/*
* Status and system control registers for Xilinx Zynq Platform
*
* Copyright (c) 2011 Michal Simek <monstr@monstr.eu>
* Copyright (c) 2012 PetaLogix Pty Ltd.
* Based on hw/arm_sysctl.c, written by Paul Brook
*
* This program is free software; you can redistribute it and/or
* modify it under the terms of the GNU General Public License
* as published by the Free Software Foundation; either version
* 2 of the License, or (at your option) any later version.
*
* You should have received a copy of the GNU General Public License along
* with this program; if not, see <http://www.gnu.org/licenses/>.
*/
#include "qemu/osdep.h"
#include "qemu/timer.h"
#include "sysemu/runstate.h"
#include "hw/sysbus.h"
#include "migration/vmstate.h"
#include "qemu/log.h"
#include "qemu/module.h"
#include "hw/registerfields.h"
#include "hw/qdev-clock.h"
#include "qom/object.h"
#ifndef ZYNQ_SLCR_ERR_DEBUG
#define ZYNQ_SLCR_ERR_DEBUG 0
#endif
#define DB_PRINT(...) do { \
if (ZYNQ_SLCR_ERR_DEBUG) { \
fprintf(stderr, ": %s: ", __func__); \
fprintf(stderr, ## __VA_ARGS__); \
} \
} while (0)
#define XILINX_LOCK_KEY 0x767b
#define XILINX_UNLOCK_KEY 0xdf0d
REG32(SCL, 0x000)
REG32(LOCK, 0x004)
REG32(UNLOCK, 0x008)
REG32(LOCKSTA, 0x00c)
REG32(ARM_PLL_CTRL, 0x100)
REG32(DDR_PLL_CTRL, 0x104)
REG32(IO_PLL_CTRL, 0x108)
/* fields for [ARM|DDR|IO]_PLL_CTRL registers */
FIELD(xxx_PLL_CTRL, PLL_RESET, 0, 1)
FIELD(xxx_PLL_CTRL, PLL_PWRDWN, 1, 1)
FIELD(xxx_PLL_CTRL, PLL_BYPASS_QUAL, 3, 1)
FIELD(xxx_PLL_CTRL, PLL_BYPASS_FORCE, 4, 1)
FIELD(xxx_PLL_CTRL, PLL_FPDIV, 12, 7)
REG32(PLL_STATUS, 0x10c)
REG32(ARM_PLL_CFG, 0x110)
REG32(DDR_PLL_CFG, 0x114)
REG32(IO_PLL_CFG, 0x118)
REG32(ARM_CLK_CTRL, 0x120)
REG32(DDR_CLK_CTRL, 0x124)
REG32(DCI_CLK_CTRL, 0x128)
REG32(APER_CLK_CTRL, 0x12c)
REG32(USB0_CLK_CTRL, 0x130)
REG32(USB1_CLK_CTRL, 0x134)
REG32(GEM0_RCLK_CTRL, 0x138)
REG32(GEM1_RCLK_CTRL, 0x13c)
REG32(GEM0_CLK_CTRL, 0x140)
REG32(GEM1_CLK_CTRL, 0x144)
REG32(SMC_CLK_CTRL, 0x148)
REG32(LQSPI_CLK_CTRL, 0x14c)
REG32(SDIO_CLK_CTRL, 0x150)
REG32(UART_CLK_CTRL, 0x154)
FIELD(UART_CLK_CTRL, CLKACT0, 0, 1)
FIELD(UART_CLK_CTRL, CLKACT1, 1, 1)
FIELD(UART_CLK_CTRL, SRCSEL, 4, 2)
FIELD(UART_CLK_CTRL, DIVISOR, 8, 6)
REG32(SPI_CLK_CTRL, 0x158)
REG32(CAN_CLK_CTRL, 0x15c)
REG32(CAN_MIOCLK_CTRL, 0x160)
REG32(DBG_CLK_CTRL, 0x164)
REG32(PCAP_CLK_CTRL, 0x168)
REG32(TOPSW_CLK_CTRL, 0x16c)
#define FPGA_CTRL_REGS(n, start) \
REG32(FPGA ## n ## _CLK_CTRL, (start)) \
REG32(FPGA ## n ## _THR_CTRL, (start) + 0x4)\
REG32(FPGA ## n ## _THR_CNT, (start) + 0x8)\
REG32(FPGA ## n ## _THR_STA, (start) + 0xc)
FPGA_CTRL_REGS(0, 0x170)
FPGA_CTRL_REGS(1, 0x180)
FPGA_CTRL_REGS(2, 0x190)
FPGA_CTRL_REGS(3, 0x1a0)
REG32(BANDGAP_TRIP, 0x1b8)
REG32(PLL_PREDIVISOR, 0x1c0)
REG32(CLK_621_TRUE, 0x1c4)
REG32(PSS_RST_CTRL, 0x200)
FIELD(PSS_RST_CTRL, SOFT_RST, 0, 1)
REG32(DDR_RST_CTRL, 0x204)
REG32(TOPSW_RESET_CTRL, 0x208)
REG32(DMAC_RST_CTRL, 0x20c)
REG32(USB_RST_CTRL, 0x210)
REG32(GEM_RST_CTRL, 0x214)
REG32(SDIO_RST_CTRL, 0x218)
REG32(SPI_RST_CTRL, 0x21c)
REG32(CAN_RST_CTRL, 0x220)
REG32(I2C_RST_CTRL, 0x224)
REG32(UART_RST_CTRL, 0x228)
REG32(GPIO_RST_CTRL, 0x22c)
REG32(LQSPI_RST_CTRL, 0x230)
REG32(SMC_RST_CTRL, 0x234)
REG32(OCM_RST_CTRL, 0x238)
REG32(FPGA_RST_CTRL, 0x240)
REG32(A9_CPU_RST_CTRL, 0x244)
REG32(RS_AWDT_CTRL, 0x24c)
REG32(RST_REASON, 0x250)
REG32(REBOOT_STATUS, 0x258)
REG32(BOOT_MODE, 0x25c)
REG32(APU_CTRL, 0x300)
REG32(WDT_CLK_SEL, 0x304)
REG32(TZ_DMA_NS, 0x440)
REG32(TZ_DMA_IRQ_NS, 0x444)
REG32(TZ_DMA_PERIPH_NS, 0x448)
REG32(PSS_IDCODE, 0x530)
REG32(DDR_URGENT, 0x600)
REG32(DDR_CAL_START, 0x60c)
REG32(DDR_REF_START, 0x614)
REG32(DDR_CMD_STA, 0x618)
REG32(DDR_URGENT_SEL, 0x61c)
REG32(DDR_DFI_STATUS, 0x620)
REG32(MIO, 0x700)
#define MIO_LENGTH 54
REG32(MIO_LOOPBACK, 0x804)
REG32(MIO_MST_TRI0, 0x808)
REG32(MIO_MST_TRI1, 0x80c)
REG32(SD0_WP_CD_SEL, 0x830)
REG32(SD1_WP_CD_SEL, 0x834)
REG32(LVL_SHFTR_EN, 0x900)
REG32(OCM_CFG, 0x910)
REG32(CPU_RAM, 0xa00)
REG32(IOU, 0xa30)
REG32(DMAC_RAM, 0xa50)
REG32(AFI0, 0xa60)
REG32(AFI1, 0xa6c)
REG32(AFI2, 0xa78)
REG32(AFI3, 0xa84)
#define AFI_LENGTH 3
REG32(OCM, 0xa90)
REG32(DEVCI_RAM, 0xaa0)
REG32(CSG_RAM, 0xab0)
REG32(GPIOB_CTRL, 0xb00)
REG32(GPIOB_CFG_CMOS18, 0xb04)
REG32(GPIOB_CFG_CMOS25, 0xb08)
REG32(GPIOB_CFG_CMOS33, 0xb0c)
REG32(GPIOB_CFG_HSTL, 0xb14)
REG32(GPIOB_DRVR_BIAS_CTRL, 0xb18)
REG32(DDRIOB, 0xb40)
#define DDRIOB_LENGTH 14
#define ZYNQ_SLCR_MMIO_SIZE 0x1000
#define ZYNQ_SLCR_NUM_REGS (ZYNQ_SLCR_MMIO_SIZE / 4)
#define TYPE_ZYNQ_SLCR "xilinx,zynq_slcr"
OBJECT_DECLARE_SIMPLE_TYPE(ZynqSLCRState, ZYNQ_SLCR)
struct ZynqSLCRState {
SysBusDevice parent_obj;
MemoryRegion iomem;
uint32_t regs[ZYNQ_SLCR_NUM_REGS];
Clock *ps_clk;
Clock *uart0_ref_clk;
Clock *uart1_ref_clk;
};
/*
* return the output frequency of ARM/DDR/IO pll
* using input frequency and PLL_CTRL register
*/
static uint64_t zynq_slcr_compute_pll(uint64_t input, uint32_t ctrl_reg)
{
uint32_t mult = ((ctrl_reg & R_xxx_PLL_CTRL_PLL_FPDIV_MASK) >>
R_xxx_PLL_CTRL_PLL_FPDIV_SHIFT);
/* first, check if pll is bypassed */
if (ctrl_reg & R_xxx_PLL_CTRL_PLL_BYPASS_FORCE_MASK) {
return input;
}
/* is pll disabled ? */
if (ctrl_reg & (R_xxx_PLL_CTRL_PLL_RESET_MASK |
R_xxx_PLL_CTRL_PLL_PWRDWN_MASK)) {
return 0;
}
/* frequency multiplier -> period division */
return input / mult;
}
/*
* return the output period of a clock given:
* + the periods in an array corresponding to input mux selector
* + the register xxx_CLK_CTRL value
* + enable bit index in ctrl register
*
* This function makes the assumption that the ctrl_reg value is organized as
* follows:
* + bits[13:8] clock frequency divisor
* + bits[5:4] clock mux selector (index in array)
* + bits[index] clock enable
*/
static uint64_t zynq_slcr_compute_clock(const uint64_t periods[],
uint32_t ctrl_reg,
unsigned index)
{
uint32_t srcsel = extract32(ctrl_reg, 4, 2); /* bits [5:4] */
uint32_t divisor = extract32(ctrl_reg, 8, 6); /* bits [13:8] */
/* first, check if clock is disabled */
if (((ctrl_reg >> index) & 1u) == 0) {
return 0;
}
/*
* according to the Zynq technical ref. manual UG585 v1.12.2 in
* Clocks chapter, section 25.10.1 page 705:
* "The 6-bit divider provides a divide range of 1 to 63"
* We follow here what is implemented in linux kernel and consider
* the 0 value as a bypass (no division).
*/
/* frequency divisor -> period multiplication */
return periods[srcsel] * (divisor ? divisor : 1u);
}
/*
* macro helper around zynq_slcr_compute_clock to avoid repeating
* the register name.
*/
#define ZYNQ_COMPUTE_CLK(state, plls, reg, enable_field) \
zynq_slcr_compute_clock((plls), (state)->regs[reg], \
reg ## _ ## enable_field ## _SHIFT)
/**
* Compute and set the ouputs clocks periods.
* But do not propagate them further. Connected clocks
* will not receive any updates (See zynq_slcr_compute_clocks())
*/
static void zynq_slcr_compute_clocks(ZynqSLCRState *s)
{
uint64_t ps_clk = clock_get(s->ps_clk);
/* consider outputs clocks are disabled while in reset */
if (device_is_in_reset(DEVICE(s))) {
ps_clk = 0;
}
uint64_t io_pll = zynq_slcr_compute_pll(ps_clk, s->regs[R_IO_PLL_CTRL]);
uint64_t arm_pll = zynq_slcr_compute_pll(ps_clk, s->regs[R_ARM_PLL_CTRL]);
uint64_t ddr_pll = zynq_slcr_compute_pll(ps_clk, s->regs[R_DDR_PLL_CTRL]);
uint64_t uart_mux[4] = {io_pll, io_pll, arm_pll, ddr_pll};
/* compute uartX reference clocks */
clock_set(s->uart0_ref_clk,
ZYNQ_COMPUTE_CLK(s, uart_mux, R_UART_CLK_CTRL, CLKACT0));
clock_set(s->uart1_ref_clk,
ZYNQ_COMPUTE_CLK(s, uart_mux, R_UART_CLK_CTRL, CLKACT1));
}
/**
* Propagate the outputs clocks.
* zynq_slcr_compute_clocks() should have been called before
* to configure them.
*/
static void zynq_slcr_propagate_clocks(ZynqSLCRState *s)
{
clock_propagate(s->uart0_ref_clk);
clock_propagate(s->uart1_ref_clk);
}
static void zynq_slcr_ps_clk_callback(void *opaque)
{
ZynqSLCRState *s = (ZynqSLCRState *) opaque;
zynq_slcr_compute_clocks(s);
zynq_slcr_propagate_clocks(s);
}
static void zynq_slcr_reset_init(Object *obj, ResetType type)
{
ZynqSLCRState *s = ZYNQ_SLCR(obj);
int i;
DB_PRINT("RESET\n");
s->regs[R_LOCKSTA] = 1;
/* 0x100 - 0x11C */
s->regs[R_ARM_PLL_CTRL] = 0x0001A008;
s->regs[R_DDR_PLL_CTRL] = 0x0001A008;
s->regs[R_IO_PLL_CTRL] = 0x0001A008;
s->regs[R_PLL_STATUS] = 0x0000003F;
s->regs[R_ARM_PLL_CFG] = 0x00014000;
s->regs[R_DDR_PLL_CFG] = 0x00014000;
s->regs[R_IO_PLL_CFG] = 0x00014000;
/* 0x120 - 0x16C */
s->regs[R_ARM_CLK_CTRL] = 0x1F000400;
s->regs[R_DDR_CLK_CTRL] = 0x18400003;
s->regs[R_DCI_CLK_CTRL] = 0x01E03201;
s->regs[R_APER_CLK_CTRL] = 0x01FFCCCD;
s->regs[R_USB0_CLK_CTRL] = s->regs[R_USB1_CLK_CTRL] = 0x00101941;
s->regs[R_GEM0_RCLK_CTRL] = s->regs[R_GEM1_RCLK_CTRL] = 0x00000001;
s->regs[R_GEM0_CLK_CTRL] = s->regs[R_GEM1_CLK_CTRL] = 0x00003C01;
s->regs[R_SMC_CLK_CTRL] = 0x00003C01;
s->regs[R_LQSPI_CLK_CTRL] = 0x00002821;
s->regs[R_SDIO_CLK_CTRL] = 0x00001E03;
s->regs[R_UART_CLK_CTRL] = 0x00003F03;
s->regs[R_SPI_CLK_CTRL] = 0x00003F03;
s->regs[R_CAN_CLK_CTRL] = 0x00501903;
s->regs[R_DBG_CLK_CTRL] = 0x00000F03;
s->regs[R_PCAP_CLK_CTRL] = 0x00000F01;
/* 0x170 - 0x1AC */
s->regs[R_FPGA0_CLK_CTRL] = s->regs[R_FPGA1_CLK_CTRL]
= s->regs[R_FPGA2_CLK_CTRL]
= s->regs[R_FPGA3_CLK_CTRL] = 0x00101800;
s->regs[R_FPGA0_THR_STA] = s->regs[R_FPGA1_THR_STA]
= s->regs[R_FPGA2_THR_STA]
= s->regs[R_FPGA3_THR_STA] = 0x00010000;
/* 0x1B0 - 0x1D8 */
s->regs[R_BANDGAP_TRIP] = 0x0000001F;
s->regs[R_PLL_PREDIVISOR] = 0x00000001;
s->regs[R_CLK_621_TRUE] = 0x00000001;
/* 0x200 - 0x25C */
s->regs[R_FPGA_RST_CTRL] = 0x01F33F0F;
s->regs[R_RST_REASON] = 0x00000040;
s->regs[R_BOOT_MODE] = 0x00000001;
/* 0x700 - 0x7D4 */
for (i = 0; i < 54; i++) {
s->regs[R_MIO + i] = 0x00001601;
}
for (i = 2; i <= 8; i++) {
s->regs[R_MIO + i] = 0x00000601;
}
s->regs[R_MIO_MST_TRI0] = s->regs[R_MIO_MST_TRI1] = 0xFFFFFFFF;
s->regs[R_CPU_RAM + 0] = s->regs[R_CPU_RAM + 1] = s->regs[R_CPU_RAM + 3]
= s->regs[R_CPU_RAM + 4] = s->regs[R_CPU_RAM + 7]
= 0x00010101;
s->regs[R_CPU_RAM + 2] = s->regs[R_CPU_RAM + 5] = 0x01010101;
s->regs[R_CPU_RAM + 6] = 0x00000001;
s->regs[R_IOU + 0] = s->regs[R_IOU + 1] = s->regs[R_IOU + 2]
= s->regs[R_IOU + 3] = 0x09090909;
s->regs[R_IOU + 4] = s->regs[R_IOU + 5] = 0x00090909;
s->regs[R_IOU + 6] = 0x00000909;
s->regs[R_DMAC_RAM] = 0x00000009;
s->regs[R_AFI0 + 0] = s->regs[R_AFI0 + 1] = 0x09090909;
s->regs[R_AFI1 + 0] = s->regs[R_AFI1 + 1] = 0x09090909;
s->regs[R_AFI2 + 0] = s->regs[R_AFI2 + 1] = 0x09090909;
s->regs[R_AFI3 + 0] = s->regs[R_AFI3 + 1] = 0x09090909;
s->regs[R_AFI0 + 2] = s->regs[R_AFI1 + 2] = s->regs[R_AFI2 + 2]
= s->regs[R_AFI3 + 2] = 0x00000909;
s->regs[R_OCM + 0] = 0x01010101;
s->regs[R_OCM + 1] = s->regs[R_OCM + 2] = 0x09090909;
s->regs[R_DEVCI_RAM] = 0x00000909;
s->regs[R_CSG_RAM] = 0x00000001;
s->regs[R_DDRIOB + 0] = s->regs[R_DDRIOB + 1] = s->regs[R_DDRIOB + 2]
= s->regs[R_DDRIOB + 3] = 0x00000e00;
s->regs[R_DDRIOB + 4] = s->regs[R_DDRIOB + 5] = s->regs[R_DDRIOB + 6]
= 0x00000e00;
s->regs[R_DDRIOB + 12] = 0x00000021;
}
static void zynq_slcr_reset_hold(Object *obj)
{
ZynqSLCRState *s = ZYNQ_SLCR(obj);
/* will disable all output clocks */
zynq_slcr_compute_clocks(s);
zynq_slcr_propagate_clocks(s);
}
static void zynq_slcr_reset_exit(Object *obj)
{
ZynqSLCRState *s = ZYNQ_SLCR(obj);
/* will compute output clocks according to ps_clk and registers */
zynq_slcr_compute_clocks(s);
zynq_slcr_propagate_clocks(s);
}
static bool zynq_slcr_check_offset(hwaddr offset, bool rnw)
{
switch (offset) {
case R_LOCK:
case R_UNLOCK:
case R_DDR_CAL_START:
case R_DDR_REF_START:
return !rnw; /* Write only */
case R_LOCKSTA:
case R_FPGA0_THR_STA:
case R_FPGA1_THR_STA:
case R_FPGA2_THR_STA:
case R_FPGA3_THR_STA:
case R_BOOT_MODE:
case R_PSS_IDCODE:
case R_DDR_CMD_STA:
case R_DDR_DFI_STATUS:
case R_PLL_STATUS:
return rnw;/* read only */
case R_SCL:
case R_ARM_PLL_CTRL ... R_IO_PLL_CTRL:
case R_ARM_PLL_CFG ... R_IO_PLL_CFG:
case R_ARM_CLK_CTRL ... R_TOPSW_CLK_CTRL:
case R_FPGA0_CLK_CTRL ... R_FPGA0_THR_CNT:
case R_FPGA1_CLK_CTRL ... R_FPGA1_THR_CNT:
case R_FPGA2_CLK_CTRL ... R_FPGA2_THR_CNT:
case R_FPGA3_CLK_CTRL ... R_FPGA3_THR_CNT:
case R_BANDGAP_TRIP:
case R_PLL_PREDIVISOR:
case R_CLK_621_TRUE:
case R_PSS_RST_CTRL ... R_A9_CPU_RST_CTRL:
case R_RS_AWDT_CTRL:
case R_RST_REASON:
case R_REBOOT_STATUS:
case R_APU_CTRL:
case R_WDT_CLK_SEL:
case R_TZ_DMA_NS ... R_TZ_DMA_PERIPH_NS:
case R_DDR_URGENT:
case R_DDR_URGENT_SEL:
case R_MIO ... R_MIO + MIO_LENGTH - 1:
case R_MIO_LOOPBACK ... R_MIO_MST_TRI1:
case R_SD0_WP_CD_SEL:
case R_SD1_WP_CD_SEL:
case R_LVL_SHFTR_EN:
case R_OCM_CFG:
case R_CPU_RAM:
case R_IOU:
case R_DMAC_RAM:
case R_AFI0 ... R_AFI3 + AFI_LENGTH - 1:
case R_OCM:
case R_DEVCI_RAM:
case R_CSG_RAM:
case R_GPIOB_CTRL ... R_GPIOB_CFG_CMOS33:
case R_GPIOB_CFG_HSTL:
case R_GPIOB_DRVR_BIAS_CTRL:
case R_DDRIOB ... R_DDRIOB + DDRIOB_LENGTH - 1:
return true;
default:
return false;
}
}
static uint64_t zynq_slcr_read(void *opaque, hwaddr offset,
unsigned size)
{
ZynqSLCRState *s = opaque;
offset /= 4;
uint32_t ret = s->regs[offset];
if (!zynq_slcr_check_offset(offset, true)) {
qemu_log_mask(LOG_GUEST_ERROR, "zynq_slcr: Invalid read access to "
" addr %" HWADDR_PRIx "\n", offset * 4);
}
DB_PRINT("addr: %08" HWADDR_PRIx " data: %08" PRIx32 "\n", offset * 4, ret);
return ret;
}
static void zynq_slcr_write(void *opaque, hwaddr offset,
uint64_t val, unsigned size)
{
ZynqSLCRState *s = (ZynqSLCRState *)opaque;
offset /= 4;
DB_PRINT("addr: %08" HWADDR_PRIx " data: %08" PRIx64 "\n", offset * 4, val);
if (!zynq_slcr_check_offset(offset, false)) {
qemu_log_mask(LOG_GUEST_ERROR, "zynq_slcr: Invalid write access to "
"addr %" HWADDR_PRIx "\n", offset * 4);
return;
}
switch (offset) {
case R_SCL:
s->regs[R_SCL] = val & 0x1;
return;
case R_LOCK:
if ((val & 0xFFFF) == XILINX_LOCK_KEY) {
DB_PRINT("XILINX LOCK 0xF8000000 + 0x%x <= 0x%x\n", (int)offset,
(unsigned)val & 0xFFFF);
s->regs[R_LOCKSTA] = 1;
} else {
DB_PRINT("WRONG XILINX LOCK KEY 0xF8000000 + 0x%x <= 0x%x\n",
(int)offset, (unsigned)val & 0xFFFF);
}
return;
case R_UNLOCK:
if ((val & 0xFFFF) == XILINX_UNLOCK_KEY) {
DB_PRINT("XILINX UNLOCK 0xF8000000 + 0x%x <= 0x%x\n", (int)offset,
(unsigned)val & 0xFFFF);
s->regs[R_LOCKSTA] = 0;
} else {
DB_PRINT("WRONG XILINX UNLOCK KEY 0xF8000000 + 0x%x <= 0x%x\n",
(int)offset, (unsigned)val & 0xFFFF);
}
return;
}
if (s->regs[R_LOCKSTA]) {
qemu_log_mask(LOG_GUEST_ERROR,
"SCLR registers are locked. Unlock them first\n");
return;
}
s->regs[offset] = val;
switch (offset) {
case R_PSS_RST_CTRL:
if (FIELD_EX32(val, PSS_RST_CTRL, SOFT_RST)) {
qemu_system_reset_request(SHUTDOWN_CAUSE_GUEST_RESET);
}
break;
case R_IO_PLL_CTRL:
case R_ARM_PLL_CTRL:
case R_DDR_PLL_CTRL:
case R_UART_CLK_CTRL:
zynq_slcr_compute_clocks(s);
zynq_slcr_propagate_clocks(s);
break;
}
}
static const MemoryRegionOps slcr_ops = {
.read = zynq_slcr_read,
.write = zynq_slcr_write,
.endianness = DEVICE_NATIVE_ENDIAN,
};
static const ClockPortInitArray zynq_slcr_clocks = {
QDEV_CLOCK_IN(ZynqSLCRState, ps_clk, zynq_slcr_ps_clk_callback),
QDEV_CLOCK_OUT(ZynqSLCRState, uart0_ref_clk),
QDEV_CLOCK_OUT(ZynqSLCRState, uart1_ref_clk),
QDEV_CLOCK_END
};
static void zynq_slcr_init(Object *obj)
{
ZynqSLCRState *s = ZYNQ_SLCR(obj);
memory_region_init_io(&s->iomem, obj, &slcr_ops, s, "slcr",
ZYNQ_SLCR_MMIO_SIZE);
sysbus_init_mmio(SYS_BUS_DEVICE(obj), &s->iomem);
qdev_init_clocks(DEVICE(obj), zynq_slcr_clocks);
}
static const VMStateDescription vmstate_zynq_slcr = {
.name = "zynq_slcr",
.version_id = 3,
.minimum_version_id = 2,
.fields = (VMStateField[]) {
VMSTATE_UINT32_ARRAY(regs, ZynqSLCRState, ZYNQ_SLCR_NUM_REGS),
VMSTATE_CLOCK_V(ps_clk, ZynqSLCRState, 3),
VMSTATE_END_OF_LIST()
}
};
static void zynq_slcr_class_init(ObjectClass *klass, void *data)
{
DeviceClass *dc = DEVICE_CLASS(klass);
ResettableClass *rc = RESETTABLE_CLASS(klass);
dc->vmsd = &vmstate_zynq_slcr;
rc->phases.enter = zynq_slcr_reset_init;
rc->phases.hold = zynq_slcr_reset_hold;
rc->phases.exit = zynq_slcr_reset_exit;
}
static const TypeInfo zynq_slcr_info = {
.class_init = zynq_slcr_class_init,
.name = TYPE_ZYNQ_SLCR,
.parent = TYPE_SYS_BUS_DEVICE,
.instance_size = sizeof(ZynqSLCRState),
.instance_init = zynq_slcr_init,
};
static void zynq_slcr_register_types(void)
{
type_register_static(&zynq_slcr_info);
}
type_init(zynq_slcr_register_types)