/*
* QEMU PowerPC PowerNV (POWER8) PHB3 model
*
* Copyright (c) 2014-2020, IBM Corporation.
*
* This code is licensed under the GPL version 2 or later. See the
* COPYING file in the top-level directory.
*/
#include "qemu/osdep.h"
#include "qemu/log.h"
#include "qapi/visitor.h"
#include "qapi/error.h"
#include "qemu-common.h"
#include "hw/pci-host/pnv_phb3_regs.h"
#include "hw/pci-host/pnv_phb3.h"
#include "hw/pci/pcie_host.h"
#include "hw/pci/pcie_port.h"
#include "hw/ppc/pnv.h"
#include "hw/irq.h"
#include "hw/qdev-properties.h"
#define phb3_error(phb, fmt, ...) \
qemu_log_mask(LOG_GUEST_ERROR, "phb3[%d:%d]: " fmt "\n", \
(phb)->chip_id, (phb)->phb_id, ## __VA_ARGS__)
static PCIDevice *pnv_phb3_find_cfg_dev(PnvPHB3 *phb)
{
PCIHostState *pci = PCI_HOST_BRIDGE(phb);
uint64_t addr = phb->regs[PHB_CONFIG_ADDRESS >> 3];
uint8_t bus, devfn;
if (!(addr >> 63)) {
return NULL;
}
bus = (addr >> 52) & 0xff;
devfn = (addr >> 44) & 0xff;
return pci_find_device(pci->bus, bus, devfn);
}
/*
* The CONFIG_DATA register expects little endian accesses, but as the
* region is big endian, we have to swap the value.
*/
static void pnv_phb3_config_write(PnvPHB3 *phb, unsigned off,
unsigned size, uint64_t val)
{
uint32_t cfg_addr, limit;
PCIDevice *pdev;
pdev = pnv_phb3_find_cfg_dev(phb);
if (!pdev) {
return;
}
cfg_addr = (phb->regs[PHB_CONFIG_ADDRESS >> 3] >> 32) & 0xffc;
cfg_addr |= off;
limit = pci_config_size(pdev);
if (limit <= cfg_addr) {
/*
* conventional pci device can be behind pcie-to-pci bridge.
* 256 <= addr < 4K has no effects.
*/
return;
}
switch (size) {
case 1:
break;
case 2:
val = bswap16(val);
break;
case 4:
val = bswap32(val);
break;
default:
g_assert_not_reached();
}
pci_host_config_write_common(pdev, cfg_addr, limit, val, size);
}
static uint64_t pnv_phb3_config_read(PnvPHB3 *phb, unsigned off,
unsigned size)
{
uint32_t cfg_addr, limit;
PCIDevice *pdev;
uint64_t val;
pdev = pnv_phb3_find_cfg_dev(phb);
if (!pdev) {
return ~0ull;
}
cfg_addr = (phb->regs[PHB_CONFIG_ADDRESS >> 3] >> 32) & 0xffc;
cfg_addr |= off;
limit = pci_config_size(pdev);
if (limit <= cfg_addr) {
/*
* conventional pci device can be behind pcie-to-pci bridge.
* 256 <= addr < 4K has no effects.
*/
return ~0ull;
}
val = pci_host_config_read_common(pdev, cfg_addr, limit, size);
switch (size) {
case 1:
return val;
case 2:
return bswap16(val);
case 4:
return bswap32(val);
default:
g_assert_not_reached();
}
}
static void pnv_phb3_check_m32(PnvPHB3 *phb)
{
uint64_t base, start, size;
MemoryRegion *parent;
PnvPBCQState *pbcq = &phb->pbcq;
if (memory_region_is_mapped(&phb->mr_m32)) {
memory_region_del_subregion(phb->mr_m32.container, &phb->mr_m32);
}
if (!(phb->regs[PHB_PHB3_CONFIG >> 3] & PHB_PHB3C_M32_EN)) {
return;
}
/* Grab geometry from registers */
base = phb->regs[PHB_M32_BASE_ADDR >> 3];
start = phb->regs[PHB_M32_START_ADDR >> 3];
size = ~(phb->regs[PHB_M32_BASE_MASK >> 3] | 0xfffc000000000000ull) + 1;
/* Check if it matches an enabled MMIO region in the PBCQ */
if (memory_region_is_mapped(&pbcq->mmbar0) &&
base >= pbcq->mmio0_base &&
(base + size) <= (pbcq->mmio0_base + pbcq->mmio0_size)) {
parent = &pbcq->mmbar0;
base -= pbcq->mmio0_base;
} else if (memory_region_is_mapped(&pbcq->mmbar1) &&
base >= pbcq->mmio1_base &&
(base + size) <= (pbcq->mmio1_base + pbcq->mmio1_size)) {
parent = &pbcq->mmbar1;
base -= pbcq->mmio1_base;
} else {
return;
}
/* Create alias */
memory_region_init_alias(&phb->mr_m32, OBJECT(phb), "phb3-m32",
&phb->pci_mmio, start, size);
memory_region_add_subregion(parent, base, &phb->mr_m32);
}
static void pnv_phb3_check_m64(PnvPHB3 *phb, uint32_t index)
{
uint64_t base, start, size, m64;
MemoryRegion *parent;
PnvPBCQState *pbcq = &phb->pbcq;
if (memory_region_is_mapped(&phb->mr_m64[index])) {
/* Should we destroy it in RCU friendly way... ? */
memory_region_del_subregion(phb->mr_m64[index].container,
&phb->mr_m64[index]);
}
/* Get table entry */
m64 = phb->ioda_M64BT[index];
if (!(m64 & IODA2_M64BT_ENABLE)) {
return;
}
/* Grab geometry from registers */
base = GETFIELD(IODA2_M64BT_BASE, m64) << 20;
if (m64 & IODA2_M64BT_SINGLE_PE) {
base &= ~0x1ffffffull;
}
size = GETFIELD(IODA2_M64BT_MASK, m64) << 20;
size |= 0xfffc000000000000ull;
size = ~size + 1;
start = base | (phb->regs[PHB_M64_UPPER_BITS >> 3]);
/* Check if it matches an enabled MMIO region in the PBCQ */
if (memory_region_is_mapped(&pbcq->mmbar0) &&
base >= pbcq->mmio0_base &&
(base + size) <= (pbcq->mmio0_base + pbcq->mmio0_size)) {
parent = &pbcq->mmbar0;
base -= pbcq->mmio0_base;
} else if (memory_region_is_mapped(&pbcq->mmbar1) &&
base >= pbcq->mmio1_base &&
(base + size) <= (pbcq->mmio1_base + pbcq->mmio1_size)) {
parent = &pbcq->mmbar1;
base -= pbcq->mmio1_base;
} else {
return;
}
/* Create alias */
memory_region_init_alias(&phb->mr_m64[index], OBJECT(phb), "phb3-m64",
&phb->pci_mmio, start, size);
memory_region_add_subregion(parent, base, &phb->mr_m64[index]);
}
static void pnv_phb3_check_all_m64s(PnvPHB3 *phb)
{
uint64_t i;
for (i = 0; i < PNV_PHB3_NUM_M64; i++) {
pnv_phb3_check_m64(phb, i);
}
}
static void pnv_phb3_lxivt_write(PnvPHB3 *phb, unsigned idx, uint64_t val)
{
uint8_t server, prio;
phb->ioda_LXIVT[idx] = val & (IODA2_LXIVT_SERVER |
IODA2_LXIVT_PRIORITY |
IODA2_LXIVT_NODE_ID);
server = GETFIELD(IODA2_LXIVT_SERVER, val);
prio = GETFIELD(IODA2_LXIVT_PRIORITY, val);
/*
* The low order 2 bits are the link pointer (Type II interrupts).
* Shift back to get a valid IRQ server.
*/
server >>= 2;
ics_write_xive(&phb->lsis, idx, server, prio, prio);
}
static uint64_t *pnv_phb3_ioda_access(PnvPHB3 *phb,
unsigned *out_table, unsigned *out_idx)
{
uint64_t adreg = phb->regs[PHB_IODA_ADDR >> 3];
unsigned int index = GETFIELD(PHB_IODA_AD_TADR, adreg);
unsigned int table = GETFIELD(PHB_IODA_AD_TSEL, adreg);
unsigned int mask;
uint64_t *tptr = NULL;
switch (table) {
case IODA2_TBL_LIST:
tptr = phb->ioda_LIST;
mask = 7;
break;
case IODA2_TBL_LXIVT:
tptr = phb->ioda_LXIVT;
mask = 7;
break;
case IODA2_TBL_IVC_CAM:
case IODA2_TBL_RBA:
mask = 31;
break;
case IODA2_TBL_RCAM:
mask = 63;
break;
case IODA2_TBL_MRT:
mask = 7;
break;
case IODA2_TBL_PESTA:
case IODA2_TBL_PESTB:
mask = 255;
break;
case IODA2_TBL_TVT:
tptr = phb->ioda_TVT;
mask = 511;
break;
case IODA2_TBL_TCAM:
case IODA2_TBL_TDR:
mask = 63;
break;
case IODA2_TBL_M64BT:
tptr = phb->ioda_M64BT;
mask = 15;
break;
case IODA2_TBL_M32DT:
tptr = phb->ioda_MDT;
mask = 255;
break;
case IODA2_TBL_PEEV:
tptr = phb->ioda_PEEV;
mask = 3;
break;
default:
phb3_error(phb, "invalid IODA table %d", table);
return NULL;
}
index &= mask;
if (out_idx) {
*out_idx = index;
}
if (out_table) {
*out_table = table;
}
if (tptr) {
tptr += index;
}
if (adreg & PHB_IODA_AD_AUTOINC) {
index = (index + 1) & mask;
adreg = SETFIELD(PHB_IODA_AD_TADR, adreg, index);
}
phb->regs[PHB_IODA_ADDR >> 3] = adreg;
return tptr;
}
static uint64_t pnv_phb3_ioda_read(PnvPHB3 *phb)
{
unsigned table;
uint64_t *tptr;
tptr = pnv_phb3_ioda_access(phb, &table, NULL);
if (!tptr) {
/* Return 0 on unsupported tables, not ff's */
return 0;
}
return *tptr;
}
static void pnv_phb3_ioda_write(PnvPHB3 *phb, uint64_t val)
{
unsigned table, idx;
uint64_t *tptr;
tptr = pnv_phb3_ioda_access(phb, &table, &idx);
if (!tptr) {
return;
}
/* Handle side effects */
switch (table) {
case IODA2_TBL_LXIVT:
pnv_phb3_lxivt_write(phb, idx, val);
break;
case IODA2_TBL_M64BT:
*tptr = val;
pnv_phb3_check_m64(phb, idx);
break;
default:
*tptr = val;
}
}
/*
* This is called whenever the PHB LSI, MSI source ID register or
* the PBCQ irq filters are written.
*/
void pnv_phb3_remap_irqs(PnvPHB3 *phb)
{
ICSState *ics = &phb->lsis;
uint32_t local, global, count, mask, comp;
uint64_t baren;
PnvPBCQState *pbcq = &phb->pbcq;
/*
* First check if we are enabled. Unlike real HW we don't separate
* TX and RX so we enable if both are set
*/
baren = pbcq->nest_regs[PBCQ_NEST_BAR_EN];
if (!(baren & PBCQ_NEST_BAR_EN_IRSN_RX) ||
!(baren & PBCQ_NEST_BAR_EN_IRSN_TX)) {
ics->offset = 0;
return;
}
/* Grab local LSI source ID */
local = GETFIELD(PHB_LSI_SRC_ID, phb->regs[PHB_LSI_SOURCE_ID >> 3]) << 3;
/* Grab global one and compare */
global = GETFIELD(PBCQ_NEST_LSI_SRC,
pbcq->nest_regs[PBCQ_NEST_LSI_SRC_ID]) << 3;
if (global != local) {
/*
* This happens during initialization, let's come back when we
* are properly configured
*/
ics->offset = 0;
return;
}
/* Get the base on the powerbus */
comp = GETFIELD(PBCQ_NEST_IRSN_COMP,
pbcq->nest_regs[PBCQ_NEST_IRSN_COMPARE]);
mask = GETFIELD(PBCQ_NEST_IRSN_COMP,
pbcq->nest_regs[PBCQ_NEST_IRSN_MASK]);
count = ((~mask) + 1) & 0x7ffff;
phb->total_irq = count;
/* Sanity checks */
if ((global + PNV_PHB3_NUM_LSI) > count) {
phb3_error(phb, "LSIs out of reach: LSI base=%d total irq=%d", global,
count);
}
if (count > 2048) {
phb3_error(phb, "More interrupts than supported: %d", count);
}
if ((comp & mask) != comp) {
phb3_error(phb, "IRQ compare bits not in mask: comp=0x%x mask=0x%x",
comp, mask);
comp &= mask;
}
/* Setup LSI offset */
ics->offset = comp + global;
/* Setup MSI offset */
pnv_phb3_msi_update_config(&phb->msis, comp, count - PNV_PHB3_NUM_LSI);
}
static void pnv_phb3_lsi_src_id_write(PnvPHB3 *phb, uint64_t val)
{
/* Sanitize content */
val &= PHB_LSI_SRC_ID;
phb->regs[PHB_LSI_SOURCE_ID >> 3] = val;
pnv_phb3_remap_irqs(phb);
}
static void pnv_phb3_rtc_invalidate(PnvPHB3 *phb, uint64_t val)
{
PnvPhb3DMASpace *ds;
/* Always invalidate all for now ... */
QLIST_FOREACH(ds, &phb->dma_spaces, list) {
ds->pe_num = PHB_INVALID_PE;
}
}
static void pnv_phb3_update_msi_regions(PnvPhb3DMASpace *ds)
{
uint64_t cfg = ds->phb->regs[PHB_PHB3_CONFIG >> 3];
if (cfg & PHB_PHB3C_32BIT_MSI_EN) {
if (!memory_region_is_mapped(&ds->msi32_mr)) {
memory_region_add_subregion(MEMORY_REGION(&ds->dma_mr),
0xffff0000, &ds->msi32_mr);
}
} else {
if (memory_region_is_mapped(&ds->msi32_mr)) {
memory_region_del_subregion(MEMORY_REGION(&ds->dma_mr),
&ds->msi32_mr);
}
}
if (cfg & PHB_PHB3C_64BIT_MSI_EN) {
if (!memory_region_is_mapped(&ds->msi64_mr)) {
memory_region_add_subregion(MEMORY_REGION(&ds->dma_mr),
(1ull << 60), &ds->msi64_mr);
}
} else {
if (memory_region_is_mapped(&ds->msi64_mr)) {
memory_region_del_subregion(MEMORY_REGION(&ds->dma_mr),
&ds->msi64_mr);
}
}
}
static void pnv_phb3_update_all_msi_regions(PnvPHB3 *phb)
{
PnvPhb3DMASpace *ds;
QLIST_FOREACH(ds, &phb->dma_spaces, list) {
pnv_phb3_update_msi_regions(ds);
}
}
void pnv_phb3_reg_write(void *opaque, hwaddr off, uint64_t val, unsigned size)
{
PnvPHB3 *phb = opaque;
bool changed;
/* Special case configuration data */
if ((off & 0xfffc) == PHB_CONFIG_DATA) {
pnv_phb3_config_write(phb, off & 0x3, size, val);
return;
}
/* Other registers are 64-bit only */
if (size != 8 || off & 0x7) {
phb3_error(phb, "Invalid register access, offset: 0x%"PRIx64" size: %d",
off, size);
return;
}
/* Handle masking & filtering */
switch (off) {
case PHB_M64_UPPER_BITS:
val &= 0xfffc000000000000ull;
break;
case PHB_Q_DMA_R:
/*
* This is enough logic to make SW happy but we aren't actually
* quiescing the DMAs
*/
if (val & PHB_Q_DMA_R_AUTORESET) {
val = 0;
} else {
val &= PHB_Q_DMA_R_QUIESCE_DMA;
}
break;
/* LEM stuff */
case PHB_LEM_FIR_AND_MASK:
phb->regs[PHB_LEM_FIR_ACCUM >> 3] &= val;
return;
case PHB_LEM_FIR_OR_MASK:
phb->regs[PHB_LEM_FIR_ACCUM >> 3] |= val;
return;
case PHB_LEM_ERROR_AND_MASK:
phb->regs[PHB_LEM_ERROR_MASK >> 3] &= val;
return;
case PHB_LEM_ERROR_OR_MASK:
phb->regs[PHB_LEM_ERROR_MASK >> 3] |= val;
return;
case PHB_LEM_WOF:
val = 0;
break;
}
/* Record whether it changed */
changed = phb->regs[off >> 3] != val;
/* Store in register cache first */
phb->regs[off >> 3] = val;
/* Handle side effects */
switch (off) {
case PHB_PHB3_CONFIG:
if (changed) {
pnv_phb3_update_all_msi_regions(phb);
}
/* fall through */
case PHB_M32_BASE_ADDR:
case PHB_M32_BASE_MASK:
case PHB_M32_START_ADDR:
if (changed) {
pnv_phb3_check_m32(phb);
}
break;
case PHB_M64_UPPER_BITS:
if (changed) {
pnv_phb3_check_all_m64s(phb);
}
break;
case PHB_LSI_SOURCE_ID:
if (changed) {
pnv_phb3_lsi_src_id_write(phb, val);
}
break;
/* IODA table accesses */
case PHB_IODA_DATA0:
pnv_phb3_ioda_write(phb, val);
break;
/* RTC invalidation */
case PHB_RTC_INVALIDATE:
pnv_phb3_rtc_invalidate(phb, val);
break;
/* FFI request */
case PHB_FFI_REQUEST:
pnv_phb3_msi_ffi(&phb->msis, val);
break;
/* Silent simple writes */
case PHB_CONFIG_ADDRESS:
case PHB_IODA_ADDR:
case PHB_TCE_KILL:
case PHB_TCE_SPEC_CTL:
case PHB_PEST_BAR:
case PHB_PELTV_BAR:
case PHB_RTT_BAR:
case PHB_RBA_BAR:
case PHB_IVT_BAR:
case PHB_FFI_LOCK:
case PHB_LEM_FIR_ACCUM:
case PHB_LEM_ERROR_MASK:
case PHB_LEM_ACTION0:
case PHB_LEM_ACTION1:
break;
/* Noise on anything else */
default:
qemu_log_mask(LOG_UNIMP, "phb3: reg_write 0x%"PRIx64"=%"PRIx64"\n",
off, val);
}
}
uint64_t pnv_phb3_reg_read(void *opaque, hwaddr off, unsigned size)
{
PnvPHB3 *phb = opaque;
PCIHostState *pci = PCI_HOST_BRIDGE(phb);
uint64_t val;
if ((off & 0xfffc) == PHB_CONFIG_DATA) {
return pnv_phb3_config_read(phb, off & 0x3, size);
}
/* Other registers are 64-bit only */
if (size != 8 || off & 0x7) {
phb3_error(phb, "Invalid register access, offset: 0x%"PRIx64" size: %d",
off, size);
return ~0ull;
}
/* Default read from cache */
val = phb->regs[off >> 3];
switch (off) {
/* Simulate venice DD2.0 */
case PHB_VERSION:
return 0x000000a300000005ull;
case PHB_PCIE_SYSTEM_CONFIG:
return 0x441100fc30000000;
/* IODA table accesses */
case PHB_IODA_DATA0:
return pnv_phb3_ioda_read(phb);
/* Link training always appears trained */
case PHB_PCIE_DLP_TRAIN_CTL:
if (!pci_find_device(pci->bus, 1, 0)) {
return 0;
}
return PHB_PCIE_DLP_INBAND_PRESENCE | PHB_PCIE_DLP_TC_DL_LINKACT;
/* FFI Lock */
case PHB_FFI_LOCK:
/* Set lock and return previous value */
phb->regs[off >> 3] |= PHB_FFI_LOCK_STATE;
return val;
/* DMA read sync: make it look like it's complete */
case PHB_DMARD_SYNC:
return PHB_DMARD_SYNC_COMPLETE;
/* Silent simple reads */
case PHB_PHB3_CONFIG:
case PHB_M32_BASE_ADDR:
case PHB_M32_BASE_MASK:
case PHB_M32_START_ADDR:
case PHB_CONFIG_ADDRESS:
case PHB_IODA_ADDR:
case PHB_RTC_INVALIDATE:
case PHB_TCE_KILL:
case PHB_TCE_SPEC_CTL:
case PHB_PEST_BAR:
case PHB_PELTV_BAR:
case PHB_RTT_BAR:
case PHB_RBA_BAR:
case PHB_IVT_BAR:
case PHB_M64_UPPER_BITS:
case PHB_LEM_FIR_ACCUM:
case PHB_LEM_ERROR_MASK:
case PHB_LEM_ACTION0:
case PHB_LEM_ACTION1:
break;
/* Noise on anything else */
default:
qemu_log_mask(LOG_UNIMP, "phb3: reg_read 0x%"PRIx64"=%"PRIx64"\n",
off, val);
}
return val;
}
static const MemoryRegionOps pnv_phb3_reg_ops = {
.read = pnv_phb3_reg_read,
.write = pnv_phb3_reg_write,
.valid.min_access_size = 1,
.valid.max_access_size = 8,
.impl.min_access_size = 1,
.impl.max_access_size = 8,
.endianness = DEVICE_BIG_ENDIAN,
};
static int pnv_phb3_map_irq(PCIDevice *pci_dev, int irq_num)
{
/* Check that out properly ... */
return irq_num & 3;
}
static void pnv_phb3_set_irq(void *opaque, int irq_num, int level)
{
PnvPHB3 *phb = opaque;
/* LSI only ... */
if (irq_num > 3) {
phb3_error(phb, "Unknown IRQ to set %d", irq_num);
}
qemu_set_irq(phb->qirqs[irq_num], level);
}
static bool pnv_phb3_resolve_pe(PnvPhb3DMASpace *ds)
{
uint64_t rtt, addr;
uint16_t rte;
int bus_num;
/* Already resolved ? */
if (ds->pe_num != PHB_INVALID_PE) {
return true;
}
/* We need to lookup the RTT */
rtt = ds->phb->regs[PHB_RTT_BAR >> 3];
if (!(rtt & PHB_RTT_BAR_ENABLE)) {
phb3_error(ds->phb, "DMA with RTT BAR disabled !");
/* Set error bits ? fence ? ... */
return false;
}
/* Read RTE */
bus_num = pci_bus_num(ds->bus);
addr = rtt & PHB_RTT_BASE_ADDRESS_MASK;
addr += 2 * ((bus_num << 8) | ds->devfn);
if (dma_memory_read(&address_space_memory, addr, &rte, sizeof(rte))) {
phb3_error(ds->phb, "Failed to read RTT entry at 0x%"PRIx64, addr);
/* Set error bits ? fence ? ... */
return false;
}
rte = be16_to_cpu(rte);
/* Fail upon reading of invalid PE# */
if (rte >= PNV_PHB3_NUM_PE) {
phb3_error(ds->phb, "RTE for RID 0x%x invalid (%04x", ds->devfn, rte);
/* Set error bits ? fence ? ... */
return false;
}
ds->pe_num = rte;
return true;
}
static void pnv_phb3_translate_tve(PnvPhb3DMASpace *ds, hwaddr addr,
bool is_write, uint64_t tve,
IOMMUTLBEntry *tlb)
{
uint64_t tta = GETFIELD(IODA2_TVT_TABLE_ADDR, tve);
int32_t lev = GETFIELD(IODA2_TVT_NUM_LEVELS, tve);
uint32_t tts = GETFIELD(IODA2_TVT_TCE_TABLE_SIZE, tve);
uint32_t tps = GETFIELD(IODA2_TVT_IO_PSIZE, tve);
PnvPHB3 *phb = ds->phb;
/* Invalid levels */
if (lev > 4) {
phb3_error(phb, "Invalid #levels in TVE %d", lev);
return;
}
/* IO Page Size of 0 means untranslated, else use TCEs */
if (tps == 0) {
/*
* We only support non-translate in top window.
*
* TODO: Venice/Murano support it on bottom window above 4G and
* Naples suports it on everything
*/
if (!(tve & PPC_BIT(51))) {
phb3_error(phb, "xlate for invalid non-translate TVE");
return;
}
/* TODO: Handle boundaries */
/* Use 4k pages like q35 ... for now */
tlb->iova = addr & 0xfffffffffffff000ull;
tlb->translated_addr = addr & 0x0003fffffffff000ull;
tlb->addr_mask = 0xfffull;
tlb->perm = IOMMU_RW;
} else {
uint32_t tce_shift, tbl_shift, sh;
uint64_t base, taddr, tce, tce_mask;
/* TVE disabled ? */
if (tts == 0) {
phb3_error(phb, "xlate for invalid translated TVE");
return;
}
/* Address bits per bottom level TCE entry */
tce_shift = tps + 11;
/* Address bits per table level */
tbl_shift = tts + 8;
/* Top level table base address */
base = tta << 12;
/* Total shift to first level */
sh = tbl_shift * lev + tce_shift;
/* TODO: Multi-level untested */
while ((lev--) >= 0) {
/* Grab the TCE address */
taddr = base | (((addr >> sh) & ((1ul << tbl_shift) - 1)) << 3);
if (dma_memory_read(&address_space_memory, taddr, &tce,
sizeof(tce))) {
phb3_error(phb, "Failed to read TCE at 0x%"PRIx64, taddr);
return;
}
tce = be64_to_cpu(tce);
/* Check permission for indirect TCE */
if ((lev >= 0) && !(tce & 3)) {
phb3_error(phb, "Invalid indirect TCE at 0x%"PRIx64, taddr);
phb3_error(phb, " xlate %"PRIx64":%c TVE=%"PRIx64, addr,
is_write ? 'W' : 'R', tve);
phb3_error(phb, " tta=%"PRIx64" lev=%d tts=%d tps=%d",
tta, lev, tts, tps);
return;
}
sh -= tbl_shift;
base = tce & ~0xfffull;
}
/* We exit the loop with TCE being the final TCE */
tce_mask = ~((1ull << tce_shift) - 1);
tlb->iova = addr & tce_mask;
tlb->translated_addr = tce & tce_mask;
tlb->addr_mask = ~tce_mask;
tlb->perm = tce & 3;
if ((is_write & !(tce & 2)) || ((!is_write) && !(tce & 1))) {
phb3_error(phb, "TCE access fault at 0x%"PRIx64, taddr);
phb3_error(phb, " xlate %"PRIx64":%c TVE=%"PRIx64, addr,
is_write ? 'W' : 'R', tve);
phb3_error(phb, " tta=%"PRIx64" lev=%d tts=%d tps=%d",
tta, lev, tts, tps);
}
}
}
static IOMMUTLBEntry pnv_phb3_translate_iommu(IOMMUMemoryRegion *iommu,
hwaddr addr,
IOMMUAccessFlags flag,
int iommu_idx)
{
PnvPhb3DMASpace *ds = container_of(iommu, PnvPhb3DMASpace, dma_mr);
int tve_sel;
uint64_t tve, cfg;
IOMMUTLBEntry ret = {
.target_as = &address_space_memory,
.iova = addr,
.translated_addr = 0,
.addr_mask = ~(hwaddr)0,
.perm = IOMMU_NONE,
};
PnvPHB3 *phb = ds->phb;
/* Resolve PE# */
if (!pnv_phb3_resolve_pe(ds)) {
phb3_error(phb, "Failed to resolve PE# for bus @%p (%d) devfn 0x%x",
ds->bus, pci_bus_num(ds->bus), ds->devfn);
return ret;
}
/* Check top bits */
switch (addr >> 60) {
case 00:
/* DMA or 32-bit MSI ? */
cfg = ds->phb->regs[PHB_PHB3_CONFIG >> 3];
if ((cfg & PHB_PHB3C_32BIT_MSI_EN) &&
((addr & 0xffffffffffff0000ull) == 0xffff0000ull)) {
phb3_error(phb, "xlate on 32-bit MSI region");
return ret;
}
/* Choose TVE XXX Use PHB3 Control Register */
tve_sel = (addr >> 59) & 1;
tve = ds->phb->ioda_TVT[ds->pe_num * 2 + tve_sel];
pnv_phb3_translate_tve(ds, addr, flag & IOMMU_WO, tve, &ret);
break;
case 01:
phb3_error(phb, "xlate on 64-bit MSI region");
break;
default:
phb3_error(phb, "xlate on unsupported address 0x%"PRIx64, addr);
}
return ret;
}
#define TYPE_PNV_PHB3_IOMMU_MEMORY_REGION "pnv-phb3-iommu-memory-region"
#define PNV_PHB3_IOMMU_MEMORY_REGION(obj) \
OBJECT_CHECK(IOMMUMemoryRegion, (obj), TYPE_PNV_PHB3_IOMMU_MEMORY_REGION)
static void pnv_phb3_iommu_memory_region_class_init(ObjectClass *klass,
void *data)
{
IOMMUMemoryRegionClass *imrc = IOMMU_MEMORY_REGION_CLASS(klass);
imrc->translate = pnv_phb3_translate_iommu;
}
static const TypeInfo pnv_phb3_iommu_memory_region_info = {
.parent = TYPE_IOMMU_MEMORY_REGION,
.name = TYPE_PNV_PHB3_IOMMU_MEMORY_REGION,
.class_init = pnv_phb3_iommu_memory_region_class_init,
};
/*
* MSI/MSIX memory region implementation.
* The handler handles both MSI and MSIX.
*/
static void pnv_phb3_msi_write(void *opaque, hwaddr addr,
uint64_t data, unsigned size)
{
PnvPhb3DMASpace *ds = opaque;
/* Resolve PE# */
if (!pnv_phb3_resolve_pe(ds)) {
phb3_error(ds->phb, "Failed to resolve PE# for bus @%p (%d) devfn 0x%x",
ds->bus, pci_bus_num(ds->bus), ds->devfn);
return;
}
pnv_phb3_msi_send(&ds->phb->msis, addr, data, ds->pe_num);
}
/* There is no .read as the read result is undefined by PCI spec */
static uint64_t pnv_phb3_msi_read(void *opaque, hwaddr addr, unsigned size)
{
PnvPhb3DMASpace *ds = opaque;
phb3_error(ds->phb, "invalid read @ 0x%" HWADDR_PRIx, addr);
return -1;
}
static const MemoryRegionOps pnv_phb3_msi_ops = {
.read = pnv_phb3_msi_read,
.write = pnv_phb3_msi_write,
.endianness = DEVICE_LITTLE_ENDIAN
};
static AddressSpace *pnv_phb3_dma_iommu(PCIBus *bus, void *opaque, int devfn)
{
PnvPHB3 *phb = opaque;
PnvPhb3DMASpace *ds;
QLIST_FOREACH(ds, &phb->dma_spaces, list) {
if (ds->bus == bus && ds->devfn == devfn) {
break;
}
}
if (ds == NULL) {
ds = g_malloc0(sizeof(PnvPhb3DMASpace));
ds->bus = bus;
ds->devfn = devfn;
ds->pe_num = PHB_INVALID_PE;
ds->phb = phb;
memory_region_init_iommu(&ds->dma_mr, sizeof(ds->dma_mr),
TYPE_PNV_PHB3_IOMMU_MEMORY_REGION,
OBJECT(phb), "phb3_iommu", UINT64_MAX);
address_space_init(&ds->dma_as, MEMORY_REGION(&ds->dma_mr),
"phb3_iommu");
memory_region_init_io(&ds->msi32_mr, OBJECT(phb), &pnv_phb3_msi_ops,
ds, "msi32", 0x10000);
memory_region_init_io(&ds->msi64_mr, OBJECT(phb), &pnv_phb3_msi_ops,
ds, "msi64", 0x100000);
pnv_phb3_update_msi_regions(ds);
QLIST_INSERT_HEAD(&phb->dma_spaces, ds, list);
}
return &ds->dma_as;
}
static void pnv_phb3_instance_init(Object *obj)
{
PnvPHB3 *phb = PNV_PHB3(obj);
QLIST_INIT(&phb->dma_spaces);
/* LSI sources */
object_initialize_child(obj, "lsi", &phb->lsis, sizeof(phb->lsis),
TYPE_ICS, &error_abort, NULL);
/* Default init ... will be fixed by HW inits */
phb->lsis.offset = 0;
/* MSI sources */
object_initialize_child(obj, "msi", &phb->msis, sizeof(phb->msis),
TYPE_PHB3_MSI, &error_abort, NULL);
/* Power Bus Common Queue */
object_initialize_child(obj, "pbcq", &phb->pbcq, sizeof(phb->pbcq),
TYPE_PNV_PBCQ, &error_abort, NULL);
/* Root Port */
object_initialize_child(obj, "root", &phb->root, sizeof(phb->root),
TYPE_PNV_PHB3_ROOT_PORT, &error_abort, NULL);
qdev_prop_set_int32(DEVICE(&phb->root), "addr", PCI_DEVFN(0, 0));
qdev_prop_set_bit(DEVICE(&phb->root), "multifunction", false);
}
static void pnv_phb3_realize(DeviceState *dev, Error **errp)
{
PnvPHB3 *phb = PNV_PHB3(dev);
PCIHostState *pci = PCI_HOST_BRIDGE(dev);
PnvMachineState *pnv = PNV_MACHINE(qdev_get_machine());
Error *local_err = NULL;
int i;
if (phb->phb_id >= PNV8_CHIP_PHB3_MAX) {
error_setg(errp, "invalid PHB index: %d", phb->phb_id);
return;
}
/* LSI sources */
object_property_set_link(OBJECT(&phb->lsis), OBJECT(pnv), "xics",
&error_abort);
object_property_set_int(OBJECT(&phb->lsis), PNV_PHB3_NUM_LSI, "nr-irqs",
&error_abort);
object_property_set_bool(OBJECT(&phb->lsis), true, "realized", &local_err);
if (local_err) {
error_propagate(errp, local_err);
return;
}
for (i = 0; i < phb->lsis.nr_irqs; i++) {
ics_set_irq_type(&phb->lsis, i, true);
}
phb->qirqs = qemu_allocate_irqs(ics_set_irq, &phb->lsis, phb->lsis.nr_irqs);
/* MSI sources */
object_property_set_link(OBJECT(&phb->msis), OBJECT(phb), "phb",
&error_abort);
object_property_set_link(OBJECT(&phb->msis), OBJECT(pnv), "xics",
&error_abort);
object_property_set_int(OBJECT(&phb->msis), PHB3_MAX_MSI, "nr-irqs",
&error_abort);
object_property_set_bool(OBJECT(&phb->msis), true, "realized", &local_err);
if (local_err) {
error_propagate(errp, local_err);
return;
}
/* Power Bus Common Queue */
object_property_set_link(OBJECT(&phb->pbcq), OBJECT(phb), "phb",
&error_abort);
object_property_set_bool(OBJECT(&phb->pbcq), true, "realized", &local_err);
if (local_err) {
error_propagate(errp, local_err);
return;
}
/* Controller Registers */
memory_region_init_io(&phb->mr_regs, OBJECT(phb), &pnv_phb3_reg_ops, phb,
"phb3-regs", 0x1000);
/*
* PHB3 doesn't support IO space. However, qemu gets very upset if
* we don't have an IO region to anchor IO BARs onto so we just
* initialize one which we never hook up to anything
*/
memory_region_init(&phb->pci_io, OBJECT(phb), "pci-io", 0x10000);
memory_region_init(&phb->pci_mmio, OBJECT(phb), "pci-mmio",
PCI_MMIO_TOTAL_SIZE);
pci->bus = pci_register_root_bus(dev, "root-bus",
pnv_phb3_set_irq, pnv_phb3_map_irq, phb,
&phb->pci_mmio, &phb->pci_io,
0, 4, TYPE_PNV_PHB3_ROOT_BUS);
pci_setup_iommu(pci->bus, pnv_phb3_dma_iommu, phb);
/* Add a single Root port */
qdev_prop_set_uint8(DEVICE(&phb->root), "chassis", phb->chip_id);
qdev_prop_set_uint16(DEVICE(&phb->root), "slot", phb->phb_id);
qdev_set_parent_bus(DEVICE(&phb->root), BUS(pci->bus));
qdev_init_nofail(DEVICE(&phb->root));
}
void pnv_phb3_update_regions(PnvPHB3 *phb)
{
PnvPBCQState *pbcq = &phb->pbcq;
/* Unmap first always */
if (memory_region_is_mapped(&phb->mr_regs)) {
memory_region_del_subregion(&pbcq->phbbar, &phb->mr_regs);
}
/* Map registers if enabled */
if (memory_region_is_mapped(&pbcq->phbbar)) {
/* TODO: We should use the PHB BAR 2 register but we don't ... */
memory_region_add_subregion(&pbcq->phbbar, 0, &phb->mr_regs);
}
/* Check/update m32 */
if (memory_region_is_mapped(&phb->mr_m32)) {
pnv_phb3_check_m32(phb);
}
pnv_phb3_check_all_m64s(phb);
}
static const char *pnv_phb3_root_bus_path(PCIHostState *host_bridge,
PCIBus *rootbus)
{
PnvPHB3 *phb = PNV_PHB3(host_bridge);
snprintf(phb->bus_path, sizeof(phb->bus_path), "00%02x:%02x",
phb->chip_id, phb->phb_id);
return phb->bus_path;
}
static Property pnv_phb3_properties[] = {
DEFINE_PROP_UINT32("index", PnvPHB3, phb_id, 0),
DEFINE_PROP_UINT32("chip-id", PnvPHB3, chip_id, 0),
DEFINE_PROP_END_OF_LIST(),
};
static void pnv_phb3_class_init(ObjectClass *klass, void *data)
{
PCIHostBridgeClass *hc = PCI_HOST_BRIDGE_CLASS(klass);
DeviceClass *dc = DEVICE_CLASS(klass);
hc->root_bus_path = pnv_phb3_root_bus_path;
dc->realize = pnv_phb3_realize;
device_class_set_props(dc, pnv_phb3_properties);
set_bit(DEVICE_CATEGORY_BRIDGE, dc->categories);
dc->user_creatable = false;
}
static const TypeInfo pnv_phb3_type_info = {
.name = TYPE_PNV_PHB3,
.parent = TYPE_PCIE_HOST_BRIDGE,
.instance_size = sizeof(PnvPHB3),
.class_init = pnv_phb3_class_init,
.instance_init = pnv_phb3_instance_init,
};
static void pnv_phb3_root_bus_class_init(ObjectClass *klass, void *data)
{
BusClass *k = BUS_CLASS(klass);
/*
* PHB3 has only a single root complex. Enforce the limit on the
* parent bus
*/
k->max_dev = 1;
}
static const TypeInfo pnv_phb3_root_bus_info = {
.name = TYPE_PNV_PHB3_ROOT_BUS,
.parent = TYPE_PCIE_BUS,
.class_init = pnv_phb3_root_bus_class_init,
.interfaces = (InterfaceInfo[]) {
{ INTERFACE_PCIE_DEVICE },
{ }
},
};
static void pnv_phb3_root_port_realize(DeviceState *dev, Error **errp)
{
PCIERootPortClass *rpc = PCIE_ROOT_PORT_GET_CLASS(dev);
Error *local_err = NULL;
rpc->parent_realize(dev, &local_err);
if (local_err) {
error_propagate(errp, local_err);
return;
}
}
static void pnv_phb3_root_port_class_init(ObjectClass *klass, void *data)
{
DeviceClass *dc = DEVICE_CLASS(klass);
PCIDeviceClass *k = PCI_DEVICE_CLASS(klass);
PCIERootPortClass *rpc = PCIE_ROOT_PORT_CLASS(klass);
dc->desc = "IBM PHB3 PCIE Root Port";
device_class_set_parent_realize(dc, pnv_phb3_root_port_realize,
&rpc->parent_realize);
dc->user_creatable = false;
k->vendor_id = PCI_VENDOR_ID_IBM;
k->device_id = 0x03dc;
k->revision = 0;
rpc->exp_offset = 0x48;
rpc->aer_offset = 0x100;
}
static const TypeInfo pnv_phb3_root_port_info = {
.name = TYPE_PNV_PHB3_ROOT_PORT,
.parent = TYPE_PCIE_ROOT_PORT,
.instance_size = sizeof(PnvPHB3RootPort),
.class_init = pnv_phb3_root_port_class_init,
};
static void pnv_phb3_register_types(void)
{
type_register_static(&pnv_phb3_root_bus_info);
type_register_static(&pnv_phb3_root_port_info);
type_register_static(&pnv_phb3_type_info);
type_register_static(&pnv_phb3_iommu_memory_region_info);
}
type_init(pnv_phb3_register_types)