/*
* ARM AHB5 TrustZone Memory Protection Controller emulation
*
* Copyright (c) 2018 Linaro Limited
* Written by Peter Maydell
*
* This program is free software; you can redistribute it and/or modify
* it under the terms of the GNU General Public License version 2 or
* (at your option) any later version.
*/
#include "qemu/osdep.h"
#include "qemu/log.h"
#include "qemu/module.h"
#include "qapi/error.h"
#include "trace.h"
#include "hw/sysbus.h"
#include "migration/vmstate.h"
#include "hw/registerfields.h"
#include "hw/irq.h"
#include "hw/misc/tz-mpc.h"
#include "hw/qdev-properties.h"
/* Our IOMMU has two IOMMU indexes, one for secure transactions and one for
* non-secure transactions.
*/
enum {
IOMMU_IDX_S,
IOMMU_IDX_NS,
IOMMU_NUM_INDEXES,
};
/* Config registers */
REG32(CTRL, 0x00)
FIELD(CTRL, SEC_RESP, 4, 1)
FIELD(CTRL, AUTOINC, 8, 1)
FIELD(CTRL, LOCKDOWN, 31, 1)
REG32(BLK_MAX, 0x10)
REG32(BLK_CFG, 0x14)
REG32(BLK_IDX, 0x18)
REG32(BLK_LUT, 0x1c)
REG32(INT_STAT, 0x20)
FIELD(INT_STAT, IRQ, 0, 1)
REG32(INT_CLEAR, 0x24)
FIELD(INT_CLEAR, IRQ, 0, 1)
REG32(INT_EN, 0x28)
FIELD(INT_EN, IRQ, 0, 1)
REG32(INT_INFO1, 0x2c)
REG32(INT_INFO2, 0x30)
FIELD(INT_INFO2, HMASTER, 0, 16)
FIELD(INT_INFO2, HNONSEC, 16, 1)
FIELD(INT_INFO2, CFG_NS, 17, 1)
REG32(INT_SET, 0x34)
FIELD(INT_SET, IRQ, 0, 1)
REG32(PIDR4, 0xfd0)
REG32(PIDR5, 0xfd4)
REG32(PIDR6, 0xfd8)
REG32(PIDR7, 0xfdc)
REG32(PIDR0, 0xfe0)
REG32(PIDR1, 0xfe4)
REG32(PIDR2, 0xfe8)
REG32(PIDR3, 0xfec)
REG32(CIDR0, 0xff0)
REG32(CIDR1, 0xff4)
REG32(CIDR2, 0xff8)
REG32(CIDR3, 0xffc)
static const uint8_t tz_mpc_idregs[] = {
0x04, 0x00, 0x00, 0x00,
0x60, 0xb8, 0x1b, 0x00,
0x0d, 0xf0, 0x05, 0xb1,
};
static void tz_mpc_irq_update(TZMPC *s)
{
qemu_set_irq(s->irq, s->int_stat && s->int_en);
}
static void tz_mpc_iommu_notify(TZMPC *s, uint32_t lutidx,
uint32_t oldlut, uint32_t newlut)
{
/* Called when the LUT word at lutidx has changed from oldlut to newlut;
* must call the IOMMU notifiers for the changed blocks.
*/
IOMMUTLBEntry entry = {
.addr_mask = s->blocksize - 1,
};
hwaddr addr = lutidx * s->blocksize * 32;
int i;
for (i = 0; i < 32; i++, addr += s->blocksize) {
bool block_is_ns;
if (!((oldlut ^ newlut) & (1 << i))) {
continue;
}
/* This changes the mappings for both the S and the NS space,
* so we need to do four notifies: an UNMAP then a MAP for each.
*/
block_is_ns = newlut & (1 << i);
trace_tz_mpc_iommu_notify(addr);
entry.iova = addr;
entry.translated_addr = addr;
entry.perm = IOMMU_NONE;
memory_region_notify_iommu(&s->upstream, IOMMU_IDX_S, entry);
memory_region_notify_iommu(&s->upstream, IOMMU_IDX_NS, entry);
entry.perm = IOMMU_RW;
if (block_is_ns) {
entry.target_as = &s->blocked_io_as;
} else {
entry.target_as = &s->downstream_as;
}
memory_region_notify_iommu(&s->upstream, IOMMU_IDX_S, entry);
if (block_is_ns) {
entry.target_as = &s->downstream_as;
} else {
entry.target_as = &s->blocked_io_as;
}
memory_region_notify_iommu(&s->upstream, IOMMU_IDX_NS, entry);
}
}
static void tz_mpc_autoinc_idx(TZMPC *s, unsigned access_size)
{
/* Auto-increment BLK_IDX if necessary */
if (access_size == 4 && (s->ctrl & R_CTRL_AUTOINC_MASK)) {
s->blk_idx++;
s->blk_idx %= s->blk_max;
}
}
static MemTxResult tz_mpc_reg_read(void *opaque, hwaddr addr,
uint64_t *pdata,
unsigned size, MemTxAttrs attrs)
{
TZMPC *s = TZ_MPC(opaque);
uint64_t r;
uint32_t offset = addr & ~0x3;
if (!attrs.secure && offset < A_PIDR4) {
/* NS accesses can only see the ID registers */
qemu_log_mask(LOG_GUEST_ERROR,
"TZ MPC register read: NS access to offset 0x%x\n",
offset);
r = 0;
goto read_out;
}
switch (offset) {
case A_CTRL:
r = s->ctrl;
break;
case A_BLK_MAX:
r = s->blk_max - 1;
break;
case A_BLK_CFG:
/* We are never in "init in progress state", so this just indicates
* the block size. s->blocksize == (1 << BLK_CFG + 5), so
* BLK_CFG == ctz32(s->blocksize) - 5
*/
r = ctz32(s->blocksize) - 5;
break;
case A_BLK_IDX:
r = s->blk_idx;
break;
case A_BLK_LUT:
r = s->blk_lut[s->blk_idx];
tz_mpc_autoinc_idx(s, size);
break;
case A_INT_STAT:
r = s->int_stat;
break;
case A_INT_EN:
r = s->int_en;
break;
case A_INT_INFO1:
r = s->int_info1;
break;
case A_INT_INFO2:
r = s->int_info2;
break;
case A_PIDR4:
case A_PIDR5:
case A_PIDR6:
case A_PIDR7:
case A_PIDR0:
case A_PIDR1:
case A_PIDR2:
case A_PIDR3:
case A_CIDR0:
case A_CIDR1:
case A_CIDR2:
case A_CIDR3:
r = tz_mpc_idregs[(offset - A_PIDR4) / 4];
break;
case A_INT_CLEAR:
case A_INT_SET:
qemu_log_mask(LOG_GUEST_ERROR,
"TZ MPC register read: write-only offset 0x%x\n",
offset);
r = 0;
break;
default:
qemu_log_mask(LOG_GUEST_ERROR,
"TZ MPC register read: bad offset 0x%x\n", offset);
r = 0;
break;
}
if (size != 4) {
/* None of our registers are read-sensitive (except BLK_LUT,
* which can special case the "size not 4" case), so just
* pull the right bytes out of the word read result.
*/
r = extract32(r, (addr & 3) * 8, size * 8);
}
read_out:
trace_tz_mpc_reg_read(addr, r, size);
*pdata = r;
return MEMTX_OK;
}
static MemTxResult tz_mpc_reg_write(void *opaque, hwaddr addr,
uint64_t value,
unsigned size, MemTxAttrs attrs)
{
TZMPC *s = TZ_MPC(opaque);
uint32_t offset = addr & ~0x3;
trace_tz_mpc_reg_write(addr, value, size);
if (!attrs.secure && offset < A_PIDR4) {
/* NS accesses can only see the ID registers */
qemu_log_mask(LOG_GUEST_ERROR,
"TZ MPC register write: NS access to offset 0x%x\n",
offset);
return MEMTX_OK;
}
if (size != 4) {
/* Expand the byte or halfword write to a full word size.
* In most cases we can do this with zeroes; the exceptions
* are CTRL, BLK_IDX and BLK_LUT.
*/
uint32_t oldval;
switch (offset) {
case A_CTRL:
oldval = s->ctrl;
break;
case A_BLK_IDX:
oldval = s->blk_idx;
break;
case A_BLK_LUT:
oldval = s->blk_lut[s->blk_idx];
break;
default:
oldval = 0;
break;
}
value = deposit32(oldval, (addr & 3) * 8, size * 8, value);
}
if ((s->ctrl & R_CTRL_LOCKDOWN_MASK) &&
(offset == A_CTRL || offset == A_BLK_LUT || offset == A_INT_EN)) {
/* Lockdown mode makes these three registers read-only, and
* the only way out of it is to reset the device.
*/
qemu_log_mask(LOG_GUEST_ERROR, "TZ MPC register write to offset 0x%x "
"while MPC is in lockdown mode\n", offset);
return MEMTX_OK;
}
switch (offset) {
case A_CTRL:
/* We don't implement the 'data gating' feature so all other bits
* are reserved and we make them RAZ/WI.
*/
s->ctrl = value & (R_CTRL_SEC_RESP_MASK |
R_CTRL_AUTOINC_MASK |
R_CTRL_LOCKDOWN_MASK);
break;
case A_BLK_IDX:
s->blk_idx = value % s->blk_max;
break;
case A_BLK_LUT:
tz_mpc_iommu_notify(s, s->blk_idx, s->blk_lut[s->blk_idx], value);
s->blk_lut[s->blk_idx] = value;
tz_mpc_autoinc_idx(s, size);
break;
case A_INT_CLEAR:
if (value & R_INT_CLEAR_IRQ_MASK) {
s->int_stat = 0;
tz_mpc_irq_update(s);
}
break;
case A_INT_EN:
s->int_en = value & R_INT_EN_IRQ_MASK;
tz_mpc_irq_update(s);
break;
case A_INT_SET:
if (value & R_INT_SET_IRQ_MASK) {
s->int_stat = R_INT_STAT_IRQ_MASK;
tz_mpc_irq_update(s);
}
break;
case A_PIDR4:
case A_PIDR5:
case A_PIDR6:
case A_PIDR7:
case A_PIDR0:
case A_PIDR1:
case A_PIDR2:
case A_PIDR3:
case A_CIDR0:
case A_CIDR1:
case A_CIDR2:
case A_CIDR3:
qemu_log_mask(LOG_GUEST_ERROR,
"TZ MPC register write: read-only offset 0x%x\n", offset);
break;
default:
qemu_log_mask(LOG_GUEST_ERROR,
"TZ MPC register write: bad offset 0x%x\n", offset);
break;
}
return MEMTX_OK;
}
static const MemoryRegionOps tz_mpc_reg_ops = {
.read_with_attrs = tz_mpc_reg_read,
.write_with_attrs = tz_mpc_reg_write,
.endianness = DEVICE_LITTLE_ENDIAN,
.valid.min_access_size = 1,
.valid.max_access_size = 4,
.impl.min_access_size = 1,
.impl.max_access_size = 4,
};
static inline bool tz_mpc_cfg_ns(TZMPC *s, hwaddr addr)
{
/* Return the cfg_ns bit from the LUT for the specified address */
hwaddr blknum = addr / s->blocksize;
hwaddr blkword = blknum / 32;
uint32_t blkbit = 1U << (blknum % 32);
/* This would imply the address was larger than the size we
* defined this memory region to be, so it can't happen.
*/
assert(blkword < s->blk_max);
return s->blk_lut[blkword] & blkbit;
}
static MemTxResult tz_mpc_handle_block(TZMPC *s, hwaddr addr, MemTxAttrs attrs)
{
/* Handle a blocked transaction: raise IRQ, capture info, etc */
if (!s->int_stat) {
/* First blocked transfer: capture information into INT_INFO1 and
* INT_INFO2. Subsequent transfers are still blocked but don't
* capture information until the guest clears the interrupt.
*/
s->int_info1 = addr;
s->int_info2 = 0;
s->int_info2 = FIELD_DP32(s->int_info2, INT_INFO2, HMASTER,
attrs.requester_id & 0xffff);
s->int_info2 = FIELD_DP32(s->int_info2, INT_INFO2, HNONSEC,
~attrs.secure);
s->int_info2 = FIELD_DP32(s->int_info2, INT_INFO2, CFG_NS,
tz_mpc_cfg_ns(s, addr));
s->int_stat |= R_INT_STAT_IRQ_MASK;
tz_mpc_irq_update(s);
}
/* Generate bus error if desired; otherwise RAZ/WI */
return (s->ctrl & R_CTRL_SEC_RESP_MASK) ? MEMTX_ERROR : MEMTX_OK;
}
/* Accesses only reach these read and write functions if the MPC is
* blocking them; non-blocked accesses go directly to the downstream
* memory region without passing through this code.
*/
static MemTxResult tz_mpc_mem_blocked_read(void *opaque, hwaddr addr,
uint64_t *pdata,
unsigned size, MemTxAttrs attrs)
{
TZMPC *s = TZ_MPC(opaque);
trace_tz_mpc_mem_blocked_read(addr, size, attrs.secure);
*pdata = 0;
return tz_mpc_handle_block(s, addr, attrs);
}
static MemTxResult tz_mpc_mem_blocked_write(void *opaque, hwaddr addr,
uint64_t value,
unsigned size, MemTxAttrs attrs)
{
TZMPC *s = TZ_MPC(opaque);
trace_tz_mpc_mem_blocked_write(addr, value, size, attrs.secure);
return tz_mpc_handle_block(s, addr, attrs);
}
static const MemoryRegionOps tz_mpc_mem_blocked_ops = {
.read_with_attrs = tz_mpc_mem_blocked_read,
.write_with_attrs = tz_mpc_mem_blocked_write,
.endianness = DEVICE_LITTLE_ENDIAN,
.valid.min_access_size = 1,
.valid.max_access_size = 8,
.impl.min_access_size = 1,
.impl.max_access_size = 8,
};
static IOMMUTLBEntry tz_mpc_translate(IOMMUMemoryRegion *iommu,
hwaddr addr, IOMMUAccessFlags flags,
int iommu_idx)
{
TZMPC *s = TZ_MPC(container_of(iommu, TZMPC, upstream));
bool ok;
IOMMUTLBEntry ret = {
.iova = addr & ~(s->blocksize - 1),
.translated_addr = addr & ~(s->blocksize - 1),
.addr_mask = s->blocksize - 1,
.perm = IOMMU_RW,
};
/* Look at the per-block configuration for this address, and
* return a TLB entry directing the transaction at either
* downstream_as or blocked_io_as, as appropriate.
* If the LUT cfg_ns bit is 1, only non-secure transactions
* may pass. If the bit is 0, only secure transactions may pass.
*/
ok = tz_mpc_cfg_ns(s, addr) == (iommu_idx == IOMMU_IDX_NS);
trace_tz_mpc_translate(addr, flags,
iommu_idx == IOMMU_IDX_S ? "S" : "NS",
ok ? "pass" : "block");
ret.target_as = ok ? &s->downstream_as : &s->blocked_io_as;
return ret;
}
static int tz_mpc_attrs_to_index(IOMMUMemoryRegion *iommu, MemTxAttrs attrs)
{
/* We treat unspecified attributes like secure. Transactions with
* unspecified attributes come from places like
* rom_reset() for initial image load, and we want
* those to pass through the from-reset "everything is secure" config.
* All the real during-emulation transactions from the CPU will
* specify attributes.
*/
return (attrs.unspecified || attrs.secure) ? IOMMU_IDX_S : IOMMU_IDX_NS;
}
static int tz_mpc_num_indexes(IOMMUMemoryRegion *iommu)
{
return IOMMU_NUM_INDEXES;
}
static void tz_mpc_reset(DeviceState *dev)
{
TZMPC *s = TZ_MPC(dev);
s->ctrl = 0x00000100;
s->blk_idx = 0;
s->int_stat = 0;
s->int_en = 1;
s->int_info1 = 0;
s->int_info2 = 0;
memset(s->blk_lut, 0, s->blk_max * sizeof(uint32_t));
}
static void tz_mpc_init(Object *obj)
{
DeviceState *dev = DEVICE(obj);
TZMPC *s = TZ_MPC(obj);
qdev_init_gpio_out_named(dev, &s->irq, "irq", 1);
}
static void tz_mpc_realize(DeviceState *dev, Error **errp)
{
Object *obj = OBJECT(dev);
SysBusDevice *sbd = SYS_BUS_DEVICE(dev);
TZMPC *s = TZ_MPC(dev);
uint64_t size;
/* We can't create the upstream end of the port until realize,
* as we don't know the size of the MR used as the downstream until then.
* We insist on having a downstream, to avoid complicating the code
* with handling the "don't know how big this is" case. It's easy
* enough for the user to create an unimplemented_device as downstream
* if they have nothing else to plug into this.
*/
if (!s->downstream) {
error_setg(errp, "MPC 'downstream' link not set");
return;
}
size = memory_region_size(s->downstream);
memory_region_init_iommu(&s->upstream, sizeof(s->upstream),
TYPE_TZ_MPC_IOMMU_MEMORY_REGION,
obj, "tz-mpc-upstream", size);
/* In real hardware the block size is configurable. In QEMU we could
* make it configurable but will need it to be at least as big as the
* target page size so we can execute out of the resulting MRs. Guest
* software is supposed to check the block size using the BLK_CFG
* register, so make it fixed at the page size.
*/
s->blocksize = memory_region_iommu_get_min_page_size(&s->upstream);
if (size % s->blocksize != 0) {
error_setg(errp,
"MPC 'downstream' size %" PRId64
" is not a multiple of %" HWADDR_PRIx " bytes",
size, s->blocksize);
object_unref(OBJECT(&s->upstream));
return;
}
/* BLK_MAX is the max value of BLK_IDX, which indexes an array of 32-bit
* words, each bit of which indicates one block.
*/
s->blk_max = DIV_ROUND_UP(size / s->blocksize, 32);
memory_region_init_io(&s->regmr, obj, &tz_mpc_reg_ops,
s, "tz-mpc-regs", 0x1000);
sysbus_init_mmio(sbd, &s->regmr);
sysbus_init_mmio(sbd, MEMORY_REGION(&s->upstream));
/* This memory region is not exposed to users of this device as a
* sysbus MMIO region, but is instead used internally as something
* that our IOMMU translate function might direct accesses to.
*/
memory_region_init_io(&s->blocked_io, obj, &tz_mpc_mem_blocked_ops,
s, "tz-mpc-blocked-io", size);
address_space_init(&s->downstream_as, s->downstream,
"tz-mpc-downstream");
address_space_init(&s->blocked_io_as, &s->blocked_io,
"tz-mpc-blocked-io");
s->blk_lut = g_new0(uint32_t, s->blk_max);
}
static int tz_mpc_post_load(void *opaque, int version_id)
{
TZMPC *s = TZ_MPC(opaque);
/* Check the incoming data doesn't point blk_idx off the end of blk_lut. */
if (s->blk_idx >= s->blk_max) {
return -1;
}
return 0;
}
static const VMStateDescription tz_mpc_vmstate = {
.name = "tz-mpc",
.version_id = 1,
.minimum_version_id = 1,
.post_load = tz_mpc_post_load,
.fields = (VMStateField[]) {
VMSTATE_UINT32(ctrl, TZMPC),
VMSTATE_UINT32(blk_idx, TZMPC),
VMSTATE_UINT32(int_stat, TZMPC),
VMSTATE_UINT32(int_en, TZMPC),
VMSTATE_UINT32(int_info1, TZMPC),
VMSTATE_UINT32(int_info2, TZMPC),
VMSTATE_VARRAY_UINT32(blk_lut, TZMPC, blk_max,
0, vmstate_info_uint32, uint32_t),
VMSTATE_END_OF_LIST()
}
};
static Property tz_mpc_properties[] = {
DEFINE_PROP_LINK("downstream", TZMPC, downstream,
TYPE_MEMORY_REGION, MemoryRegion *),
DEFINE_PROP_END_OF_LIST(),
};
static void tz_mpc_class_init(ObjectClass *klass, void *data)
{
DeviceClass *dc = DEVICE_CLASS(klass);
dc->realize = tz_mpc_realize;
dc->vmsd = &tz_mpc_vmstate;
dc->reset = tz_mpc_reset;
device_class_set_props(dc, tz_mpc_properties);
}
static const TypeInfo tz_mpc_info = {
.name = TYPE_TZ_MPC,
.parent = TYPE_SYS_BUS_DEVICE,
.instance_size = sizeof(TZMPC),
.instance_init = tz_mpc_init,
.class_init = tz_mpc_class_init,
};
static void tz_mpc_iommu_memory_region_class_init(ObjectClass *klass,
void *data)
{
IOMMUMemoryRegionClass *imrc = IOMMU_MEMORY_REGION_CLASS(klass);
imrc->translate = tz_mpc_translate;
imrc->attrs_to_index = tz_mpc_attrs_to_index;
imrc->num_indexes = tz_mpc_num_indexes;
}
static const TypeInfo tz_mpc_iommu_memory_region_info = {
.name = TYPE_TZ_MPC_IOMMU_MEMORY_REGION,
.parent = TYPE_IOMMU_MEMORY_REGION,
.class_init = tz_mpc_iommu_memory_region_class_init,
};
static void tz_mpc_register_types(void)
{
type_register_static(&tz_mpc_info);
type_register_static(&tz_mpc_iommu_memory_region_info);
}
type_init(tz_mpc_register_types);