VALID;
            DPRINTF("SIMPLE queue tag=0x%x\n", s->current_tag & 0xff);
            break;
        case 0x21: /* HEAD of queue */
            BADF("HEAD queue not implemented\n");
            s->current_tag |= lsi_get_msgbyte(s) | LSI_TAG_VALID;
            break;
        case 0x22: /* ORDERED queue */
            BADF("ORDERED queue not implemented\n");
            s->current_tag |= lsi_get_msgbyte(s) | LSI_TAG_VALID;
            break;
        default:
            if ((msg & 0x80) == 0) {
                goto bad;
            }
            s->current_lun = msg & 7;
            DPRINTF("Select LUN %d\n", s->current_lun);
            lsi_set_phase(s, PHASE_CMD);
            break;
        }
    }
    return;
bad:
    BADF("Unimplemented message 0x%02x\n", msg);
    lsi_set_phase(s, PHASE_MI);
    lsi_add_msg_byte(s, 7); /* MESSAGE REJECT */
    s->msg_action = 0;
}

/* Sign extend a 24-bit value.  */
static inline int32_t sxt24(int32_t n)
{
    return (n << 8) >> 8;
}

static void lsi_memcpy(LSIState *s, uint32_t dest, uint32_t src, int count)
{
    int n;
    uint8_t buf[TARGET_PAGE_SIZE];

    DPRINTF("memcpy dest 0x%08x src 0x%08x count %d\n", dest, src, count);
    while (count) {
        n = (count > TARGET_PAGE_SIZE) ? TARGET_PAGE_SIZE : count;
        cpu_physical_memory_read(src, buf, n);
        cpu_physical_memory_write(dest, buf, n);
        src += n;
        dest += n;
        count -= n;
    }
}

static void lsi_wait_reselect(LSIState *s)
{
    int i;
    DPRINTF("Wait Reselect\n");
    if (s->current_dma_len)
        BADF("Reselect with pending DMA\n");
    for (i = 0; i < s->active_commands; i++) {
        if (s->queue[i].pending) {
            lsi_reselect(s, s->queue[i].tag);
            break;
        }
    }
    if (s->current_dma_len == 0) {
        s->waiting = 1;
    }
}

static void lsi_execute_script(LSIState *s)
{
    uint32_t insn;
    uint32_t addr;
    int opcode;

    s->istat1 |= LSI_ISTAT1_SRUN;
again:
    insn = read_dword(s, s->dsp);
    addr = read_dword(s, s->dsp + 4);
    DPRINTF("SCRIPTS dsp=%08x opcode %08x arg %08x\n", s->dsp, insn, addr);
    s->dsps = addr;
    s->dcmd = insn >> 24;
    s->dsp += 8;
    switch (insn >> 30) {
    case 0: /* Block move.  */
        if (s->sist1 & LSI_SIST1_STO) {
            DPRINTF("Delayed select timeout\n");
            lsi_stop_script(s);
            break;
        }
        s->dbc = insn & 0xffffff;
        s->rbc = s->dbc;
        if (insn & (1 << 29)) {
            /* Indirect addressing.  */
            addr = read_dword(s, addr);
        } else if (insn & (1 << 28)) {
            uint32_t buf[2];
            int32_t offset;
            /* Table indirect addressing.  */
            offset = sxt24(addr);
            cpu_physical_memory_read(s->dsa + offset, (uint8_t *)buf, 8);
            s->dbc = cpu_to_le32(buf[0]);
            addr = cpu_to_le32(buf[1]);
        }
        if ((s->sstat1 & PHASE_MASK) != ((insn >> 24) & 7)) {
            DPRINTF("Wrong phase got %d expected %d\n",
                    s->sstat1 & PHASE_MASK, (insn >> 24) & 7);
            lsi_script_scsi_interrupt(s, LSI_SIST0_MA, 0);
            break;
        }
        s->dnad = addr;
        switch (s->sstat1 & 0x7) {
        case PHASE_DO:
            s->waiting = 2;
            lsi_do_dma(s, 1);
            if (s->waiting)
                s->waiting = 3;
            break;
        case PHASE_DI:
            s->waiting = 2;
            lsi_do_dma(s, 0);
            if (s->waiting)
                s->waiting = 3;
            break;
        case PHASE_CMD:
            lsi_do_command(s);
            break;
        case PHASE_ST:
            lsi_do_status(s);
            break;
        case PHASE_MO:
            lsi_do_msgout(s);
            break;
        case PHASE_MI:
            lsi_do_msgin(s);
            break;
        default:
            BADF("Unimplemented phase %d\n", s->sstat1 & PHASE_MASK);
            exit(1);
        }
        s->dfifo = s->dbc & 0xff;
        s->ctest5 = (s->ctest5 & 0xfc) | ((s->dbc >> 8) & 3);
        s->sbc = s->dbc;
        s->rbc -= s->dbc;
        s->ua = addr + s->dbc;
        /* ??? Set ESA.  */
        s->ia = s->dsp - 8;
        break;

    case 1: /* IO or Read/Write instruction.  */
        opcode = (insn >> 27) & 7;
        if (opcode < 5) {
            uint32_t id;

            if (insn & (1 << 25)) {
                id = read_dword(s, s->dsa + sxt24(insn));
            } else {
                id = addr;
            }
            id = (id >> 16) & 0xf;
            if (insn & (1 << 26)) {
                addr = s->dsp + sxt24(addr);
            }
            s->dnad = addr;
            switch (opcode) {
            case 0: /* Select */
                s->sdid = id;
                if (s->current_dma_len && (s->ssid & 0xf) == id) {
                    DPRINTF("Already reselected by target %d\n", id);
                    break;
                }
                s->sstat0 |= LSI_SSTAT0_WOA;
                s->scntl1 &= ~LSI_SCNTL1_IARB;
                if (id >= LSI_MAX_DEVS || !s->scsi_dev[id]) {
                    DPRINTF("Selected absent target %d\n", id);
                    lsi_script_scsi_interrupt(s, 0, LSI_SIST1_STO);
                    lsi_disconnect(s);
                    break;
                }
                DPRINTF("Selected target %d%s\n",
                        id, insn & (1 << 3) ? " ATN" : "");
                /* ??? Linux drivers compain when this is set.  Maybe
                   it only applies in low-level mode (unimplemented).
                lsi_script_scsi_interrupt(s, LSI_SIST0_CMP, 0); */
                s->current_dev = s->scsi_dev[id];
                s->current_tag = id << 8;
                s->scntl1 |= LSI_SCNTL1_CON;
                if (insn & (1 << 3)) {
                    s->socl |= LSI_SOCL_ATN;
                }
                lsi_set_phase(s, PHASE_MO);
                break;
            case 1: /* Disconnect */
                DPRINTF("Wait Disconect\n");
                s->scntl1 &= ~LSI_SCNTL1_CON;
                break;
            case 2: /* Wait Reselect */
                lsi_wait_reselect(s);
                break;
            case 3: /* Set */
                DPRINTF("Set%s%s%s%s\n",
                        insn & (1 << 3) ? " ATN" : "",
                        insn & (1 << 6) ? " ACK" : "",
                        insn & (1 << 9) ? " TM" : "",
                        insn & (1 << 10) ? " CC" : "");
                if (insn & (1 << 3)) {
                    s->socl |= LSI_SOCL_ATN;
                    lsi_set_phase(s, PHASE_MO);
                }
                if (insn & (1 << 9)) {
                    BADF("Target mode not implemented\n");
                    exit(1);
                }
                if (insn & (1 << 10))
                    s->carry = 1;
                break;
            case 4: /* Clear */
                DPRINTF("Clear%s%s%s%s\n",
                        insn & (1 << 3) ? " ATN" : "",
                        insn & (1 << 6) ? " ACK" : "",
                        insn & (1 << 9) ? " TM" : "",
                        insn & (1 << 10) ? " CC" : "");
                if (insn & (1 << 3)) {
                    s->socl &= ~LSI_SOCL_ATN;
                }
                if (insn & (1 << 10))
                    s->carry = 0;
                break;
            }
        } else {
            uint8_t op0;
            uint8_t op1;
            uint8_t data8;
            int reg;
            int operator;
#ifdef DEBUG_LSI
            static const char *opcode_names[3] =
                {"Write", "Read", "Read-Modify-Write"};
            static const char *operator_names[8] =
                {"MOV", "SHL", "OR", "XOR", "AND", "SHR", "ADD", "ADC"};
#endif

            reg = ((insn >> 16) & 0x7f) | (insn & 0x80);
            data8 = (insn >> 8) & 0xff;
            opcode = (insn >> 27) & 7;
            operator = (insn >> 24) & 7;
            DPRINTF("%s reg 0x%x %s data8=0x%02x sfbr=0x%02x%s\n",
                    opcode_names[opcode - 5], reg,
                    operator_names[operator], data8, s->sfbr,
                    (insn & (1 << 23)) ? " SFBR" : "");
            op0 = op1 = 0;
            switch (opcode) {
            case 5: /* From SFBR */
                op0 = s->sfbr;
                op1 = data8;
                break;
            case 6: /* To SFBR */
                if (operator)
                    op0 = lsi_reg_readb(s, reg);
                op1 = data8;
                break;
            case 7: /* Read-modify-write */
                if (operator)
                    op0 = lsi_reg_readb(s, reg);
                if (insn & (1 << 23)) {
                    op1 = s->sfbr;
                } else {
                    op1 = data8;
                }
                break;
            }

            switch (operator) {
            case 0: /* move */
                op0 = op1;
                break;
            case 1: /* Shift left */
                op1 = op0 >> 7;
                op0 = (op0 << 1) | s->carry;
                s->carry = op1;
                break;
            case 2: /* OR */
                op0 |= op1;
                break;
            case 3: /* XOR */
                op0 ^= op1;
                break;
            case 4: /* AND */
                op0 &= op1;
                break;
            case 5: /* SHR */
                op1 = op0 & 1;
                op0 = (op0 >> 1) | (s->carry << 7);
                s->carry = op1;
                break;
            case 6: /* ADD */
                op0 += op1;
                s->carry = op0 < op1;
                break;
            case 7: /* ADC */
                op0 += op1 + s->carry;
                if (s->carry)
                    s->carry = op0 <= op1;
                else
                    s->carry = op0 < op1;
                break;
            }

            switch (opcode) {
            case 5: /* From SFBR */
            case 7: /* Read-modify-write */
                lsi_reg_writeb(s, reg, op0);
                break;
            case 6: /* To SFBR */
                s->sfbr = op0;
                break;
            }
        }
        break;

    case 2: /* Transfer Control.  */
        {
            int cond;
            int jmp;

            if ((insn & 0x002e0000) == 0) {
                DPRINTF("NOP\n");
                break;
            }
            if (s->sist1 & LSI_SIST1_STO) {
                DPRINTF("Delayed select timeout\n");
                lsi_stop_script(s);
                break;
            }
            cond = jmp = (insn & (1 << 19)) != 0;
            if (cond == jmp && (insn & (1 << 21))) {
                DPRINTF("Compare carry %d\n", s->carry == jmp);
                cond = s->carry != 0;
            }
            if (cond == jmp && (insn & (1 << 17))) {
                DPRINTF("Compare phase %d %c= %d\n",
                        (s->sstat1 & PHASE_MASK),
                        jmp ? '=' : '!',
                        ((insn >> 24) & 7));
                cond = (s->sstat1 & PHASE_MASK) == ((insn >> 24) & 7);
            }
            if (cond == jmp && (insn & (1 << 18))) {
                uint8_t mask;

                mask = (~insn >> 8) & 0xff;
                DPRINTF("Compare data 0x%x & 0x%x %c= 0x%x\n",
                        s->sfbr, mask, jmp ? '=' : '!', insn & mask);
                cond = (s->sfbr & mask) == (insn & mask);
            }
            if (cond == jmp) {
                if (insn & (1 << 23)) {
                    /* Relative address.  */
                    addr = s->dsp + sxt24(addr);
                }
                switch ((insn >> 27) & 7) {
                case 0: /* Jump */
                    DPRINTF("Jump to 0x%08x\n", addr);
                    s->dsp = addr;
                    break;
                case 1: /* Call */
                    DPRINTF("Call 0x%08x\n", addr);
                    s->temp = s->dsp;
                    s->dsp = addr;
                    break;
                case 2: /* Return */
                    DPRINTF("Return to 0x%08x\n", s->temp);
                    s->dsp = s->temp;
                    break;
                case 3: /* Interrupt */
                    DPRINTF("Interrupt 0x%08x\n", s->dsps);
                    if ((insn & (1 << 20)) != 0) {
                        s->istat0 |= LSI_ISTAT0_INTF;
                        lsi_update_irq(s);
                    } else {
                        lsi_script_dma_interrupt(s, LSI_DSTAT_SIR);
                    }
                    break;
                default:
                    DPRINTF("Illegal transfer control\n");
                    lsi_script_dma_interrupt(s, LSI_DSTAT_IID);
                    break;
                }
            } else {
                DPRINTF("Control condition failed\n");
            }
        }
        break;

    case 3:
        if ((insn & (1 << 29)) == 0) {
            /* Memory move.  */
            uint32_t dest;
            /* ??? The docs imply the destination address is loaded into
               the TEMP register.  However the Linux drivers rely on
               the value being presrved.  */
            dest = read_dword(s, s->dsp);
            s->dsp += 4;
            lsi_memcpy(s, dest, addr, insn & 0xffffff);
        } else {
            uint8_t data[7];
            int reg;
            int n;
            int i;

            if (insn & (1 << 28)) {
                addr = s->dsa + sxt24(addr);
            }
            n = (insn & 7);
            reg = (insn >> 16) & 0xff;
            if (insn & (1 << 24)) {
                cpu_physical_memory_read(addr, data, n);
                DPRINTF("Load reg 0x%x size %d addr 0x%08x = %08x\n", reg, n,
                        addr, *(int *)data);
                for (i = 0; i < n; i++) {
                    lsi_reg_writeb(s, reg + i, data[i]);
                }
            } else {
                DPRINTF("Store reg 0x%x size %d addr 0x%08x\n", reg, n, addr);
                for (i = 0; i < n; i++) {
                    data[i] = lsi_reg_readb(s, reg + i);
                }
                cpu_physical_memory_write(addr, data, n);
            }
        }
    }
    /* ??? Need to avoid infinite loops.  */
    if (s->istat1 & LSI_ISTAT1_SRUN && !s->waiting) {
        if (s->dcntl & LSI_DCNTL_SSM) {
            lsi_script_dma_interrupt(s, LSI_DSTAT_SSI);
        } else {
            goto again;
        }
    }
    DPRINTF("SCRIPTS execution stopped\n");
}

static uint8_t lsi_reg_readb(LSIState *s, int offset)
{
    uint8_t tmp;
#define CASE_GET_REG32(name, addr) \
    case addr: return s->name & 0xff; \
    case addr + 1: return (s->name >> 8) & 0xff; \
    case addr + 2: return (s->name >> 16) & 0xff; \
    case addr + 3: return (s->name >> 24) & 0xff;

#ifdef DEBUG_LSI_REG
    DPRINTF("Read reg %x\n", offset);
#endif
    switch (offset) {
    case 0x00: /* SCNTL0 */
        return s->scntl0;
    case 0x01: /* SCNTL1 */
        return s->scntl1;
    case 0x02: /* SCNTL2 */
        return s->scntl2;
    case 0x03: /* SCNTL3 */
        return s->scntl3;
    case 0x04: /* SCID */
        return s->scid;
    case 0x05: /* SXFER */
        return s->sxfer;
    case 0x06: /* SDID */
        return s->sdid;
    case 0x07: /* GPREG0 */
        return 0x7f;
    case 0xa: /* SSID */
        return s->ssid;
    case 0xb: /* SBCL */
        /* ??? This is not correct. However it's (hopefully) only
           used for diagnostics, so should be ok.  */
        return 0;
    case 0xc: /* DSTAT */
        tmp = s->dstat | 0x80;
        if ((s->istat0 & LSI_ISTAT0_INTF) == 0)
            s->dstat = 0;
        lsi_update_irq(s);
        return tmp;
    case 0x0d: /* SSTAT0 */
        return s->sstat0;
    case 0x0e: /* SSTAT1 */
        return s->sstat1;
    case 0x0f: /* SSTAT2 */
        return s->scntl1 & LSI_SCNTL1_CON ? 0 : 2;
    CASE_GET_REG32(dsa, 0x10)
    case 0x14: /* ISTAT0 */
        return s->istat0;
    case 0x16: /* MBOX0 */
        return s->mbox0;
    case 0x17: /* MBOX1 */
        return s->mbox1;
    case 0x18: /* CTEST0 */
        return 0xff;
    case 0x19: /* CTEST1 */
        return 0;
    case 0x1a: /* CTEST2 */
        tmp = LSI_CTEST2_DACK | LSI_CTEST2_CM;
        if (s->istat0 & LSI_ISTAT0_SIGP) {
            s->istat0 &= ~LSI_ISTAT0_SIGP;
            tmp |= LSI_CTEST2_SIGP;
        }
        return tmp;
    case 0x1b: /* CTEST3 */
        return s->ctest3;
    CASE_GET_REG32(temp, 0x1c)
    case 0x20: /* DFIFO */
        return 0;
    case 0x21: /* CTEST4 */
        return s->ctest4;
    case 0x22: /* CTEST5 */
        return s->ctest5;
    case 0x24: /* DBC[0:7] */
        return s->dbc & 0xff;
    case 0x25: /* DBC[8:15] */
        return (s->dbc >> 8) & 0xff;
    case 0x26: /* DBC[16->23] */
        return (s->dbc >> 16) & 0xff;
    case 0x27: /* DCMD */
        return s->dcmd;
    CASE_GET_REG32(dsp, 0x2c)
    CASE_GET_REG32(dsps, 0x30)
    CASE_GET_REG32(scratch[0], 0x34)
    case 0x38: /* DMODE */
        return s->dmode;
    case 0x39: /* DIEN */
        return s->dien;
    case 0x3b: /* DCNTL */
        return s->dcntl;
    case 0x40: /* SIEN0 */
        return s->sien0;
    case 0x41: /* SIEN1 */
        return s->sien1;
    case 0x42: /* SIST0 */
        tmp = s->sist0;
        s->sist0 = 0;
        lsi_update_irq(s);
        return tmp;
    case 0x43: /* SIST1 */
        tmp = s->sist1;
        s->sist1 = 0;
        lsi_update_irq(s);
        return tmp;
    case 0x47: /* GPCNTL0 */
        return 0x0f;
    case 0x48: /* STIME0 */
        return s->stime0;
    case 0x4a: /* RESPID0 */
        return s->respid0;
    case 0x4b: /* RESPID1 */
        return s->respid1;
    case 0x4d: /* STEST1 */
        return s->stest1;
    case 0x4e: /* STEST2 */
        return s->stest2;
    case 0x4f: /* STEST3 */
        return s->stest3;
    case 0x50: /* SIDL */
        /* This is needed by the linux drivers.  We currently only update it
           during the MSG IN phase.  */
        return s->sidl;
    case 0x52: /* STEST4 */
        return 0xe0;
    case 0x56: /* CCNTL0 */
        return s->ccntl0;
    case 0x57: /* CCNTL1 */
        return s->ccntl1;
    case 0x58: /* SBDL */
        /* Some drivers peek at the data bus during the MSG IN phase.  */
        if ((s->sstat1 & PHASE_MASK) == PHASE_MI)
            return s->msg[0];
        return 0;
    case 0x59: /* SBDL high */
        return 0;
    CASE_GET_REG32(mmrs, 0xa0)
    CASE_GET_REG32(mmws, 0xa4)
    CASE_GET_REG32(sfs, 0xa8)
    CASE_GET_REG32(drs, 0xac)
    CASE_GET_REG32(sbms, 0xb0)
    CASE_GET_REG32(dmbs, 0xb4)
    CASE_GET_REG32(dnad64, 0xb8)
    CASE_GET_REG32(pmjad1, 0xc0)
    CASE_GET_REG32(pmjad2, 0xc4)
    CASE_GET_REG32(rbc, 0xc8)
    CASE_GET_REG32(ua, 0xcc)
    CASE_GET_REG32(ia, 0xd4)
    CASE_GET_REG32(sbc, 0xd8)
    CASE_GET_REG32(csbc, 0xdc)
    }
    if (offset >= 0x5c && offset < 0xa0) {
        int n;
        int shift;
        n = (offset - 0x58) >> 2;
        shift = (offset & 3) * 8;
        return (s->scratch[n] >> shift) & 0xff;
    }
    BADF("readb 0x%x\n", offset);
    exit(1);
#undef CASE_GET_REG32
}

static void lsi_reg_writeb(LSIState *s, int offset, uint8_t val)
{
#define CASE_SET_REG32(name, addr) \
    case addr    : s->name &= 0xffffff00; s->name |= val;       break; \
    case addr + 1: s->name &= 0xffff00ff; s->name |= val << 8;  break; \
    case addr + 2: s->name &= 0xff00ffff; s->name |= val << 16; break; \
    case addr + 3: s->name &= 0x00ffffff; s->name |= val << 24; break;

#ifdef DEBUG_LSI_REG
    DPRINTF("Write reg %x = %02x\n", offset, val);
#endif
    switch (offset) {
    case 0x00: /* SCNTL0 */
        s->scntl0 = val;
        if (val & LSI_SCNTL0_START) {
            BADF("Start sequence not implemented\n");
        }
        break;
    case 0x01: /* SCNTL1 */
        s->scntl1 = val & ~LSI_SCNTL1_SST;
        if (val & LSI_SCNTL1_IARB) {
            BADF("Immediate Arbritration not implemented\n");
        }
        if (val & LSI_SCNTL1_RST) {
            s->sstat0 |= LSI_SSTAT0_RST;
            lsi_script_scsi_interrupt(s, LSI_SIST0_RST, 0);
        } else {
            s->sstat0 &= ~LSI_SSTAT0_RST;
        }
        break;
    case 0x02: /* SCNTL2 */
        val &= ~(LSI_SCNTL2_WSR | LSI_SCNTL2_WSS);
        s->scntl3 = val;
        break;
    case 0x03: /* SCNTL3 */
        s->scntl3 = val;
        break;
    case 0x04: /* SCID */
        s->scid = val;
        break;
    case 0x05: /* SXFER */
        s->sxfer = val;
        break;
    case 0x06: /* SDID */
        if ((val & 0xf) != (s->ssid & 0xf))
            BADF("Destination ID does not match SSID\n");
        s->sdid = val & 0xf;
        break;
    case 0x07: /* GPREG0 */
        break;
    case 0x08: /* SFBR */
        /* The CPU is not allowed to write to this register.  However the
           SCRIPTS register move instructions are.  */
        s->sfbr = val;
        break;
    case 0x0c: case 0x0d: case 0x0e: case 0x0f:
        /* Linux writes to these readonly registers on startup.  */
        return;
    CASE_SET_REG32(dsa, 0x10)
    case 0x14: /* ISTAT0 */
        s->istat0 = (s->istat0 & 0x0f) | (val & 0xf0);
        if (val & LSI_ISTAT0_ABRT) {
            lsi_script_dma_interrupt(s, LSI_DSTAT_ABRT);
        }
        if (val & LSI_ISTAT0_INTF) {
            s->istat0 &= ~LSI_ISTAT0_INTF;
            lsi_update_irq(s);
        }
        if (s->waiting == 1 && val & LSI_ISTAT0_SIGP) {
            DPRINTF("Woken by SIGP\n");
            s->waiting = 0;
            s->dsp = s->dnad;
            lsi_execute_script(s);
        }
        if (val & LSI_ISTAT0_SRST) {
            lsi_soft_reset(s);
        }
        break;
    case 0x16: /* MBOX0 */
        s->mbox0 = val;
        break;
    case 0x17: /* MBOX1 */
        s->mbox1 = val;
        break;
    case 0x1b: /* CTEST3 */
        s->ctest3 = val & 0x0f;
        break;
    CASE_SET_REG32(temp, 0x1c)
    case 0x21: /* CTEST4 */
        if (val & 7) {
           BADF("Unimplemented CTEST4-FBL 0x%x\n", val);
        }
        s->ctest4 = val;
        break;
    case 0x22: /* CTEST5 */
        if (val & (LSI_CTEST5_ADCK | LSI_CTEST5_BBCK)) {
            BADF("CTEST5 DMA increment not implemented\n");
        }
        s->ctest5 = val;
        break;
    case 0x2c: /* DSPS[0:7] */
        s->dsp &= 0xffffff00;
        s->dsp |= val;
        break;
    case 0x2d: /* DSPS[8:15] */
        s->dsp &= 0xffff00ff;
        s->dsp |= val << 8;
        break;
    case 0x2e: /* DSPS[16:23] */
        s->dsp &= 0xff00ffff;
        s->dsp |= val << 16;
        break;
    case 0x2f: /* DSPS[14:31] */
        s->dsp &= 0x00ffffff;
        s->dsp |= val << 24;
        if ((s->dmode & LSI_DMODE_MAN) == 0
            && (s->istat1 & LSI_ISTAT1_SRUN) == 0)
            lsi_execute_script(s);
        break;
    CASE_SET_REG32(dsps, 0x30)
    CASE_SET_REG32(scratch[0], 0x34)
    case 0x38: /* DMODE */
        if (val & (LSI_DMODE_SIOM | LSI_DMODE_DIOM)) {
            BADF("IO mappings not implemented\n");
        }
        s->dmode = val;
        break;
    case 0x39: /* DIEN */
        s->dien = val;
        lsi_update_irq(s);
        break;
    case 0x3b: /* DCNTL */
        s->dcntl = val & ~(LSI_DCNTL_PFF | LSI_DCNTL_STD);
        if ((val & LSI_DCNTL_STD) && (s->istat1 & LSI_ISTAT1_SRUN) == 0)
            lsi_execute_script(s);
        break;
    case 0x40: /* SIEN0 */
        s->sien0 = val;
        lsi_update_irq(s);
        break;
    case 0x41: /* SIEN1 */
        s->sien1 = val;
        lsi_update_irq(s);
        break;
    case 0x47: /* GPCNTL0 */
        break;
    case 0x48: /* STIME0 */
        s->stime0 = val;
        break;
    case 0x49: /* STIME1 */
        if (val & 0xf) {
            DPRINTF("General purpose timer not implemented\n");
            /* ??? Raising the interrupt immediately seems to be sufficient
               to keep the FreeBSD driver happy.  */
            lsi_script_scsi_interrupt(s, 0, LSI_SIST1_GEN);
        }
        break;
    case 0x4a: /* RESPID0 */
        s->respid0 = val;
        break;
    case 0x4b: /* RESPID1 */
        s->respid1 = val;
        break;
    case 0x4d: /* STEST1 */
        s->stest1 = val;
        break;
    case 0x4e: /* STEST2 */
        if (val & 1) {
            BADF("Low level mode not implemented\n");
        }
        s->stest2 = val;
        break;
    case 0x4f: /* STEST3 */
        if (val & 0x41) {
            BADF("SCSI FIFO test mode not implemented\n");
        }
        s->stest3 = val;
        break;
    case 0x56: /* CCNTL0 */
        s->ccntl0 = val;
        break;
    case 0x57: /* CCNTL1 */
        s->ccntl1 = val;
        break;
    CASE_SET_REG32(mmrs, 0xa0)
    CASE_SET_REG32(mmws, 0xa4)
    CASE_SET_REG32(sfs, 0xa8)
    CASE_SET_REG32(drs, 0xac)
    CASE_SET_REG32(sbms, 0xb0)
    CASE_SET_REG32(dmbs, 0xb4)
    CASE_SET_REG32(dnad64, 0xb8)
    CASE_SET_REG32(pmjad1, 0xc0)
    CASE_SET_REG32(pmjad2, 0xc4)
    CASE_SET_REG32(rbc, 0xc8)
    CASE_SET_REG32(ua, 0xcc)
    CASE_SET_REG32(ia, 0xd4)
    CASE_SET_REG32(sbc, 0xd8)
    CASE_SET_REG32(csbc, 0xdc)
    default:
        if (offset >= 0x5c && offset < 0xa0) {
            int n;
            int shift;
            n = (offset - 0x58) >> 2;
            shift = (offset & 3) * 8;
            s->scratch[n] &= ~(0xff << shift);
            s->scratch[n] |= (val & 0xff) << shift;
        } else {
            BADF("Unhandled writeb 0x%x = 0x%x\n", offset, val);
        }
    }
#undef CASE_SET_REG32
}

static void lsi_mmio_writeb(void *opaque, target_phys_addr_t addr, uint32_t val)
{
    LSIState *s = (LSIState *)opaque;

    lsi_reg_writeb(s, addr & 0xff, val);
}

static void lsi_mmio_writew(void *opaque, target_phys_addr_t addr, uint32_t val)
{
    LSIState *s = (LSIState *)opaque;

    addr &= 0xff;
    lsi_reg_writeb(s, addr, val & 0xff);
    lsi_reg_writeb(s, addr + 1, (val >> 8) & 0xff);
}

static void lsi_mmio_writel(void *opaque, target_phys_addr_t addr, uint32_t val)
{
    LSIState *s = (LSIState *)opaque;

    addr &= 0xff;
    lsi_reg_writeb(s, addr, val & 0xff);
    lsi_reg_writeb(s, addr + 1, (val >> 8) & 0xff);
    lsi_reg_writeb(s, addr + 2, (val >> 16) & 0xff);
    lsi_reg_writeb(s, addr + 3, (val >> 24) & 0xff);
}

static uint32_t lsi_mmio_readb(void *opaque, target_phys_addr_t addr)
{
    LSIState *s = (LSIState *)opaque;

    return lsi_reg_readb(s, addr & 0xff);
}

static uint32_t lsi_mmio_readw(void *opaque, target_phys_addr_t addr)
{
    LSIState *s = (LSIState *)opaque;
    uint32_t val;

    addr &= 0xff;
    val = lsi_reg_readb(s, addr);
    val |= lsi_reg_readb(s, addr + 1) << 8;
    return val;
}

static uint32_t lsi_mmio_readl(void *opaque, target_phys_addr_t addr)
{
    LSIState *s = (LSIState *)opaque;
    uint32_t val;
    addr &= 0xff;
    val = lsi_reg_readb(s, addr);
    val |= lsi_reg_readb(s, addr + 1) << 8;
    val |= lsi_reg_readb(s, addr + 2) << 16;
    val |= lsi_reg_readb(s, addr + 3) << 24;
    return val;
}

static CPUReadMemoryFunc *lsi_mmio_readfn[3] = {
    lsi_mmio_readb,
    lsi_mmio_readw,
    lsi_mmio_readl,
};

static CPUWriteMemoryFunc *lsi_mmio_writefn[3] = {
    lsi_mmio_writeb,
    lsi_mmio_writew,
    lsi_mmio_writel,
};

static void lsi_ram_writeb(void *opaque, target_phys_addr_t addr, uint32_t val)
{
    LSIState *s = (LSIState *)opaque;
    uint32_t newval;
    int shift;

    addr &= 0x1fff;
    newval = s->script_ram[addr >> 2];
    shift = (addr & 3) * 8;
    newval &= ~(0xff << shift);
    newval |= val << shift;
    s->script_ram[addr >> 2] = newval;
}

static void lsi_ram_writew(void *opaque, target_phys_addr_t addr, uint32_t val)
{
    LSIState *s = (LSIState *)opaque;
    uint32_t newval;

    addr &= 0x1fff;
    newval = s->script_ram[addr >> 2];
    if (addr & 2) {
        newval = (newval & 0xffff) | (val << 16);
    } else {
        newval = (newval & 0xffff0000) | val;
    }
    s->script_ram[addr >> 2] = newval;
}


static void lsi_ram_writel(void *opaque, target_phys_addr_t addr, uint32_t val)
{
    LSIState *s = (LSIState *)opaque;

    addr &= 0x1fff;
    s->script_ram[addr >> 2] = val;
}

static uint32_t lsi_ram_readb(void *opaque, target_phys_addr_t addr)
{
    LSIState *s = (LSIState *)opaque;
    uint32_t val;

    addr &= 0x1fff;
    val = s->script_ram[addr >> 2];
    val >>= (addr & 3) * 8;
    return val & 0xff;
}

static uint32_t lsi_ram_readw(void *opaque, target_phys_addr_t addr)
{
    LSIState *s = (LSIState *)opaque;
    uint32_t val;

    addr &= 0x1fff;
    val = s->script_ram[addr >> 2];
    if (addr & 2)
        val >>= 16;
    return le16_to_cpu(val);
}

static uint32_t lsi_ram_readl(void *opaque, target_phys_addr_t addr)
{
    LSIState *s = (LSIState *)opaque;

    addr &= 0x1fff;
    return le32_to_cpu(s->script_ram[addr >> 2]);
}

static CPUReadMemoryFunc *lsi_ram_readfn[3] = {
    lsi_ram_readb,
    lsi_ram_readw,
    lsi_ram_readl,
};

static CPUWriteMemoryFunc *lsi_ram_writefn[3] = {
    lsi_ram_writeb,
    lsi_ram_writew,
    lsi_ram_writel,
};

static uint32_t lsi_io_readb(void *opaque, uint32_t addr)
{
    LSIState *s = (LSIState *)opaque;
    return lsi_reg_readb(s, addr & 0xff);
}

static uint32_t lsi_io_readw(void *opaque, uint32_t addr)
{
    LSIState *s = (LSIState *)opaque;
    uint32_t val;
    addr &= 0xff;
    val = lsi_reg_readb(s, addr);
    val |= lsi_reg_readb(s, addr + 1) << 8;
    return val;
}

static uint32_t lsi_io_readl(void *opaque, uint32_t addr)
{
    LSIState *s = (LSIState *)opaque;
    uint32_t val;
    addr &= 0xff;
    val = lsi_reg_readb(s, addr);
    val |= lsi_reg_readb(s, addr + 1) << 8;
    val |= lsi_reg_readb(s, addr + 2) << 16;
    val |= lsi_reg_readb(s, addr + 3) << 24;
    return val;
}

static void lsi_io_writeb(void *opaque, uint32_t addr, uint32_t val)
{
    LSIState *s = (LSIState *)opaque;
    lsi_reg_writeb(s, addr & 0xff, val);
}

static void lsi_io_writew(void *opaque, uint32_t addr, uint32_t val)
{
    LSIState *s = (LSIState *)opaque;
    addr &= 0xff;
    lsi_reg_writeb(s, addr, val & 0xff);
    lsi_reg_writeb(s, addr + 1, (val >> 8) & 0xff);
}

static void lsi_io_writel(void *opaque, uint32_t addr, uint32_t val)
{
    LSIState *s = (LSIState *)opaque;
    addr &= 0xff;
    lsi_reg_writeb(s, addr, val & 0xff);
    lsi_reg_writeb(s, addr + 1, (val >> 8) & 0xff);
    lsi_reg_writeb(s, addr + 2, (val >> 16) & 0xff);
    lsi_reg_writeb(s, addr + 3, (val >> 24) & 0xff);
}

static void lsi_io_mapfunc(PCIDevice *pci_dev, int region_num, 
                           uint32_t addr, uint32_t size, int type)
{
    LSIState *s = (LSIState *)pci_dev;

    DPRINTF("Mapping IO at %08x\n", addr);

    register_ioport_write(addr, 256, 1, lsi_io_writeb, s);
    register_ioport_read(addr, 256, 1, lsi_io_readb, s);
    register_ioport_write(addr, 256, 2, lsi_io_writew, s);
    register_ioport_read(addr, 256, 2, lsi_io_readw, s);
    register_ioport_write(addr, 256, 4, lsi_io_writel, s);
    register_ioport_read(addr, 256, 4, lsi_io_readl, s);
}

static void lsi_ram_mapfunc(PCIDevice *pci_dev, int region_num, 
                            uint32_t addr, uint32_t size, int type)
{
    LSIState *s = (LSIState *)pci_dev;

    DPRINTF("Mapping ram at %08x\n", addr);
    s->script_ram_base = addr;
    cpu_register_physical_memory(addr + 0, 0x2000, s->ram_io_addr);
}

static void lsi_mmio_mapfunc(PCIDevice *pci_dev, int region_num, 
                             uint32_t addr, uint32_t size, int type)
{
    LSIState *s = (LSIState *)pci_dev;

    DPRINTF("Mapping registers at %08x\n", addr);
    cpu_register_physical_memory(addr + 0, 0x400, s->mmio_io_addr);
}

void lsi_scsi_attach(void *opaque, BlockDriverState *bd, int id)
{
    LSIState *s = (LSIState *)opaque;

    if (id < 0) {
        for (id = 0; id < LSI_MAX_DEVS; id++) {
            if (s->scsi_dev[id] == NULL)
                break;
        }
    }
    if (id >= LSI_MAX_DEVS) {
        BADF("Bad Device ID %d\n", id);
        return;
    }
    if (s->scsi_dev[id]) {
        DPRINTF("Destroying device %d\n", id);
        scsi_disk_destroy(s->scsi_dev[id]);
    }
    DPRINTF("Attaching block device %d\n", id);
    s->scsi_dev[id] = scsi_disk_init(bd, 1, lsi_command_complete, s);
}

void *lsi_scsi_init(PCIBus *bus, int devfn)
{
    LSIState *s;

    s = (LSIState *)pci_register_device(bus, "LSI53C895A SCSI HBA",
                                        sizeof(*s), devfn, NULL, NULL);
    if (s == NULL) {
        fprintf(stderr, "lsi-scsi: Failed to register PCI device\n");
        return NULL;
    }

    s->pci_dev.config[0x00] = 0x00;
    s->pci_dev.config[0x01] = 0x10;
    s->pci_dev.config[0x02] = 0x12;
    s->pci_dev.config[0x03] = 0x00;
    s->pci_dev.config[0x0b] = 0x01;
    s->pci_dev.config[0x3d] = 0x01; /* interrupt pin 1 */

    s->mmio_io_addr = cpu_register_io_memory(0, lsi_mmio_readfn,
                                             lsi_mmio_writefn, s);
    s->ram_io_addr = cpu_register_io_memory(0, lsi_ram_readfn,
                                            lsi_ram_writefn, s);

    pci_register_io_region((struct PCIDevice *)s, 0, 256,
                           PCI_ADDRESS_SPACE_IO, lsi_io_mapfunc);
    pci_register_io_region((struct PCIDevice *)s, 1, 0x400,
                           PCI_ADDRESS_SPACE_MEM, lsi_mmio_mapfunc);
    pci_register_io_region((struct PCIDevice *)s, 2, 0x2000,
                           PCI_ADDRESS_SPACE_MEM, lsi_ram_mapfunc);
    s->queue = qemu_malloc(sizeof(lsi_queue));
    s->queue_len = 1;
    s->active_commands = 0;

    lsi_soft_reset(s);

    return s;
}