summaryrefslogblamecommitdiffstats
path: root/hw/pci-host/pnv_phb4.c
blob: 03daf40a237b8ae694baeb0d83b3c5d7530040d5 (plain) (tree)
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025
1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045





















                                                                  
                       



























































































































































































































































































































































































































































































































































































































































































































































































































































































































































































































































                                                                                
                                                                         













































































































                                                                               
                                                                         
                   
                                                                              








                                                                     




































                                                                             
                                                                  





                                         
                                                                              
                                                  
































































                                                                              
                                











































































                                                                         
                               


































































                                                                            
/*
 * QEMU PowerPC PowerNV (POWER9) PHB4 model
 *
 * Copyright (c) 2018-2020, IBM Corporation.
 *
 * This code is licensed under the GPL version 2 or later. See the
 * COPYING file in the top-level directory.
 */
#include "qemu/osdep.h"
#include "qemu/log.h"
#include "qapi/visitor.h"
#include "qapi/error.h"
#include "qemu-common.h"
#include "monitor/monitor.h"
#include "target/ppc/cpu.h"
#include "hw/pci-host/pnv_phb4_regs.h"
#include "hw/pci-host/pnv_phb4.h"
#include "hw/pci/pcie_host.h"
#include "hw/pci/pcie_port.h"
#include "hw/ppc/pnv.h"
#include "hw/ppc/pnv_xscom.h"
#include "hw/irq.h"
#include "hw/qdev-properties.h"
#include "qom/object.h"

#define phb_error(phb, fmt, ...)                                        \
    qemu_log_mask(LOG_GUEST_ERROR, "phb4[%d:%d]: " fmt "\n",            \
                  (phb)->chip_id, (phb)->phb_id, ## __VA_ARGS__)

/*
 * QEMU version of the GETFIELD/SETFIELD macros
 *
 * These are common with the PnvXive model.
 */
static inline uint64_t GETFIELD(uint64_t mask, uint64_t word)
{
    return (word & mask) >> ctz64(mask);
}

static inline uint64_t SETFIELD(uint64_t mask, uint64_t word,
                                uint64_t value)
{
    return (word & ~mask) | ((value << ctz64(mask)) & mask);
}

static PCIDevice *pnv_phb4_find_cfg_dev(PnvPHB4 *phb)
{
    PCIHostState *pci = PCI_HOST_BRIDGE(phb);
    uint64_t addr = phb->regs[PHB_CONFIG_ADDRESS >> 3];
    uint8_t bus, devfn;

    if (!(addr >> 63)) {
        return NULL;
    }
    bus = (addr >> 52) & 0xff;
    devfn = (addr >> 44) & 0xff;

    /* We don't access the root complex this way */
    if (bus == 0 && devfn == 0) {
        return NULL;
    }
    return pci_find_device(pci->bus, bus, devfn);
}

/*
 * The CONFIG_DATA register expects little endian accesses, but as the
 * region is big endian, we have to swap the value.
 */
static void pnv_phb4_config_write(PnvPHB4 *phb, unsigned off,
                                  unsigned size, uint64_t val)
{
    uint32_t cfg_addr, limit;
    PCIDevice *pdev;

    pdev = pnv_phb4_find_cfg_dev(phb);
    if (!pdev) {
        return;
    }
    cfg_addr = (phb->regs[PHB_CONFIG_ADDRESS >> 3] >> 32) & 0xffc;
    cfg_addr |= off;
    limit = pci_config_size(pdev);
    if (limit <= cfg_addr) {
        /*
         * conventional pci device can be behind pcie-to-pci bridge.
         * 256 <= addr < 4K has no effects.
         */
        return;
    }
    switch (size) {
    case 1:
        break;
    case 2:
        val = bswap16(val);
        break;
    case 4:
        val = bswap32(val);
        break;
    default:
        g_assert_not_reached();
    }
    pci_host_config_write_common(pdev, cfg_addr, limit, val, size);
}

static uint64_t pnv_phb4_config_read(PnvPHB4 *phb, unsigned off,
                                     unsigned size)
{
    uint32_t cfg_addr, limit;
    PCIDevice *pdev;
    uint64_t val;

    pdev = pnv_phb4_find_cfg_dev(phb);
    if (!pdev) {
        return ~0ull;
    }
    cfg_addr = (phb->regs[PHB_CONFIG_ADDRESS >> 3] >> 32) & 0xffc;
    cfg_addr |= off;
    limit = pci_config_size(pdev);
    if (limit <= cfg_addr) {
        /*
         * conventional pci device can be behind pcie-to-pci bridge.
         * 256 <= addr < 4K has no effects.
         */
        return ~0ull;
    }
    val = pci_host_config_read_common(pdev, cfg_addr, limit, size);
    switch (size) {
    case 1:
        return val;
    case 2:
        return bswap16(val);
    case 4:
        return bswap32(val);
    default:
        g_assert_not_reached();
    }
}

/*
 * Root complex register accesses are memory mapped.
 */
static void pnv_phb4_rc_config_write(PnvPHB4 *phb, unsigned off,
                                     unsigned size, uint64_t val)
{
    PCIHostState *pci = PCI_HOST_BRIDGE(phb);
    PCIDevice *pdev;

    if (size != 4) {
        phb_error(phb, "rc_config_write invalid size %d\n", size);
        return;
    }

    pdev = pci_find_device(pci->bus, 0, 0);
    assert(pdev);

    pci_host_config_write_common(pdev, off, PHB_RC_CONFIG_SIZE,
                                 bswap32(val), 4);
}

static uint64_t pnv_phb4_rc_config_read(PnvPHB4 *phb, unsigned off,
                                        unsigned size)
{
    PCIHostState *pci = PCI_HOST_BRIDGE(phb);
    PCIDevice *pdev;
    uint64_t val;

    if (size != 4) {
        phb_error(phb, "rc_config_read invalid size %d\n", size);
        return ~0ull;
    }

    pdev = pci_find_device(pci->bus, 0, 0);
    assert(pdev);

    val = pci_host_config_read_common(pdev, off, PHB_RC_CONFIG_SIZE, 4);
    return bswap32(val);
}

static void pnv_phb4_check_mbt(PnvPHB4 *phb, uint32_t index)
{
    uint64_t base, start, size, mbe0, mbe1;
    MemoryRegion *parent;
    char name[64];

    /* Unmap first */
    if (memory_region_is_mapped(&phb->mr_mmio[index])) {
        /* Should we destroy it in RCU friendly way... ? */
        memory_region_del_subregion(phb->mr_mmio[index].container,
                                    &phb->mr_mmio[index]);
    }

    /* Get table entry */
    mbe0 = phb->ioda_MBT[(index << 1)];
    mbe1 = phb->ioda_MBT[(index << 1) + 1];

    if (!(mbe0 & IODA3_MBT0_ENABLE)) {
        return;
    }

    /* Grab geometry from registers */
    base = GETFIELD(IODA3_MBT0_BASE_ADDR, mbe0) << 12;
    size = GETFIELD(IODA3_MBT1_MASK, mbe1) << 12;
    size |= 0xff00000000000000ull;
    size = ~size + 1;

    /* Calculate PCI side start address based on M32/M64 window type */
    if (mbe0 & IODA3_MBT0_TYPE_M32) {
        start = phb->regs[PHB_M32_START_ADDR >> 3];
        if ((start + size) > 0x100000000ull) {
            phb_error(phb, "M32 set beyond 4GB boundary !");
            size = 0x100000000 - start;
        }
    } else {
        start = base | (phb->regs[PHB_M64_UPPER_BITS >> 3]);
    }

    /* TODO: Figure out how to implemet/decode AOMASK */

    /* Check if it matches an enabled MMIO region in the PEC stack */
    if (memory_region_is_mapped(&phb->stack->mmbar0) &&
        base >= phb->stack->mmio0_base &&
        (base + size) <= (phb->stack->mmio0_base + phb->stack->mmio0_size)) {
        parent = &phb->stack->mmbar0;
        base -= phb->stack->mmio0_base;
    } else if (memory_region_is_mapped(&phb->stack->mmbar1) &&
        base >= phb->stack->mmio1_base &&
        (base + size) <= (phb->stack->mmio1_base + phb->stack->mmio1_size)) {
        parent = &phb->stack->mmbar1;
        base -= phb->stack->mmio1_base;
    } else {
        phb_error(phb, "PHB MBAR %d out of parent bounds", index);
        return;
    }

    /* Create alias (better name ?) */
    snprintf(name, sizeof(name), "phb4-mbar%d", index);
    memory_region_init_alias(&phb->mr_mmio[index], OBJECT(phb), name,
                             &phb->pci_mmio, start, size);
    memory_region_add_subregion(parent, base, &phb->mr_mmio[index]);
}

static void pnv_phb4_check_all_mbt(PnvPHB4 *phb)
{
    uint64_t i;
    uint32_t num_windows = phb->big_phb ? PNV_PHB4_MAX_MMIO_WINDOWS :
        PNV_PHB4_MIN_MMIO_WINDOWS;

    for (i = 0; i < num_windows; i++) {
        pnv_phb4_check_mbt(phb, i);
    }
}

static uint64_t *pnv_phb4_ioda_access(PnvPHB4 *phb,
                                      unsigned *out_table, unsigned *out_idx)
{
    uint64_t adreg = phb->regs[PHB_IODA_ADDR >> 3];
    unsigned int index = GETFIELD(PHB_IODA_AD_TADR, adreg);
    unsigned int table = GETFIELD(PHB_IODA_AD_TSEL, adreg);
    unsigned int mask;
    uint64_t *tptr = NULL;

    switch (table) {
    case IODA3_TBL_LIST:
        tptr = phb->ioda_LIST;
        mask = 7;
        break;
    case IODA3_TBL_MIST:
        tptr = phb->ioda_MIST;
        mask = phb->big_phb ? PNV_PHB4_MAX_MIST : (PNV_PHB4_MAX_MIST >> 1);
        mask -= 1;
        break;
    case IODA3_TBL_RCAM:
        mask = phb->big_phb ? 127 : 63;
        break;
    case IODA3_TBL_MRT:
        mask = phb->big_phb ? 15 : 7;
        break;
    case IODA3_TBL_PESTA:
    case IODA3_TBL_PESTB:
        mask = phb->big_phb ? PNV_PHB4_MAX_PEs : (PNV_PHB4_MAX_PEs >> 1);
        mask -= 1;
        break;
    case IODA3_TBL_TVT:
        tptr = phb->ioda_TVT;
        mask = phb->big_phb ? PNV_PHB4_MAX_TVEs : (PNV_PHB4_MAX_TVEs >> 1);
        mask -= 1;
        break;
    case IODA3_TBL_TCR:
    case IODA3_TBL_TDR:
        mask = phb->big_phb ? 1023 : 511;
        break;
    case IODA3_TBL_MBT:
        tptr = phb->ioda_MBT;
        mask = phb->big_phb ? PNV_PHB4_MAX_MBEs : (PNV_PHB4_MAX_MBEs >> 1);
        mask -= 1;
        break;
    case IODA3_TBL_MDT:
        tptr = phb->ioda_MDT;
        mask = phb->big_phb ? PNV_PHB4_MAX_PEs : (PNV_PHB4_MAX_PEs >> 1);
        mask -= 1;
        break;
    case IODA3_TBL_PEEV:
        tptr = phb->ioda_PEEV;
        mask = phb->big_phb ? PNV_PHB4_MAX_PEEVs : (PNV_PHB4_MAX_PEEVs >> 1);
        mask -= 1;
        break;
    default:
        phb_error(phb, "invalid IODA table %d", table);
        return NULL;
    }
    index &= mask;
    if (out_idx) {
        *out_idx = index;
    }
    if (out_table) {
        *out_table = table;
    }
    if (tptr) {
        tptr += index;
    }
    if (adreg & PHB_IODA_AD_AUTOINC) {
        index = (index + 1) & mask;
        adreg = SETFIELD(PHB_IODA_AD_TADR, adreg, index);
    }

    phb->regs[PHB_IODA_ADDR >> 3] = adreg;
    return tptr;
}

static uint64_t pnv_phb4_ioda_read(PnvPHB4 *phb)
{
    unsigned table, idx;
    uint64_t *tptr;

    tptr = pnv_phb4_ioda_access(phb, &table, &idx);
    if (!tptr) {
        /* Special PESTA case */
        if (table == IODA3_TBL_PESTA) {
            return ((uint64_t)(phb->ioda_PEST_AB[idx] & 1)) << 63;
        } else if (table == IODA3_TBL_PESTB) {
            return ((uint64_t)(phb->ioda_PEST_AB[idx] & 2)) << 62;
        }
        /* Return 0 on unsupported tables, not ff's */
        return 0;
    }
    return *tptr;
}

static void pnv_phb4_ioda_write(PnvPHB4 *phb, uint64_t val)
{
    unsigned table, idx;
    uint64_t *tptr;

    tptr = pnv_phb4_ioda_access(phb, &table, &idx);
    if (!tptr) {
        /* Special PESTA case */
        if (table == IODA3_TBL_PESTA) {
            phb->ioda_PEST_AB[idx] &= ~1;
            phb->ioda_PEST_AB[idx] |= (val >> 63) & 1;
        } else if (table == IODA3_TBL_PESTB) {
            phb->ioda_PEST_AB[idx] &= ~2;
            phb->ioda_PEST_AB[idx] |= (val >> 62) & 2;
        }
        return;
    }

    /* Handle side effects */
    switch (table) {
    case IODA3_TBL_LIST:
        break;
    case IODA3_TBL_MIST: {
        /* Special mask for MIST partial write */
        uint64_t adreg = phb->regs[PHB_IODA_ADDR >> 3];
        uint32_t mmask = GETFIELD(PHB_IODA_AD_MIST_PWV, adreg);
        uint64_t v = *tptr;
        if (mmask == 0) {
            mmask = 0xf;
        }
        if (mmask & 8) {
            v &= 0x0000ffffffffffffull;
            v |= 0xcfff000000000000ull & val;
        }
        if (mmask & 4) {
            v &= 0xffff0000ffffffffull;
            v |= 0x0000cfff00000000ull & val;
        }
        if (mmask & 2) {
            v &= 0xffffffff0000ffffull;
            v |= 0x00000000cfff0000ull & val;
        }
        if (mmask & 1) {
            v &= 0xffffffffffff0000ull;
            v |= 0x000000000000cfffull & val;
        }
        *tptr = val;
        break;
    }
    case IODA3_TBL_MBT:
        *tptr = val;

        /* Copy accross the valid bit to the other half */
        phb->ioda_MBT[idx ^ 1] &= 0x7fffffffffffffffull;
        phb->ioda_MBT[idx ^ 1] |= 0x8000000000000000ull & val;

        /* Update mappings */
        pnv_phb4_check_mbt(phb, idx >> 1);
        break;
    default:
        *tptr = val;
    }
}

static void pnv_phb4_rtc_invalidate(PnvPHB4 *phb, uint64_t val)
{
    PnvPhb4DMASpace *ds;

    /* Always invalidate all for now ... */
    QLIST_FOREACH(ds, &phb->dma_spaces, list) {
        ds->pe_num = PHB_INVALID_PE;
    }
}

static void pnv_phb4_update_msi_regions(PnvPhb4DMASpace *ds)
{
    uint64_t cfg = ds->phb->regs[PHB_PHB4_CONFIG >> 3];

    if (cfg & PHB_PHB4C_32BIT_MSI_EN) {
        if (!memory_region_is_mapped(MEMORY_REGION(&ds->msi32_mr))) {
            memory_region_add_subregion(MEMORY_REGION(&ds->dma_mr),
                                        0xffff0000, &ds->msi32_mr);
        }
    } else {
        if (memory_region_is_mapped(MEMORY_REGION(&ds->msi32_mr))) {
            memory_region_del_subregion(MEMORY_REGION(&ds->dma_mr),
                                        &ds->msi32_mr);
        }
    }

    if (cfg & PHB_PHB4C_64BIT_MSI_EN) {
        if (!memory_region_is_mapped(MEMORY_REGION(&ds->msi64_mr))) {
            memory_region_add_subregion(MEMORY_REGION(&ds->dma_mr),
                                        (1ull << 60), &ds->msi64_mr);
        }
    } else {
        if (memory_region_is_mapped(MEMORY_REGION(&ds->msi64_mr))) {
            memory_region_del_subregion(MEMORY_REGION(&ds->dma_mr),
                                        &ds->msi64_mr);
        }
    }
}

static void pnv_phb4_update_all_msi_regions(PnvPHB4 *phb)
{
    PnvPhb4DMASpace *ds;

    QLIST_FOREACH(ds, &phb->dma_spaces, list) {
        pnv_phb4_update_msi_regions(ds);
    }
}

static void pnv_phb4_update_xsrc(PnvPHB4 *phb)
{
    int shift, flags, i, lsi_base;
    XiveSource *xsrc = &phb->xsrc;

    /* The XIVE source characteristics can be set at run time */
    if (phb->regs[PHB_CTRLR >> 3] & PHB_CTRLR_IRQ_PGSZ_64K) {
        shift = XIVE_ESB_64K;
    } else {
        shift = XIVE_ESB_4K;
    }
    if (phb->regs[PHB_CTRLR >> 3] & PHB_CTRLR_IRQ_STORE_EOI) {
        flags = XIVE_SRC_STORE_EOI;
    } else {
        flags = 0;
    }

    phb->xsrc.esb_shift = shift;
    phb->xsrc.esb_flags = flags;

    lsi_base = GETFIELD(PHB_LSI_SRC_ID, phb->regs[PHB_LSI_SOURCE_ID >> 3]);
    lsi_base <<= 3;

    /* TODO: handle reset values of PHB_LSI_SRC_ID */
    if (!lsi_base) {
        return;
    }

    /* TODO: need a xive_source_irq_reset_lsi() */
    bitmap_zero(xsrc->lsi_map, xsrc->nr_irqs);

    for (i = 0; i < xsrc->nr_irqs; i++) {
        bool msi = (i < lsi_base || i >= (lsi_base + 8));
        if (!msi) {
            xive_source_irq_set_lsi(xsrc, i);
        }
    }
}

static void pnv_phb4_reg_write(void *opaque, hwaddr off, uint64_t val,
                               unsigned size)
{
    PnvPHB4 *phb = PNV_PHB4(opaque);
    bool changed;

    /* Special case outbound configuration data */
    if ((off & 0xfffc) == PHB_CONFIG_DATA) {
        pnv_phb4_config_write(phb, off & 0x3, size, val);
        return;
    }

    /* Special case RC configuration space */
    if ((off & 0xf800) == PHB_RC_CONFIG_BASE) {
        pnv_phb4_rc_config_write(phb, off & 0x7ff, size, val);
        return;
    }

    /* Other registers are 64-bit only */
    if (size != 8 || off & 0x7) {
        phb_error(phb, "Invalid register access, offset: 0x%"PRIx64" size: %d",
                   off, size);
        return;
    }

    /* Handle masking */
    switch (off) {
    case PHB_LSI_SOURCE_ID:
        val &= PHB_LSI_SRC_ID;
        break;
    case PHB_M64_UPPER_BITS:
        val &= 0xff00000000000000ull;
        break;
    /* TCE Kill */
    case PHB_TCE_KILL:
        /* Clear top 3 bits which HW does to indicate successful queuing */
        val &= ~(PHB_TCE_KILL_ALL | PHB_TCE_KILL_PE | PHB_TCE_KILL_ONE);
        break;
    case PHB_Q_DMA_R:
        /*
         * This is enough logic to make SW happy but we aren't
         * actually quiescing the DMAs
         */
        if (val & PHB_Q_DMA_R_AUTORESET) {
            val = 0;
        } else {
            val &= PHB_Q_DMA_R_QUIESCE_DMA;
        }
        break;
    /* LEM stuff */
    case PHB_LEM_FIR_AND_MASK:
        phb->regs[PHB_LEM_FIR_ACCUM >> 3] &= val;
        return;
    case PHB_LEM_FIR_OR_MASK:
        phb->regs[PHB_LEM_FIR_ACCUM >> 3] |= val;
        return;
    case PHB_LEM_ERROR_AND_MASK:
        phb->regs[PHB_LEM_ERROR_MASK >> 3] &= val;
        return;
    case PHB_LEM_ERROR_OR_MASK:
        phb->regs[PHB_LEM_ERROR_MASK >> 3] |= val;
        return;
    case PHB_LEM_WOF:
        val = 0;
        break;
    /* TODO: More regs ..., maybe create a table with masks... */

    /* Read only registers */
    case PHB_CPU_LOADSTORE_STATUS:
    case PHB_ETU_ERR_SUMMARY:
    case PHB_PHB4_GEN_CAP:
    case PHB_PHB4_TCE_CAP:
    case PHB_PHB4_IRQ_CAP:
    case PHB_PHB4_EEH_CAP:
        return;
    }

    /* Record whether it changed */
    changed = phb->regs[off >> 3] != val;

    /* Store in register cache first */
    phb->regs[off >> 3] = val;

    /* Handle side effects */
    switch (off) {
    case PHB_PHB4_CONFIG:
        if (changed) {
            pnv_phb4_update_all_msi_regions(phb);
        }
        break;
    case PHB_M32_START_ADDR:
    case PHB_M64_UPPER_BITS:
        if (changed) {
            pnv_phb4_check_all_mbt(phb);
        }
        break;

    /* IODA table accesses */
    case PHB_IODA_DATA0:
        pnv_phb4_ioda_write(phb, val);
        break;

    /* RTC invalidation */
    case PHB_RTC_INVALIDATE:
        pnv_phb4_rtc_invalidate(phb, val);
        break;

    /* PHB Control (Affects XIVE source) */
    case PHB_CTRLR:
    case PHB_LSI_SOURCE_ID:
        pnv_phb4_update_xsrc(phb);
        break;

    /* Silent simple writes */
    case PHB_ASN_CMPM:
    case PHB_CONFIG_ADDRESS:
    case PHB_IODA_ADDR:
    case PHB_TCE_KILL:
    case PHB_TCE_SPEC_CTL:
    case PHB_PEST_BAR:
    case PHB_PELTV_BAR:
    case PHB_RTT_BAR:
    case PHB_LEM_FIR_ACCUM:
    case PHB_LEM_ERROR_MASK:
    case PHB_LEM_ACTION0:
    case PHB_LEM_ACTION1:
    case PHB_TCE_TAG_ENABLE:
    case PHB_INT_NOTIFY_ADDR:
    case PHB_INT_NOTIFY_INDEX:
    case PHB_DMARD_SYNC:
       break;

    /* Noise on anything else */
    default:
        qemu_log_mask(LOG_UNIMP, "phb4: reg_write 0x%"PRIx64"=%"PRIx64"\n",
                      off, val);
    }
}

static uint64_t pnv_phb4_reg_read(void *opaque, hwaddr off, unsigned size)
{
    PnvPHB4 *phb = PNV_PHB4(opaque);
    uint64_t val;

    if ((off & 0xfffc) == PHB_CONFIG_DATA) {
        return pnv_phb4_config_read(phb, off & 0x3, size);
    }

    /* Special case RC configuration space */
    if ((off & 0xf800) == PHB_RC_CONFIG_BASE) {
        return pnv_phb4_rc_config_read(phb, off & 0x7ff, size);
    }

    /* Other registers are 64-bit only */
    if (size != 8 || off & 0x7) {
        phb_error(phb, "Invalid register access, offset: 0x%"PRIx64" size: %d",
                   off, size);
        return ~0ull;
    }

    /* Default read from cache */
    val = phb->regs[off >> 3];

    switch (off) {
    case PHB_VERSION:
        return phb->version;

        /* Read-only */
    case PHB_PHB4_GEN_CAP:
        return 0xe4b8000000000000ull;
    case PHB_PHB4_TCE_CAP:
        return phb->big_phb ? 0x4008440000000400ull : 0x2008440000000200ull;
    case PHB_PHB4_IRQ_CAP:
        return phb->big_phb ? 0x0800000000001000ull : 0x0800000000000800ull;
    case PHB_PHB4_EEH_CAP:
        return phb->big_phb ? 0x2000000000000000ull : 0x1000000000000000ull;

    /* IODA table accesses */
    case PHB_IODA_DATA0:
        return pnv_phb4_ioda_read(phb);

    /* Link training always appears trained */
    case PHB_PCIE_DLP_TRAIN_CTL:
        /* TODO: Do something sensible with speed ? */
        return PHB_PCIE_DLP_INBAND_PRESENCE | PHB_PCIE_DLP_TL_LINKACT;

    /* DMA read sync: make it look like it's complete */
    case PHB_DMARD_SYNC:
        return PHB_DMARD_SYNC_COMPLETE;

    /* Silent simple reads */
    case PHB_LSI_SOURCE_ID:
    case PHB_CPU_LOADSTORE_STATUS:
    case PHB_ASN_CMPM:
    case PHB_PHB4_CONFIG:
    case PHB_M32_START_ADDR:
    case PHB_CONFIG_ADDRESS:
    case PHB_IODA_ADDR:
    case PHB_RTC_INVALIDATE:
    case PHB_TCE_KILL:
    case PHB_TCE_SPEC_CTL:
    case PHB_PEST_BAR:
    case PHB_PELTV_BAR:
    case PHB_RTT_BAR:
    case PHB_M64_UPPER_BITS:
    case PHB_CTRLR:
    case PHB_LEM_FIR_ACCUM:
    case PHB_LEM_ERROR_MASK:
    case PHB_LEM_ACTION0:
    case PHB_LEM_ACTION1:
    case PHB_TCE_TAG_ENABLE:
    case PHB_INT_NOTIFY_ADDR:
    case PHB_INT_NOTIFY_INDEX:
    case PHB_Q_DMA_R:
    case PHB_ETU_ERR_SUMMARY:
        break;

    /* Noise on anything else */
    default:
        qemu_log_mask(LOG_UNIMP, "phb4: reg_read 0x%"PRIx64"=%"PRIx64"\n",
                      off, val);
    }
    return val;
}

static const MemoryRegionOps pnv_phb4_reg_ops = {
    .read = pnv_phb4_reg_read,
    .write = pnv_phb4_reg_write,
    .valid.min_access_size = 1,
    .valid.max_access_size = 8,
    .impl.min_access_size = 1,
    .impl.max_access_size = 8,
    .endianness = DEVICE_BIG_ENDIAN,
};

static uint64_t pnv_phb4_xscom_read(void *opaque, hwaddr addr, unsigned size)
{
    PnvPHB4 *phb = PNV_PHB4(opaque);
    uint32_t reg = addr >> 3;
    uint64_t val;
    hwaddr offset;

    switch (reg) {
    case PHB_SCOM_HV_IND_ADDR:
        return phb->scom_hv_ind_addr_reg;

    case PHB_SCOM_HV_IND_DATA:
        if (!(phb->scom_hv_ind_addr_reg & PHB_SCOM_HV_IND_ADDR_VALID)) {
            phb_error(phb, "Invalid indirect address");
            return ~0ull;
        }
        size = (phb->scom_hv_ind_addr_reg & PHB_SCOM_HV_IND_ADDR_4B) ? 4 : 8;
        offset = GETFIELD(PHB_SCOM_HV_IND_ADDR_ADDR, phb->scom_hv_ind_addr_reg);
        val = pnv_phb4_reg_read(phb, offset, size);
        if (phb->scom_hv_ind_addr_reg & PHB_SCOM_HV_IND_ADDR_AUTOINC) {
            offset += size;
            offset &= 0x3fff;
            phb->scom_hv_ind_addr_reg = SETFIELD(PHB_SCOM_HV_IND_ADDR_ADDR,
                                                 phb->scom_hv_ind_addr_reg,
                                                 offset);
        }
        return val;
    case PHB_SCOM_ETU_LEM_FIR:
    case PHB_SCOM_ETU_LEM_FIR_AND:
    case PHB_SCOM_ETU_LEM_FIR_OR:
    case PHB_SCOM_ETU_LEM_FIR_MSK:
    case PHB_SCOM_ETU_LEM_ERR_MSK_AND:
    case PHB_SCOM_ETU_LEM_ERR_MSK_OR:
    case PHB_SCOM_ETU_LEM_ACT0:
    case PHB_SCOM_ETU_LEM_ACT1:
    case PHB_SCOM_ETU_LEM_WOF:
        offset = ((reg - PHB_SCOM_ETU_LEM_FIR) << 3) + PHB_LEM_FIR_ACCUM;
        return pnv_phb4_reg_read(phb, offset, size);
    case PHB_SCOM_ETU_PMON_CONFIG:
    case PHB_SCOM_ETU_PMON_CTR0:
    case PHB_SCOM_ETU_PMON_CTR1:
    case PHB_SCOM_ETU_PMON_CTR2:
    case PHB_SCOM_ETU_PMON_CTR3:
        offset = ((reg - PHB_SCOM_ETU_PMON_CONFIG) << 3) + PHB_PERFMON_CONFIG;
        return pnv_phb4_reg_read(phb, offset, size);

    default:
        qemu_log_mask(LOG_UNIMP, "phb4: xscom_read 0x%"HWADDR_PRIx"\n", addr);
        return ~0ull;
    }
}

static void pnv_phb4_xscom_write(void *opaque, hwaddr addr,
                                 uint64_t val, unsigned size)
{
    PnvPHB4 *phb = PNV_PHB4(opaque);
    uint32_t reg = addr >> 3;
    hwaddr offset;

    switch (reg) {
    case PHB_SCOM_HV_IND_ADDR:
        phb->scom_hv_ind_addr_reg = val & 0xe000000000001fff;
        break;
    case PHB_SCOM_HV_IND_DATA:
        if (!(phb->scom_hv_ind_addr_reg & PHB_SCOM_HV_IND_ADDR_VALID)) {
            phb_error(phb, "Invalid indirect address");
            break;
        }
        size = (phb->scom_hv_ind_addr_reg & PHB_SCOM_HV_IND_ADDR_4B) ? 4 : 8;
        offset = GETFIELD(PHB_SCOM_HV_IND_ADDR_ADDR, phb->scom_hv_ind_addr_reg);
        pnv_phb4_reg_write(phb, offset, val, size);
        if (phb->scom_hv_ind_addr_reg & PHB_SCOM_HV_IND_ADDR_AUTOINC) {
            offset += size;
            offset &= 0x3fff;
            phb->scom_hv_ind_addr_reg = SETFIELD(PHB_SCOM_HV_IND_ADDR_ADDR,
                                                 phb->scom_hv_ind_addr_reg,
                                                 offset);
        }
        break;
    case PHB_SCOM_ETU_LEM_FIR:
    case PHB_SCOM_ETU_LEM_FIR_AND:
    case PHB_SCOM_ETU_LEM_FIR_OR:
    case PHB_SCOM_ETU_LEM_FIR_MSK:
    case PHB_SCOM_ETU_LEM_ERR_MSK_AND:
    case PHB_SCOM_ETU_LEM_ERR_MSK_OR:
    case PHB_SCOM_ETU_LEM_ACT0:
    case PHB_SCOM_ETU_LEM_ACT1:
    case PHB_SCOM_ETU_LEM_WOF:
        offset = ((reg - PHB_SCOM_ETU_LEM_FIR) << 3) + PHB_LEM_FIR_ACCUM;
        pnv_phb4_reg_write(phb, offset, val, size);
        break;
    case PHB_SCOM_ETU_PMON_CONFIG:
    case PHB_SCOM_ETU_PMON_CTR0:
    case PHB_SCOM_ETU_PMON_CTR1:
    case PHB_SCOM_ETU_PMON_CTR2:
    case PHB_SCOM_ETU_PMON_CTR3:
        offset = ((reg - PHB_SCOM_ETU_PMON_CONFIG) << 3) + PHB_PERFMON_CONFIG;
        pnv_phb4_reg_write(phb, offset, val, size);
        break;
    default:
        qemu_log_mask(LOG_UNIMP, "phb4: xscom_write 0x%"HWADDR_PRIx
                      "=%"PRIx64"\n", addr, val);
    }
}

const MemoryRegionOps pnv_phb4_xscom_ops = {
    .read = pnv_phb4_xscom_read,
    .write = pnv_phb4_xscom_write,
    .valid.min_access_size = 8,
    .valid.max_access_size = 8,
    .impl.min_access_size = 8,
    .impl.max_access_size = 8,
    .endianness = DEVICE_BIG_ENDIAN,
};

static int pnv_phb4_map_irq(PCIDevice *pci_dev, int irq_num)
{
    /* Check that out properly ... */
    return irq_num & 3;
}

static void pnv_phb4_set_irq(void *opaque, int irq_num, int level)
{
    PnvPHB4 *phb = PNV_PHB4(opaque);
    uint32_t lsi_base;

    /* LSI only ... */
    if (irq_num > 3) {
        phb_error(phb, "IRQ %x is not an LSI", irq_num);
    }
    lsi_base = GETFIELD(PHB_LSI_SRC_ID, phb->regs[PHB_LSI_SOURCE_ID >> 3]);
    lsi_base <<= 3;
    qemu_set_irq(phb->qirqs[lsi_base + irq_num], level);
}

static bool pnv_phb4_resolve_pe(PnvPhb4DMASpace *ds)
{
    uint64_t rtt, addr;
    uint16_t rte;
    int bus_num;
    int num_PEs;

    /* Already resolved ? */
    if (ds->pe_num != PHB_INVALID_PE) {
        return true;
    }

    /* We need to lookup the RTT */
    rtt = ds->phb->regs[PHB_RTT_BAR >> 3];
    if (!(rtt & PHB_RTT_BAR_ENABLE)) {
        phb_error(ds->phb, "DMA with RTT BAR disabled !");
        /* Set error bits ? fence ? ... */
        return false;
    }

    /* Read RTE */
    bus_num = pci_bus_num(ds->bus);
    addr = rtt & PHB_RTT_BASE_ADDRESS_MASK;
    addr += 2 * ((bus_num << 8) | ds->devfn);
    if (dma_memory_read(&address_space_memory, addr, &rte, sizeof(rte))) {
        phb_error(ds->phb, "Failed to read RTT entry at 0x%"PRIx64, addr);
        /* Set error bits ? fence ? ... */
        return false;
    }
    rte = be16_to_cpu(rte);

    /* Fail upon reading of invalid PE# */
    num_PEs = ds->phb->big_phb ? PNV_PHB4_MAX_PEs : (PNV_PHB4_MAX_PEs >> 1);
    if (rte >= num_PEs) {
        phb_error(ds->phb, "RTE for RID 0x%x invalid (%04x", ds->devfn, rte);
        rte &= num_PEs - 1;
    }
    ds->pe_num = rte;
    return true;
}

static void pnv_phb4_translate_tve(PnvPhb4DMASpace *ds, hwaddr addr,
                                   bool is_write, uint64_t tve,
                                   IOMMUTLBEntry *tlb)
{
    uint64_t tta = GETFIELD(IODA3_TVT_TABLE_ADDR, tve);
    int32_t  lev = GETFIELD(IODA3_TVT_NUM_LEVELS, tve);
    uint32_t tts = GETFIELD(IODA3_TVT_TCE_TABLE_SIZE, tve);
    uint32_t tps = GETFIELD(IODA3_TVT_IO_PSIZE, tve);

    /* Invalid levels */
    if (lev > 4) {
        phb_error(ds->phb, "Invalid #levels in TVE %d", lev);
        return;
    }

    /* Invalid entry */
    if (tts == 0) {
        phb_error(ds->phb, "Access to invalid TVE");
        return;
    }

    /* IO Page Size of 0 means untranslated, else use TCEs */
    if (tps == 0) {
        /* TODO: Handle boundaries */

        /* Use 4k pages like q35 ... for now */
        tlb->iova = addr & 0xfffffffffffff000ull;
        tlb->translated_addr = addr & 0x0003fffffffff000ull;
        tlb->addr_mask = 0xfffull;
        tlb->perm = IOMMU_RW;
    } else {
        uint32_t tce_shift, tbl_shift, sh;
        uint64_t base, taddr, tce, tce_mask;

        /* Address bits per bottom level TCE entry */
        tce_shift = tps + 11;

        /* Address bits per table level */
        tbl_shift = tts + 8;

        /* Top level table base address */
        base = tta << 12;

        /* Total shift to first level */
        sh = tbl_shift * lev + tce_shift;

        /* TODO: Limit to support IO page sizes */

        /* TODO: Multi-level untested */
        while ((lev--) >= 0) {
            /* Grab the TCE address */
            taddr = base | (((addr >> sh) & ((1ul << tbl_shift) - 1)) << 3);
            if (dma_memory_read(&address_space_memory, taddr, &tce,
                                sizeof(tce))) {
                phb_error(ds->phb, "Failed to read TCE at 0x%"PRIx64, taddr);
                return;
            }
            tce = be64_to_cpu(tce);

            /* Check permission for indirect TCE */
            if ((lev >= 0) && !(tce & 3)) {
                phb_error(ds->phb, "Invalid indirect TCE at 0x%"PRIx64, taddr);
                phb_error(ds->phb, " xlate %"PRIx64":%c TVE=%"PRIx64, addr,
                           is_write ? 'W' : 'R', tve);
                phb_error(ds->phb, " tta=%"PRIx64" lev=%d tts=%d tps=%d",
                           tta, lev, tts, tps);
                return;
            }
            sh -= tbl_shift;
            base = tce & ~0xfffull;
        }

        /* We exit the loop with TCE being the final TCE */
        tce_mask = ~((1ull << tce_shift) - 1);
        tlb->iova = addr & tce_mask;
        tlb->translated_addr = tce & tce_mask;
        tlb->addr_mask = ~tce_mask;
        tlb->perm = tce & 3;
        if ((is_write & !(tce & 2)) || ((!is_write) && !(tce & 1))) {
            phb_error(ds->phb, "TCE access fault at 0x%"PRIx64, taddr);
            phb_error(ds->phb, " xlate %"PRIx64":%c TVE=%"PRIx64, addr,
                       is_write ? 'W' : 'R', tve);
            phb_error(ds->phb, " tta=%"PRIx64" lev=%d tts=%d tps=%d",
                       tta, lev, tts, tps);
        }
    }
}

static IOMMUTLBEntry pnv_phb4_translate_iommu(IOMMUMemoryRegion *iommu,
                                              hwaddr addr,
                                              IOMMUAccessFlags flag,
                                              int iommu_idx)
{
    PnvPhb4DMASpace *ds = container_of(iommu, PnvPhb4DMASpace, dma_mr);
    int tve_sel;
    uint64_t tve, cfg;
    IOMMUTLBEntry ret = {
        .target_as = &address_space_memory,
        .iova = addr,
        .translated_addr = 0,
        .addr_mask = ~(hwaddr)0,
        .perm = IOMMU_NONE,
    };

    /* Resolve PE# */
    if (!pnv_phb4_resolve_pe(ds)) {
        phb_error(ds->phb, "Failed to resolve PE# for bus @%p (%d) devfn 0x%x",
                   ds->bus, pci_bus_num(ds->bus), ds->devfn);
        return ret;
    }

    /* Check top bits */
    switch (addr >> 60) {
    case 00:
        /* DMA or 32-bit MSI ? */
        cfg = ds->phb->regs[PHB_PHB4_CONFIG >> 3];
        if ((cfg & PHB_PHB4C_32BIT_MSI_EN) &&
            ((addr & 0xffffffffffff0000ull) == 0xffff0000ull)) {
            phb_error(ds->phb, "xlate on 32-bit MSI region");
            return ret;
        }
        /* Choose TVE XXX Use PHB4 Control Register */
        tve_sel = (addr >> 59) & 1;
        tve = ds->phb->ioda_TVT[ds->pe_num * 2 + tve_sel];
        pnv_phb4_translate_tve(ds, addr, flag & IOMMU_WO, tve, &ret);
        break;
    case 01:
        phb_error(ds->phb, "xlate on 64-bit MSI region");
        break;
    default:
        phb_error(ds->phb, "xlate on unsupported address 0x%"PRIx64, addr);
    }
    return ret;
}

#define TYPE_PNV_PHB4_IOMMU_MEMORY_REGION "pnv-phb4-iommu-memory-region"
DECLARE_INSTANCE_CHECKER(IOMMUMemoryRegion, PNV_PHB4_IOMMU_MEMORY_REGION,
                         TYPE_PNV_PHB4_IOMMU_MEMORY_REGION)

static void pnv_phb4_iommu_memory_region_class_init(ObjectClass *klass,
                                                    void *data)
{
    IOMMUMemoryRegionClass *imrc = IOMMU_MEMORY_REGION_CLASS(klass);

    imrc->translate = pnv_phb4_translate_iommu;
}

static const TypeInfo pnv_phb4_iommu_memory_region_info = {
    .parent = TYPE_IOMMU_MEMORY_REGION,
    .name = TYPE_PNV_PHB4_IOMMU_MEMORY_REGION,
    .class_init = pnv_phb4_iommu_memory_region_class_init,
};

/*
 * MSI/MSIX memory region implementation.
 * The handler handles both MSI and MSIX.
 */
static void pnv_phb4_msi_write(void *opaque, hwaddr addr,
                               uint64_t data, unsigned size)
{
    PnvPhb4DMASpace *ds = opaque;
    PnvPHB4 *phb = ds->phb;

    uint32_t src = ((addr >> 4) & 0xffff) | (data & 0x1f);

    /* Resolve PE# */
    if (!pnv_phb4_resolve_pe(ds)) {
        phb_error(phb, "Failed to resolve PE# for bus @%p (%d) devfn 0x%x",
                   ds->bus, pci_bus_num(ds->bus), ds->devfn);
        return;
    }

    /* TODO: Check it doesn't collide with LSIs */
    if (src >= phb->xsrc.nr_irqs) {
        phb_error(phb, "MSI %d out of bounds", src);
        return;
    }

    /* TODO: check PE/MSI assignement */

    qemu_irq_pulse(phb->qirqs[src]);
}

/* There is no .read as the read result is undefined by PCI spec */
static uint64_t pnv_phb4_msi_read(void *opaque, hwaddr addr, unsigned size)
{
    PnvPhb4DMASpace *ds = opaque;

    phb_error(ds->phb, "Invalid MSI read @ 0x%" HWADDR_PRIx, addr);
    return -1;
}

static const MemoryRegionOps pnv_phb4_msi_ops = {
    .read = pnv_phb4_msi_read,
    .write = pnv_phb4_msi_write,
    .endianness = DEVICE_LITTLE_ENDIAN
};

static PnvPhb4DMASpace *pnv_phb4_dma_find(PnvPHB4 *phb, PCIBus *bus, int devfn)
{
    PnvPhb4DMASpace *ds;

    QLIST_FOREACH(ds, &phb->dma_spaces, list) {
        if (ds->bus == bus && ds->devfn == devfn) {
            break;
        }
    }
    return ds;
}

static AddressSpace *pnv_phb4_dma_iommu(PCIBus *bus, void *opaque, int devfn)
{
    PnvPHB4 *phb = opaque;
    PnvPhb4DMASpace *ds;
    char name[32];

    ds = pnv_phb4_dma_find(phb, bus, devfn);

    if (ds == NULL) {
        ds = g_malloc0(sizeof(PnvPhb4DMASpace));
        ds->bus = bus;
        ds->devfn = devfn;
        ds->pe_num = PHB_INVALID_PE;
        ds->phb = phb;
        snprintf(name, sizeof(name), "phb4-%d.%d-iommu", phb->chip_id,
                 phb->phb_id);
        memory_region_init_iommu(&ds->dma_mr, sizeof(ds->dma_mr),
                                 TYPE_PNV_PHB4_IOMMU_MEMORY_REGION,
                                 OBJECT(phb), name, UINT64_MAX);
        address_space_init(&ds->dma_as, MEMORY_REGION(&ds->dma_mr),
                           name);
        memory_region_init_io(&ds->msi32_mr, OBJECT(phb), &pnv_phb4_msi_ops,
                              ds, "msi32", 0x10000);
        memory_region_init_io(&ds->msi64_mr, OBJECT(phb), &pnv_phb4_msi_ops,
                              ds, "msi64", 0x100000);
        pnv_phb4_update_msi_regions(ds);

        QLIST_INSERT_HEAD(&phb->dma_spaces, ds, list);
    }
    return &ds->dma_as;
}

static void pnv_phb4_instance_init(Object *obj)
{
    PnvPHB4 *phb = PNV_PHB4(obj);

    QLIST_INIT(&phb->dma_spaces);

    /* XIVE interrupt source object */
    object_initialize_child(obj, "source", &phb->xsrc, TYPE_XIVE_SOURCE);

    /* Root Port */
    object_initialize_child(obj, "root", &phb->root, TYPE_PNV_PHB4_ROOT_PORT);

    qdev_prop_set_int32(DEVICE(&phb->root), "addr", PCI_DEVFN(0, 0));
    qdev_prop_set_bit(DEVICE(&phb->root), "multifunction", false);
}

static void pnv_phb4_realize(DeviceState *dev, Error **errp)
{
    PnvPHB4 *phb = PNV_PHB4(dev);
    PCIHostState *pci = PCI_HOST_BRIDGE(dev);
    XiveSource *xsrc = &phb->xsrc;
    int nr_irqs;
    char name[32];

    assert(phb->stack);

    /* Set the "big_phb" flag */
    phb->big_phb = phb->phb_id == 0 || phb->phb_id == 3;

    /* Controller Registers */
    snprintf(name, sizeof(name), "phb4-%d.%d-regs", phb->chip_id,
             phb->phb_id);
    memory_region_init_io(&phb->mr_regs, OBJECT(phb), &pnv_phb4_reg_ops, phb,
                          name, 0x2000);

    /*
     * PHB4 doesn't support IO space. However, qemu gets very upset if
     * we don't have an IO region to anchor IO BARs onto so we just
     * initialize one which we never hook up to anything
     */

    snprintf(name, sizeof(name), "phb4-%d.%d-pci-io", phb->chip_id,
             phb->phb_id);
    memory_region_init(&phb->pci_io, OBJECT(phb), name, 0x10000);

    snprintf(name, sizeof(name), "phb4-%d.%d-pci-mmio", phb->chip_id,
             phb->phb_id);
    memory_region_init(&phb->pci_mmio, OBJECT(phb), name,
                       PCI_MMIO_TOTAL_SIZE);

    pci->bus = pci_register_root_bus(dev, "root-bus",
                                     pnv_phb4_set_irq, pnv_phb4_map_irq, phb,
                                     &phb->pci_mmio, &phb->pci_io,
                                     0, 4, TYPE_PNV_PHB4_ROOT_BUS);
    pci_setup_iommu(pci->bus, pnv_phb4_dma_iommu, phb);

    /* Add a single Root port */
    qdev_prop_set_uint8(DEVICE(&phb->root), "chassis", phb->chip_id);
    qdev_prop_set_uint16(DEVICE(&phb->root), "slot", phb->phb_id);
    qdev_realize(DEVICE(&phb->root), BUS(pci->bus), &error_fatal);

    /* Setup XIVE Source */
    if (phb->big_phb) {
        nr_irqs = PNV_PHB4_MAX_INTs;
    } else {
        nr_irqs = PNV_PHB4_MAX_INTs >> 1;
    }
    object_property_set_int(OBJECT(xsrc), "nr-irqs", nr_irqs, &error_fatal);
    object_property_set_link(OBJECT(xsrc), "xive", OBJECT(phb), &error_fatal);
    if (!qdev_realize(DEVICE(xsrc), NULL, errp)) {
        return;
    }

    pnv_phb4_update_xsrc(phb);

    phb->qirqs = qemu_allocate_irqs(xive_source_set_irq, xsrc, xsrc->nr_irqs);
}

static void pnv_phb4_reset(DeviceState *dev)
{
    PnvPHB4 *phb = PNV_PHB4(dev);
    PCIDevice *root_dev = PCI_DEVICE(&phb->root);

    /*
     * Configure PCI device id at reset using a property.
     */
    pci_config_set_vendor_id(root_dev->config, PCI_VENDOR_ID_IBM);
    pci_config_set_device_id(root_dev->config, phb->device_id);
}

static const char *pnv_phb4_root_bus_path(PCIHostState *host_bridge,
                                          PCIBus *rootbus)
{
    PnvPHB4 *phb = PNV_PHB4(host_bridge);

    snprintf(phb->bus_path, sizeof(phb->bus_path), "00%02x:%02x",
             phb->chip_id, phb->phb_id);
    return phb->bus_path;
}

static void pnv_phb4_xive_notify(XiveNotifier *xf, uint32_t srcno)
{
    PnvPHB4 *phb = PNV_PHB4(xf);
    uint64_t notif_port = phb->regs[PHB_INT_NOTIFY_ADDR >> 3];
    uint32_t offset = phb->regs[PHB_INT_NOTIFY_INDEX >> 3];
    uint64_t data = XIVE_TRIGGER_PQ | offset | srcno;
    MemTxResult result;

    address_space_stq_be(&address_space_memory, notif_port, data,
                         MEMTXATTRS_UNSPECIFIED, &result);
    if (result != MEMTX_OK) {
        phb_error(phb, "trigger failed @%"HWADDR_PRIx "\n", notif_port);
        return;
    }
}

static Property pnv_phb4_properties[] = {
        DEFINE_PROP_UINT32("index", PnvPHB4, phb_id, 0),
        DEFINE_PROP_UINT32("chip-id", PnvPHB4, chip_id, 0),
        DEFINE_PROP_UINT64("version", PnvPHB4, version, 0),
        DEFINE_PROP_UINT16("device-id", PnvPHB4, device_id, 0),
        DEFINE_PROP_LINK("stack", PnvPHB4, stack, TYPE_PNV_PHB4_PEC_STACK,
                         PnvPhb4PecStack *),
        DEFINE_PROP_END_OF_LIST(),
};

static void pnv_phb4_class_init(ObjectClass *klass, void *data)
{
    PCIHostBridgeClass *hc = PCI_HOST_BRIDGE_CLASS(klass);
    DeviceClass *dc = DEVICE_CLASS(klass);
    XiveNotifierClass *xfc = XIVE_NOTIFIER_CLASS(klass);

    hc->root_bus_path   = pnv_phb4_root_bus_path;
    dc->realize         = pnv_phb4_realize;
    device_class_set_props(dc, pnv_phb4_properties);
    set_bit(DEVICE_CATEGORY_BRIDGE, dc->categories);
    dc->user_creatable  = false;
    dc->reset           = pnv_phb4_reset;

    xfc->notify         = pnv_phb4_xive_notify;
}

static const TypeInfo pnv_phb4_type_info = {
    .name          = TYPE_PNV_PHB4,
    .parent        = TYPE_PCIE_HOST_BRIDGE,
    .instance_init = pnv_phb4_instance_init,
    .instance_size = sizeof(PnvPHB4),
    .class_init    = pnv_phb4_class_init,
    .interfaces = (InterfaceInfo[]) {
            { TYPE_XIVE_NOTIFIER },
            { },
    }
};

static void pnv_phb4_root_bus_class_init(ObjectClass *klass, void *data)
{
    BusClass *k = BUS_CLASS(klass);

    /*
     * PHB4 has only a single root complex. Enforce the limit on the
     * parent bus
     */
    k->max_dev = 1;
}

static const TypeInfo pnv_phb4_root_bus_info = {
    .name = TYPE_PNV_PHB4_ROOT_BUS,
    .parent = TYPE_PCIE_BUS,
    .class_init = pnv_phb4_root_bus_class_init,
    .interfaces = (InterfaceInfo[]) {
        { INTERFACE_PCIE_DEVICE },
        { }
    },
};

static void pnv_phb4_root_port_reset(DeviceState *dev)
{
    PCIERootPortClass *rpc = PCIE_ROOT_PORT_GET_CLASS(dev);
    PCIDevice *d = PCI_DEVICE(dev);
    uint8_t *conf = d->config;

    rpc->parent_reset(dev);

    pci_byte_test_and_set_mask(conf + PCI_IO_BASE,
                               PCI_IO_RANGE_MASK & 0xff);
    pci_byte_test_and_clear_mask(conf + PCI_IO_LIMIT,
                                 PCI_IO_RANGE_MASK & 0xff);
    pci_set_word(conf + PCI_MEMORY_BASE, 0);
    pci_set_word(conf + PCI_MEMORY_LIMIT, 0xfff0);
    pci_set_word(conf + PCI_PREF_MEMORY_BASE, 0x1);
    pci_set_word(conf + PCI_PREF_MEMORY_LIMIT, 0xfff1);
    pci_set_long(conf + PCI_PREF_BASE_UPPER32, 0x1); /* Hack */
    pci_set_long(conf + PCI_PREF_LIMIT_UPPER32, 0xffffffff);
}

static void pnv_phb4_root_port_realize(DeviceState *dev, Error **errp)
{
    PCIERootPortClass *rpc = PCIE_ROOT_PORT_GET_CLASS(dev);
    Error *local_err = NULL;

    rpc->parent_realize(dev, &local_err);
    if (local_err) {
        error_propagate(errp, local_err);
        return;
    }
}

static void pnv_phb4_root_port_class_init(ObjectClass *klass, void *data)
{
    DeviceClass *dc = DEVICE_CLASS(klass);
    PCIDeviceClass *k = PCI_DEVICE_CLASS(klass);
    PCIERootPortClass *rpc = PCIE_ROOT_PORT_CLASS(klass);

    dc->desc     = "IBM PHB4 PCIE Root Port";
    dc->user_creatable = false;

    device_class_set_parent_realize(dc, pnv_phb4_root_port_realize,
                                    &rpc->parent_realize);
    device_class_set_parent_reset(dc, pnv_phb4_root_port_reset,
                                  &rpc->parent_reset);

    k->vendor_id = PCI_VENDOR_ID_IBM;
    k->device_id = PNV_PHB4_DEVICE_ID;
    k->revision  = 0;

    rpc->exp_offset = 0x48;
    rpc->aer_offset = 0x100;

    dc->reset = &pnv_phb4_root_port_reset;
}

static const TypeInfo pnv_phb4_root_port_info = {
    .name          = TYPE_PNV_PHB4_ROOT_PORT,
    .parent        = TYPE_PCIE_ROOT_PORT,
    .instance_size = sizeof(PnvPHB4RootPort),
    .class_init    = pnv_phb4_root_port_class_init,
};

static void pnv_phb4_register_types(void)
{
    type_register_static(&pnv_phb4_root_bus_info);
    type_register_static(&pnv_phb4_root_port_info);
    type_register_static(&pnv_phb4_type_info);
    type_register_static(&pnv_phb4_iommu_memory_region_info);
}

type_init(pnv_phb4_register_types);

void pnv_phb4_update_regions(PnvPhb4PecStack *stack)
{
    PnvPHB4 *phb = &stack->phb;

    /* Unmap first always */
    if (memory_region_is_mapped(&phb->mr_regs)) {
        memory_region_del_subregion(&stack->phbbar, &phb->mr_regs);
    }
    if (memory_region_is_mapped(&phb->xsrc.esb_mmio)) {
        memory_region_del_subregion(&stack->intbar, &phb->xsrc.esb_mmio);
    }

    /* Map registers if enabled */
    if (memory_region_is_mapped(&stack->phbbar)) {
        memory_region_add_subregion(&stack->phbbar, 0, &phb->mr_regs);
    }

    /* Map ESB if enabled */
    if (memory_region_is_mapped(&stack->intbar)) {
        memory_region_add_subregion(&stack->intbar, 0, &phb->xsrc.esb_mmio);
    }

    /* Check/update m32 */
    pnv_phb4_check_all_mbt(phb);
}

void pnv_phb4_pic_print_info(PnvPHB4 *phb, Monitor *mon)
{
    uint32_t offset = phb->regs[PHB_INT_NOTIFY_INDEX >> 3];

    monitor_printf(mon, "PHB4[%x:%x] Source %08x .. %08x\n",
                   phb->chip_id, phb->phb_id,
                   offset, offset + phb->xsrc.nr_irqs - 1);
    xive_source_pic_print_info(&phb->xsrc, 0, mon);
}