/*
* ASPEED Hash and Crypto Engine
*
* Copyright (C) 2021 IBM Corp.
*
* Joel Stanley <joel@jms.id.au>
*
* SPDX-License-Identifier: GPL-2.0-or-later
*/
#include "qemu/osdep.h"
#include "qemu/log.h"
#include "qemu/error-report.h"
#include "hw/misc/aspeed_hace.h"
#include "qapi/error.h"
#include "migration/vmstate.h"
#include "crypto/hash.h"
#include "hw/qdev-properties.h"
#include "hw/irq.h"
#define R_CRYPT_CMD (0x10 / 4)
#define R_STATUS (0x1c / 4)
#define HASH_IRQ BIT(9)
#define CRYPT_IRQ BIT(12)
#define TAG_IRQ BIT(15)
#define R_HASH_SRC (0x20 / 4)
#define R_HASH_DEST (0x24 / 4)
#define R_HASH_KEY_BUFF (0x28 / 4)
#define R_HASH_SRC_LEN (0x2c / 4)
#define R_HASH_CMD (0x30 / 4)
/* Hash algorithm selection */
#define HASH_ALGO_MASK (BIT(4) | BIT(5) | BIT(6))
#define HASH_ALGO_MD5 0
#define HASH_ALGO_SHA1 BIT(5)
#define HASH_ALGO_SHA224 BIT(6)
#define HASH_ALGO_SHA256 (BIT(4) | BIT(6))
#define HASH_ALGO_SHA512_SERIES (BIT(5) | BIT(6))
/* SHA512 algorithm selection */
#define SHA512_HASH_ALGO_MASK (BIT(10) | BIT(11) | BIT(12))
#define HASH_ALGO_SHA512_SHA512 0
#define HASH_ALGO_SHA512_SHA384 BIT(10)
#define HASH_ALGO_SHA512_SHA256 BIT(11)
#define HASH_ALGO_SHA512_SHA224 (BIT(10) | BIT(11))
/* HMAC modes */
#define HASH_HMAC_MASK (BIT(7) | BIT(8))
#define HASH_DIGEST 0
#define HASH_DIGEST_HMAC BIT(7)
#define HASH_DIGEST_ACCUM BIT(8)
#define HASH_HMAC_KEY (BIT(7) | BIT(8))
/* Cascaded operation modes */
#define HASH_ONLY 0
#define HASH_ONLY2 BIT(0)
#define HASH_CRYPT_THEN_HASH BIT(1)
#define HASH_HASH_THEN_CRYPT (BIT(0) | BIT(1))
/* Other cmd bits */
#define HASH_IRQ_EN BIT(9)
#define HASH_SG_EN BIT(18)
/* Scatter-gather data list */
#define SG_LIST_LEN_SIZE 4
#define SG_LIST_LEN_MASK 0x0FFFFFFF
#define SG_LIST_LEN_LAST BIT(31)
#define SG_LIST_ADDR_SIZE 4
#define SG_LIST_ADDR_MASK 0x7FFFFFFF
#define SG_LIST_ENTRY_SIZE (SG_LIST_LEN_SIZE + SG_LIST_ADDR_SIZE)
static const struct {
uint32_t mask;
QCryptoHashAlgorithm algo;
} hash_algo_map[] = {
{ HASH_ALGO_MD5, QCRYPTO_HASH_ALG_MD5 },
{ HASH_ALGO_SHA1, QCRYPTO_HASH_ALG_SHA1 },
{ HASH_ALGO_SHA224, QCRYPTO_HASH_ALG_SHA224 },
{ HASH_ALGO_SHA256, QCRYPTO_HASH_ALG_SHA256 },
{ HASH_ALGO_SHA512_SERIES | HASH_ALGO_SHA512_SHA512, QCRYPTO_HASH_ALG_SHA512 },
{ HASH_ALGO_SHA512_SERIES | HASH_ALGO_SHA512_SHA384, QCRYPTO_HASH_ALG_SHA384 },
{ HASH_ALGO_SHA512_SERIES | HASH_ALGO_SHA512_SHA256, QCRYPTO_HASH_ALG_SHA256 },
};
static int hash_algo_lookup(uint32_t reg)
{
int i;
reg &= HASH_ALGO_MASK | SHA512_HASH_ALGO_MASK;
for (i = 0; i < ARRAY_SIZE(hash_algo_map); i++) {
if (reg == hash_algo_map[i].mask) {
return hash_algo_map[i].algo;
}
}
return -1;
}
/**
* Check whether the request contains padding message.
*
* @param s aspeed hace state object
* @param iov iov of current request
* @param req_len length of the current request
* @param total_msg_len length of all acc_mode requests(excluding padding msg)
* @param pad_offset start offset of padding message
*/
static bool has_padding(AspeedHACEState *s, struct iovec *iov,
hwaddr req_len, uint32_t *total_msg_len,
uint32_t *pad_offset)
{
*total_msg_len = (uint32_t)(ldq_be_p(iov->iov_base + req_len - 8) / 8);
/*
* SG_LIST_LEN_LAST asserted in the request length doesn't mean it is the
* last request. The last request should contain padding message.
* We check whether message contains padding by
* 1. Get total message length. If the current message contains
* padding, the last 8 bytes are total message length.
* 2. Check whether the total message length is valid.
* If it is valid, the value should less than or equal to
* total_req_len.
* 3. Current request len - padding_size to get padding offset.
* The padding message's first byte should be 0x80
*/
if (*total_msg_len <= s->total_req_len) {
uint32_t padding_size = s->total_req_len - *total_msg_len;
uint8_t *padding = iov->iov_base;
*pad_offset = req_len - padding_size;
if (padding[*pad_offset] == 0x80) {
return true;
}
}
return false;
}
static int reconstruct_iov(AspeedHACEState *s, struct iovec *iov, int id,
uint32_t *pad_offset)
{
int i, iov_count;
if (*pad_offset != 0) {
s->iov_cache[s->iov_count].iov_base = iov[id].iov_base;
s->iov_cache[s->iov_count].iov_len = *pad_offset;
++s->iov_count;
}
for (i = 0; i < s->iov_count; i++) {
iov[i].iov_base = s->iov_cache[i].iov_base;
iov[i].iov_len = s->iov_cache[i].iov_len;
}
iov_count = s->iov_count;
s->iov_count = 0;
s->total_req_len = 0;
return iov_count;
}
/**
* Generate iov for accumulative mode.
*
* @param s aspeed hace state object
* @param iov iov of the current request
* @param id index of the current iov
* @param req_len length of the current request
*
* @return count of iov
*/
static int gen_acc_mode_iov(AspeedHACEState *s, struct iovec *iov, int id,
hwaddr *req_len)
{
uint32_t pad_offset;
uint32_t total_msg_len;
s->total_req_len += *req_len;
if (has_padding(s, &iov[id], *req_len, &total_msg_len, &pad_offset)) {
if (s->iov_count) {
return reconstruct_iov(s, iov, id, &pad_offset);
}
*req_len -= s->total_req_len - total_msg_len;
s->total_req_len = 0;
iov[id].iov_len = *req_len;
} else {
s->iov_cache[s->iov_count].iov_base = iov->iov_base;
s->iov_cache[s->iov_count].iov_len = *req_len;
++s->iov_count;
}
return id + 1;
}
static void do_hash_operation(AspeedHACEState *s, int algo, bool sg_mode,
bool acc_mode)
{
struct iovec iov[ASPEED_HACE_MAX_SG];
g_autofree uint8_t *digest_buf;
size_t digest_len = 0;
int niov = 0;
int i;
if (sg_mode) {
uint32_t len = 0;
for (i = 0; !(len & SG_LIST_LEN_LAST); i++) {
uint32_t addr, src;
hwaddr plen;
if (i == ASPEED_HACE_MAX_SG) {
qemu_log_mask(LOG_GUEST_ERROR,
"aspeed_hace: guest failed to set end of sg list marker\n");
break;
}
src = s->regs[R_HASH_SRC] + (i * SG_LIST_ENTRY_SIZE);
len = address_space_ldl_le(&s->dram_as, src,
MEMTXATTRS_UNSPECIFIED, NULL);
addr = address_space_ldl_le(&s->dram_as, src + SG_LIST_LEN_SIZE,
MEMTXATTRS_UNSPECIFIED, NULL);
addr &= SG_LIST_ADDR_MASK;
plen = len & SG_LIST_LEN_MASK;
iov[i].iov_base = address_space_map(&s->dram_as, addr, &plen, false,
MEMTXATTRS_UNSPECIFIED);
if (acc_mode) {
niov = gen_acc_mode_iov(s, iov, i, &plen);
} else {
iov[i].iov_len = plen;
}
}
} else {
hwaddr len = s->regs[R_HASH_SRC_LEN];
iov[0].iov_len = len;
iov[0].iov_base = address_space_map(&s->dram_as, s->regs[R_HASH_SRC],
&len, false,
MEMTXATTRS_UNSPECIFIED);
i = 1;
if (s->iov_count) {
/*
* In aspeed sdk kernel driver, sg_mode is disabled in hash_final().
* Thus if we received a request with sg_mode disabled, it is
* required to check whether cache is empty. If no, we should
* combine cached iov and the current iov.
*/
uint32_t total_msg_len;
uint32_t pad_offset;
s->total_req_len += len;
if (has_padding(s, iov, len, &total_msg_len, &pad_offset)) {
niov = reconstruct_iov(s, iov, 0, &pad_offset);
}
}
}
if (niov) {
i = niov;
}
if (qcrypto_hash_bytesv(algo, iov, i, &digest_buf, &digest_len, NULL) < 0) {
qemu_log_mask(LOG_GUEST_ERROR, "%s: qcrypto failed\n", __func__);
return;
}
if (address_space_write(&s->dram_as, s->regs[R_HASH_DEST],
MEMTXATTRS_UNSPECIFIED,
digest_buf, digest_len)) {
qemu_log_mask(LOG_GUEST_ERROR,
"aspeed_hace: address space write failed\n");
}
for (; i > 0; i--) {
address_space_unmap(&s->dram_as, iov[i - 1].iov_base,
iov[i - 1].iov_len, false,
iov[i - 1].iov_len);
}
/*
* Set status bits to indicate completion. Testing shows hardware sets
* these irrespective of HASH_IRQ_EN.
*/
s->regs[R_STATUS] |= HASH_IRQ;
}
static uint64_t aspeed_hace_read(void *opaque, hwaddr addr, unsigned int size)
{
AspeedHACEState *s = ASPEED_HACE(opaque);
addr >>= 2;
if (addr >= ASPEED_HACE_NR_REGS) {
qemu_log_mask(LOG_GUEST_ERROR,
"%s: Out-of-bounds read at offset 0x%" HWADDR_PRIx "\n",
__func__, addr << 2);
return 0;
}
return s->regs[addr];
}
static void aspeed_hace_write(void *opaque, hwaddr addr, uint64_t data,
unsigned int size)
{
AspeedHACEState *s = ASPEED_HACE(opaque);
AspeedHACEClass *ahc = ASPEED_HACE_GET_CLASS(s);
addr >>= 2;
if (addr >= ASPEED_HACE_NR_REGS) {
qemu_log_mask(LOG_GUEST_ERROR,
"%s: Out-of-bounds write at offset 0x%" HWADDR_PRIx "\n",
__func__, addr << 2);
return;
}
switch (addr) {
case R_STATUS:
if (data & HASH_IRQ) {
data &= ~HASH_IRQ;
if (s->regs[addr] & HASH_IRQ) {
qemu_irq_lower(s->irq);
}
}
break;
case R_HASH_SRC:
data &= ahc->src_mask;
break;
case R_HASH_DEST:
data &= ahc->dest_mask;
break;
case R_HASH_KEY_BUFF:
data &= ahc->key_mask;
break;
case R_HASH_SRC_LEN:
data &= 0x0FFFFFFF;
break;
case R_HASH_CMD: {
int algo;
data &= ahc->hash_mask;
if ((data & HASH_DIGEST_HMAC)) {
qemu_log_mask(LOG_UNIMP,
"%s: HMAC mode not implemented\n",
__func__);
}
if (data & BIT(1)) {
qemu_log_mask(LOG_UNIMP,
"%s: Cascaded mode not implemented\n",
__func__);
}
algo = hash_algo_lookup(data);
if (algo < 0) {
qemu_log_mask(LOG_GUEST_ERROR,
"%s: Invalid hash algorithm selection 0x%"PRIx64"\n",
__func__, data & ahc->hash_mask);
break;
}
do_hash_operation(s, algo, data & HASH_SG_EN,
((data & HASH_HMAC_MASK) == HASH_DIGEST_ACCUM));
if (data & HASH_IRQ_EN) {
qemu_irq_raise(s->irq);
}
break;
}
case R_CRYPT_CMD:
qemu_log_mask(LOG_UNIMP, "%s: Crypt commands not implemented\n",
__func__);
break;
default:
break;
}
s->regs[addr] = data;
}
static const MemoryRegionOps aspeed_hace_ops = {
.read = aspeed_hace_read,
.write = aspeed_hace_write,
.endianness = DEVICE_LITTLE_ENDIAN,
.valid = {
.min_access_size = 1,
.max_access_size = 4,
},
};
static void aspeed_hace_reset(DeviceState *dev)
{
struct AspeedHACEState *s = ASPEED_HACE(dev);
memset(s->regs, 0, sizeof(s->regs));
s->iov_count = 0;
s->total_req_len = 0;
}
static void aspeed_hace_realize(DeviceState *dev, Error **errp)
{
AspeedHACEState *s = ASPEED_HACE(dev);
SysBusDevice *sbd = SYS_BUS_DEVICE(dev);
sysbus_init_irq(sbd, &s->irq);
memory_region_init_io(&s->iomem, OBJECT(s), &aspeed_hace_ops, s,
TYPE_ASPEED_HACE, 0x1000);
if (!s->dram_mr) {
error_setg(errp, TYPE_ASPEED_HACE ": 'dram' link not set");
return;
}
address_space_init(&s->dram_as, s->dram_mr, "dram");
sysbus_init_mmio(sbd, &s->iomem);
}
static Property aspeed_hace_properties[] = {
DEFINE_PROP_LINK("dram", AspeedHACEState, dram_mr,
TYPE_MEMORY_REGION, MemoryRegion *),
DEFINE_PROP_END_OF_LIST(),
};
static const VMStateDescription vmstate_aspeed_hace = {
.name = TYPE_ASPEED_HACE,
.version_id = 1,
.minimum_version_id = 1,
.fields = (VMStateField[]) {
VMSTATE_UINT32_ARRAY(regs, AspeedHACEState, ASPEED_HACE_NR_REGS),
VMSTATE_UINT32(total_req_len, AspeedHACEState),
VMSTATE_UINT32(iov_count, AspeedHACEState),
VMSTATE_END_OF_LIST(),
}
};
static void aspeed_hace_class_init(ObjectClass *klass, void *data)
{
DeviceClass *dc = DEVICE_CLASS(klass);
dc->realize = aspeed_hace_realize;
dc->reset = aspeed_hace_reset;
device_class_set_props(dc, aspeed_hace_properties);
dc->vmsd = &vmstate_aspeed_hace;
}
static const TypeInfo aspeed_hace_info = {
.name = TYPE_ASPEED_HACE,
.parent = TYPE_SYS_BUS_DEVICE,
.instance_size = sizeof(AspeedHACEState),
.class_init = aspeed_hace_class_init,
.class_size = sizeof(AspeedHACEClass)
};
static void aspeed_ast2400_hace_class_init(ObjectClass *klass, void *data)
{
DeviceClass *dc = DEVICE_CLASS(klass);
AspeedHACEClass *ahc = ASPEED_HACE_CLASS(klass);
dc->desc = "AST2400 Hash and Crypto Engine";
ahc->src_mask = 0x0FFFFFFF;
ahc->dest_mask = 0x0FFFFFF8;
ahc->key_mask = 0x0FFFFFC0;
ahc->hash_mask = 0x000003ff; /* No SG or SHA512 modes */
}
static const TypeInfo aspeed_ast2400_hace_info = {
.name = TYPE_ASPEED_AST2400_HACE,
.parent = TYPE_ASPEED_HACE,
.class_init = aspeed_ast2400_hace_class_init,
};
static void aspeed_ast2500_hace_class_init(ObjectClass *klass, void *data)
{
DeviceClass *dc = DEVICE_CLASS(klass);
AspeedHACEClass *ahc = ASPEED_HACE_CLASS(klass);
dc->desc = "AST2500 Hash and Crypto Engine";
ahc->src_mask = 0x3fffffff;
ahc->dest_mask = 0x3ffffff8;
ahc->key_mask = 0x3FFFFFC0;
ahc->hash_mask = 0x000003ff; /* No SG or SHA512 modes */
}
static const TypeInfo aspeed_ast2500_hace_info = {
.name = TYPE_ASPEED_AST2500_HACE,
.parent = TYPE_ASPEED_HACE,
.class_init = aspeed_ast2500_hace_class_init,
};
static void aspeed_ast2600_hace_class_init(ObjectClass *klass, void *data)
{
DeviceClass *dc = DEVICE_CLASS(klass);
AspeedHACEClass *ahc = ASPEED_HACE_CLASS(klass);
dc->desc = "AST2600 Hash and Crypto Engine";
ahc->src_mask = 0x7FFFFFFF;
ahc->dest_mask = 0x7FFFFFF8;
ahc->key_mask = 0x7FFFFFF8;
ahc->hash_mask = 0x00147FFF;
}
static const TypeInfo aspeed_ast2600_hace_info = {
.name = TYPE_ASPEED_AST2600_HACE,
.parent = TYPE_ASPEED_HACE,
.class_init = aspeed_ast2600_hace_class_init,
};
static void aspeed_ast1030_hace_class_init(ObjectClass *klass, void *data)
{
DeviceClass *dc = DEVICE_CLASS(klass);
AspeedHACEClass *ahc = ASPEED_HACE_CLASS(klass);
dc->desc = "AST1030 Hash and Crypto Engine";
ahc->src_mask = 0x7FFFFFFF;
ahc->dest_mask = 0x7FFFFFF8;
ahc->key_mask = 0x7FFFFFF8;
ahc->hash_mask = 0x00147FFF;
}
static const TypeInfo aspeed_ast1030_hace_info = {
.name = TYPE_ASPEED_AST1030_HACE,
.parent = TYPE_ASPEED_HACE,
.class_init = aspeed_ast1030_hace_class_init,
};
static void aspeed_hace_register_types(void)
{
type_register_static(&aspeed_ast2400_hace_info);
type_register_static(&aspeed_ast2500_hace_info);
type_register_static(&aspeed_ast2600_hace_info);
type_register_static(&aspeed_ast1030_hace_info);
type_register_static(&aspeed_hace_info);
}
type_init(aspeed_hace_register_types);