/*
* QEMU paravirtual RDMA
*
* Copyright (C) 2018 Oracle
* Copyright (C) 2018 Red Hat Inc
*
* Authors:
* Yuval Shaia <yuval.shaia@oracle.com>
* Marcel Apfelbaum <marcel@redhat.com>
*
* This work is licensed under the terms of the GNU GPL, version 2 or later.
* See the COPYING file in the top-level directory.
*
*/
#include "qemu/osdep.h"
#include "qapi/error.h"
#include "hw/hw.h"
#include "hw/pci/pci.h"
#include "hw/pci/pci_ids.h"
#include "hw/pci/msi.h"
#include "hw/pci/msix.h"
#include "hw/qdev-core.h"
#include "hw/qdev-properties.h"
#include "cpu.h"
#include "trace.h"
#include "../rdma_rm.h"
#include "../rdma_backend.h"
#include "../rdma_utils.h"
#include <infiniband/verbs.h>
#include "pvrdma.h"
#include "standard-headers/rdma/vmw_pvrdma-abi.h"
#include "standard-headers/drivers/infiniband/hw/vmw_pvrdma/pvrdma_dev_api.h"
#include "pvrdma_qp_ops.h"
static Property pvrdma_dev_properties[] = {
DEFINE_PROP_STRING("backend-dev", PVRDMADev, backend_device_name),
DEFINE_PROP_UINT8("backend-port", PVRDMADev, backend_port_num, 1),
DEFINE_PROP_UINT8("backend-gid-idx", PVRDMADev, backend_gid_idx, 0),
DEFINE_PROP_UINT64("dev-caps-max-mr-size", PVRDMADev, dev_attr.max_mr_size,
MAX_MR_SIZE),
DEFINE_PROP_INT32("dev-caps-max-qp", PVRDMADev, dev_attr.max_qp, MAX_QP),
DEFINE_PROP_INT32("dev-caps-max-sge", PVRDMADev, dev_attr.max_sge, MAX_SGE),
DEFINE_PROP_INT32("dev-caps-max-cq", PVRDMADev, dev_attr.max_cq, MAX_CQ),
DEFINE_PROP_INT32("dev-caps-max-mr", PVRDMADev, dev_attr.max_mr, MAX_MR),
DEFINE_PROP_INT32("dev-caps-max-pd", PVRDMADev, dev_attr.max_pd, MAX_PD),
DEFINE_PROP_INT32("dev-caps-qp-rd-atom", PVRDMADev, dev_attr.max_qp_rd_atom,
MAX_QP_RD_ATOM),
DEFINE_PROP_INT32("dev-caps-max-qp-init-rd-atom", PVRDMADev,
dev_attr.max_qp_init_rd_atom, MAX_QP_INIT_RD_ATOM),
DEFINE_PROP_INT32("dev-caps-max-ah", PVRDMADev, dev_attr.max_ah, MAX_AH),
DEFINE_PROP_END_OF_LIST(),
};
static void free_dev_ring(PCIDevice *pci_dev, PvrdmaRing *ring,
void *ring_state)
{
pvrdma_ring_free(ring);
rdma_pci_dma_unmap(pci_dev, ring_state, TARGET_PAGE_SIZE);
}
static int init_dev_ring(PvrdmaRing *ring, struct pvrdma_ring **ring_state,
const char *name, PCIDevice *pci_dev,
dma_addr_t dir_addr, uint32_t num_pages)
{
uint64_t *dir, *tbl;
int rc = 0;
pr_dbg("Initializing device ring %s\n", name);
pr_dbg("pdir_dma=0x%llx\n", (long long unsigned int)dir_addr);
pr_dbg("num_pages=%d\n", num_pages);
dir = rdma_pci_dma_map(pci_dev, dir_addr, TARGET_PAGE_SIZE);
if (!dir) {
pr_err("Failed to map to page directory\n");
rc = -ENOMEM;
goto out;
}
tbl = rdma_pci_dma_map(pci_dev, dir[0], TARGET_PAGE_SIZE);
if (!tbl) {
pr_err("Failed to map to page table\n");
rc = -ENOMEM;
goto out_free_dir;
}
*ring_state = rdma_pci_dma_map(pci_dev, tbl[0], TARGET_PAGE_SIZE);
if (!*ring_state) {
pr_err("Failed to map to ring state\n");
rc = -ENOMEM;
goto out_free_tbl;
}
/* RX ring is the second */
(*ring_state)++;
rc = pvrdma_ring_init(ring, name, pci_dev,
(struct pvrdma_ring *)*ring_state,
(num_pages - 1) * TARGET_PAGE_SIZE /
sizeof(struct pvrdma_cqne),
sizeof(struct pvrdma_cqne),
(dma_addr_t *)&tbl[1], (dma_addr_t)num_pages - 1);
if (rc) {
pr_err("Failed to initialize ring\n");
rc = -ENOMEM;
goto out_free_ring_state;
}
goto out_free_tbl;
out_free_ring_state:
rdma_pci_dma_unmap(pci_dev, *ring_state, TARGET_PAGE_SIZE);
out_free_tbl:
rdma_pci_dma_unmap(pci_dev, tbl, TARGET_PAGE_SIZE);
out_free_dir:
rdma_pci_dma_unmap(pci_dev, dir, TARGET_PAGE_SIZE);
out:
return rc;
}
static void free_dsr(PVRDMADev *dev)
{
PCIDevice *pci_dev = PCI_DEVICE(dev);
if (!dev->dsr_info.dsr) {
return;
}
free_dev_ring(pci_dev, &dev->dsr_info.async,
dev->dsr_info.async_ring_state);
free_dev_ring(pci_dev, &dev->dsr_info.cq, dev->dsr_info.cq_ring_state);
rdma_pci_dma_unmap(pci_dev, dev->dsr_info.req,
sizeof(union pvrdma_cmd_req));
rdma_pci_dma_unmap(pci_dev, dev->dsr_info.rsp,
sizeof(union pvrdma_cmd_resp));
rdma_pci_dma_unmap(pci_dev, dev->dsr_info.dsr,
sizeof(struct pvrdma_device_shared_region));
dev->dsr_info.dsr = NULL;
}
static int load_dsr(PVRDMADev *dev)
{
int rc = 0;
PCIDevice *pci_dev = PCI_DEVICE(dev);
DSRInfo *dsr_info;
struct pvrdma_device_shared_region *dsr;
free_dsr(dev);
/* Map to DSR */
pr_dbg("dsr_dma=0x%llx\n", (long long unsigned int)dev->dsr_info.dma);
dev->dsr_info.dsr = rdma_pci_dma_map(pci_dev, dev->dsr_info.dma,
sizeof(struct pvrdma_device_shared_region));
if (!dev->dsr_info.dsr) {
pr_err("Failed to map to DSR\n");
rc = -ENOMEM;
goto out;
}
/* Shortcuts */
dsr_info = &dev->dsr_info;
dsr = dsr_info->dsr;
/* Map to command slot */
pr_dbg("cmd_dma=0x%llx\n", (long long unsigned int)dsr->cmd_slot_dma);
dsr_info->req = rdma_pci_dma_map(pci_dev, dsr->cmd_slot_dma,
sizeof(union pvrdma_cmd_req));
if (!dsr_info->req) {
pr_err("Failed to map to command slot address\n");
rc = -ENOMEM;
goto out_free_dsr;
}
/* Map to response slot */
pr_dbg("rsp_dma=0x%llx\n", (long long unsigned int)dsr->resp_slot_dma);
dsr_info->rsp = rdma_pci_dma_map(pci_dev, dsr->resp_slot_dma,
sizeof(union pvrdma_cmd_resp));
if (!dsr_info->rsp) {
pr_err("Failed to map to response slot address\n");
rc = -ENOMEM;
goto out_free_req;
}
/* Map to CQ notification ring */
rc = init_dev_ring(&dsr_info->cq, &dsr_info->cq_ring_state, "dev_cq",
pci_dev, dsr->cq_ring_pages.pdir_dma,
dsr->cq_ring_pages.num_pages);
if (rc) {
pr_err("Failed to map to initialize CQ ring\n");
rc = -ENOMEM;
goto out_free_rsp;
}
/* Map to event notification ring */
rc = init_dev_ring(&dsr_info->async, &dsr_info->async_ring_state,
"dev_async", pci_dev, dsr->async_ring_pages.pdir_dma,
dsr->async_ring_pages.num_pages);
if (rc) {
pr_err("Failed to map to initialize event ring\n");
rc = -ENOMEM;
goto out_free_rsp;
}
goto out;
out_free_rsp:
rdma_pci_dma_unmap(pci_dev, dsr_info->rsp, sizeof(union pvrdma_cmd_resp));
out_free_req:
rdma_pci_dma_unmap(pci_dev, dsr_info->req, sizeof(union pvrdma_cmd_req));
out_free_dsr:
rdma_pci_dma_unmap(pci_dev, dsr_info->dsr,
sizeof(struct pvrdma_device_shared_region));
dsr_info->dsr = NULL;
out:
return rc;
}
static void init_dsr_dev_caps(PVRDMADev *dev)
{
struct pvrdma_device_shared_region *dsr;
if (dev->dsr_info.dsr == NULL) {
pr_err("Can't initialized DSR\n");
return;
}
dsr = dev->dsr_info.dsr;
dsr->caps.fw_ver = PVRDMA_FW_VERSION;
pr_dbg("fw_ver=0x%" PRIx64 "\n", dsr->caps.fw_ver);
dsr->caps.mode = PVRDMA_DEVICE_MODE_ROCE;
pr_dbg("mode=%d\n", dsr->caps.mode);
dsr->caps.gid_types |= PVRDMA_GID_TYPE_FLAG_ROCE_V1;
pr_dbg("gid_types=0x%x\n", dsr->caps.gid_types);
dsr->caps.max_uar = RDMA_BAR2_UAR_SIZE;
pr_dbg("max_uar=%d\n", dsr->caps.max_uar);
dsr->caps.max_mr_size = dev->dev_attr.max_mr_size;
dsr->caps.max_qp = dev->dev_attr.max_qp;
dsr->caps.max_qp_wr = dev->dev_attr.max_qp_wr;
dsr->caps.max_sge = dev->dev_attr.max_sge;
dsr->caps.max_cq = dev->dev_attr.max_cq;
dsr->caps.max_cqe = dev->dev_attr.max_cqe;
dsr->caps.max_mr = dev->dev_attr.max_mr;
dsr->caps.max_pd = dev->dev_attr.max_pd;
dsr->caps.max_ah = dev->dev_attr.max_ah;
dsr->caps.gid_tbl_len = MAX_GIDS;
pr_dbg("gid_tbl_len=%d\n", dsr->caps.gid_tbl_len);
dsr->caps.sys_image_guid = 0;
pr_dbg("sys_image_guid=%" PRIx64 "\n", dsr->caps.sys_image_guid);
dsr->caps.node_guid = cpu_to_be64(dev->node_guid);
pr_dbg("node_guid=%" PRIx64 "\n", be64_to_cpu(dsr->caps.node_guid));
dsr->caps.phys_port_cnt = MAX_PORTS;
pr_dbg("phys_port_cnt=%d\n", dsr->caps.phys_port_cnt);
dsr->caps.max_pkeys = MAX_PKEYS;
pr_dbg("max_pkeys=%d\n", dsr->caps.max_pkeys);
pr_dbg("Initialized\n");
}
static void init_ports(PVRDMADev *dev, Error **errp)
{
int i;
memset(dev->rdma_dev_res.ports, 0, sizeof(dev->rdma_dev_res.ports));
for (i = 0; i < MAX_PORTS; i++) {
dev->rdma_dev_res.ports[i].state = IBV_PORT_DOWN;
}
}
static void activate_device(PVRDMADev *dev)
{
set_reg_val(dev, PVRDMA_REG_ERR, 0);
pr_dbg("Device activated\n");
}
static int unquiesce_device(PVRDMADev *dev)
{
pr_dbg("Device unquiesced\n");
return 0;
}
static int reset_device(PVRDMADev *dev)
{
pr_dbg("Device reset complete\n");
return 0;
}
static uint64_t regs_read(void *opaque, hwaddr addr, unsigned size)
{
PVRDMADev *dev = opaque;
uint32_t val;
/* pr_dbg("addr=0x%lx, size=%d\n", addr, size); */
if (get_reg_val(dev, addr, &val)) {
pr_dbg("Error trying to read REG value from address 0x%x\n",
(uint32_t)addr);
return -EINVAL;
}
trace_pvrdma_regs_read(addr, val);
return val;
}
static void regs_write(void *opaque, hwaddr addr, uint64_t val, unsigned size)
{
PVRDMADev *dev = opaque;
/* pr_dbg("addr=0x%lx, val=0x%x, size=%d\n", addr, (uint32_t)val, size); */
if (set_reg_val(dev, addr, val)) {
pr_err("Fail to set REG value, addr=0x%" PRIx64 ", val=0x%" PRIx64 "\n",
addr, val);
return;
}
trace_pvrdma_regs_write(addr, val);
switch (addr) {
case PVRDMA_REG_DSRLOW:
dev->dsr_info.dma = val;
break;
case PVRDMA_REG_DSRHIGH:
dev->dsr_info.dma |= val << 32;
load_dsr(dev);
init_dsr_dev_caps(dev);
break;
case PVRDMA_REG_CTL:
switch (val) {
case PVRDMA_DEVICE_CTL_ACTIVATE:
activate_device(dev);
break;
case PVRDMA_DEVICE_CTL_UNQUIESCE:
unquiesce_device(dev);
break;
case PVRDMA_DEVICE_CTL_RESET:
reset_device(dev);
break;
}
break;
case PVRDMA_REG_IMR:
pr_dbg("Interrupt mask=0x%" PRIx64 "\n", val);
dev->interrupt_mask = val;
break;
case PVRDMA_REG_REQUEST:
if (val == 0) {
execute_command(dev);
}
break;
default:
break;
}
}
static const MemoryRegionOps regs_ops = {
.read = regs_read,
.write = regs_write,
.endianness = DEVICE_LITTLE_ENDIAN,
.impl = {
.min_access_size = sizeof(uint32_t),
.max_access_size = sizeof(uint32_t),
},
};
static void uar_write(void *opaque, hwaddr addr, uint64_t val, unsigned size)
{
PVRDMADev *dev = opaque;
/* pr_dbg("addr=0x%lx, val=0x%x, size=%d\n", addr, (uint32_t)val, size); */
switch (addr & 0xFFF) { /* Mask with 0xFFF as each UC gets page */
case PVRDMA_UAR_QP_OFFSET:
pr_dbg("UAR QP command, addr=0x%" PRIx64 ", val=0x%" PRIx64 "\n",
(uint64_t)addr, val);
if (val & PVRDMA_UAR_QP_SEND) {
pvrdma_qp_send(dev, val & PVRDMA_UAR_HANDLE_MASK);
}
if (val & PVRDMA_UAR_QP_RECV) {
pvrdma_qp_recv(dev, val & PVRDMA_UAR_HANDLE_MASK);
}
break;
case PVRDMA_UAR_CQ_OFFSET:
/* pr_dbg("UAR CQ cmd, addr=0x%x, val=0x%lx\n", (uint32_t)addr, val); */
if (val & PVRDMA_UAR_CQ_ARM) {
rdma_rm_req_notify_cq(&dev->rdma_dev_res,
val & PVRDMA_UAR_HANDLE_MASK,
!!(val & PVRDMA_UAR_CQ_ARM_SOL));
}
if (val & PVRDMA_UAR_CQ_ARM_SOL) {
pr_dbg("UAR_CQ_ARM_SOL (%" PRIx64 ")\n",
val & PVRDMA_UAR_HANDLE_MASK);
}
if (val & PVRDMA_UAR_CQ_POLL) {
pr_dbg("UAR_CQ_POLL (%" PRIx64 ")\n", val & PVRDMA_UAR_HANDLE_MASK);
pvrdma_cq_poll(&dev->rdma_dev_res, val & PVRDMA_UAR_HANDLE_MASK);
}
break;
default:
pr_err("Unsupported command, addr=0x%" PRIx64 ", val=0x%" PRIx64 "\n",
addr, val);
break;
}
}
static const MemoryRegionOps uar_ops = {
.write = uar_write,
.endianness = DEVICE_LITTLE_ENDIAN,
.impl = {
.min_access_size = sizeof(uint32_t),
.max_access_size = sizeof(uint32_t),
},
};
static void init_pci_config(PCIDevice *pdev)
{
pdev->config[PCI_INTERRUPT_PIN] = 1;
}
static void init_bars(PCIDevice *pdev)
{
PVRDMADev *dev = PVRDMA_DEV(pdev);
/* BAR 0 - MSI-X */
memory_region_init(&dev->msix, OBJECT(dev), "pvrdma-msix",
RDMA_BAR0_MSIX_SIZE);
pci_register_bar(pdev, RDMA_MSIX_BAR_IDX, PCI_BASE_ADDRESS_SPACE_MEMORY,
&dev->msix);
/* BAR 1 - Registers */
memset(&dev->regs_data, 0, sizeof(dev->regs_data));
memory_region_init_io(&dev->regs, OBJECT(dev), ®s_ops, dev,
"pvrdma-regs", RDMA_BAR1_REGS_SIZE);
pci_register_bar(pdev, RDMA_REG_BAR_IDX, PCI_BASE_ADDRESS_SPACE_MEMORY,
&dev->regs);
/* BAR 2 - UAR */
memset(&dev->uar_data, 0, sizeof(dev->uar_data));
memory_region_init_io(&dev->uar, OBJECT(dev), &uar_ops, dev, "rdma-uar",
RDMA_BAR2_UAR_SIZE);
pci_register_bar(pdev, RDMA_UAR_BAR_IDX, PCI_BASE_ADDRESS_SPACE_MEMORY,
&dev->uar);
}
static void init_regs(PCIDevice *pdev)
{
PVRDMADev *dev = PVRDMA_DEV(pdev);
set_reg_val(dev, PVRDMA_REG_VERSION, PVRDMA_HW_VERSION);
set_reg_val(dev, PVRDMA_REG_ERR, 0xFFFF);
}
static void uninit_msix(PCIDevice *pdev, int used_vectors)
{
PVRDMADev *dev = PVRDMA_DEV(pdev);
int i;
for (i = 0; i < used_vectors; i++) {
msix_vector_unuse(pdev, i);
}
msix_uninit(pdev, &dev->msix, &dev->msix);
}
static int init_msix(PCIDevice *pdev, Error **errp)
{
PVRDMADev *dev = PVRDMA_DEV(pdev);
int i;
int rc;
rc = msix_init(pdev, RDMA_MAX_INTRS, &dev->msix, RDMA_MSIX_BAR_IDX,
RDMA_MSIX_TABLE, &dev->msix, RDMA_MSIX_BAR_IDX,
RDMA_MSIX_PBA, 0, NULL);
if (rc < 0) {
error_setg(errp, "Failed to initialize MSI-X");
return rc;
}
for (i = 0; i < RDMA_MAX_INTRS; i++) {
rc = msix_vector_use(PCI_DEVICE(dev), i);
if (rc < 0) {
error_setg(errp, "Fail mark MSI-X vercor %d", i);
uninit_msix(pdev, i);
return rc;
}
}
return 0;
}
static void init_dev_caps(PVRDMADev *dev)
{
size_t pg_tbl_bytes = TARGET_PAGE_SIZE *
(TARGET_PAGE_SIZE / sizeof(uint64_t));
size_t wr_sz = MAX(sizeof(struct pvrdma_sq_wqe_hdr),
sizeof(struct pvrdma_rq_wqe_hdr));
dev->dev_attr.max_qp_wr = pg_tbl_bytes /
(wr_sz + sizeof(struct pvrdma_sge) * MAX_SGE) -
TARGET_PAGE_SIZE; /* First page is ring state */
pr_dbg("max_qp_wr=%d\n", dev->dev_attr.max_qp_wr);
dev->dev_attr.max_cqe = pg_tbl_bytes / sizeof(struct pvrdma_cqe) -
TARGET_PAGE_SIZE; /* First page is ring state */
pr_dbg("max_cqe=%d\n", dev->dev_attr.max_cqe);
}
static int pvrdma_check_ram_shared(Object *obj, void *opaque)
{
bool *shared = opaque;
if (object_dynamic_cast(obj, "memory-backend-ram")) {
*shared = object_property_get_bool(obj, "share", NULL);
}
return 0;
}
static void pvrdma_realize(PCIDevice *pdev, Error **errp)
{
int rc;
PVRDMADev *dev = PVRDMA_DEV(pdev);
Object *memdev_root;
bool ram_shared = false;
pr_dbg("Initializing device %s %x.%x\n", pdev->name,
PCI_SLOT(pdev->devfn), PCI_FUNC(pdev->devfn));
if (TARGET_PAGE_SIZE != getpagesize()) {
error_setg(errp, "Target page size must be the same as host page size");
return;
}
memdev_root = object_resolve_path("/objects", NULL);
if (memdev_root) {
object_child_foreach(memdev_root, pvrdma_check_ram_shared, &ram_shared);
}
if (!ram_shared) {
error_setg(errp, "Only shared memory backed ram is supported");
return;
}
dev->dsr_info.dsr = NULL;
init_pci_config(pdev);
init_bars(pdev);
init_regs(pdev);
init_dev_caps(dev);
rc = init_msix(pdev, errp);
if (rc) {
goto out;
}
rc = rdma_backend_init(&dev->backend_dev, &dev->rdma_dev_res,
dev->backend_device_name, dev->backend_port_num,
dev->backend_gid_idx, &dev->dev_attr, errp);
if (rc) {
goto out;
}
rc = rdma_rm_init(&dev->rdma_dev_res, &dev->dev_attr, errp);
if (rc) {
goto out;
}
init_ports(dev, errp);
rc = pvrdma_qp_ops_init();
if (rc) {
goto out;
}
out:
if (rc) {
error_append_hint(errp, "Device fail to load\n");
}
}
static void pvrdma_exit(PCIDevice *pdev)
{
PVRDMADev *dev = PVRDMA_DEV(pdev);
pr_dbg("Closing device %s %x.%x\n", pdev->name, PCI_SLOT(pdev->devfn),
PCI_FUNC(pdev->devfn));
pvrdma_qp_ops_fini();
rdma_rm_fini(&dev->rdma_dev_res);
rdma_backend_fini(&dev->backend_dev);
free_dsr(dev);
if (msix_enabled(pdev)) {
uninit_msix(pdev, RDMA_MAX_INTRS);
}
}
static void pvrdma_class_init(ObjectClass *klass, void *data)
{
DeviceClass *dc = DEVICE_CLASS(klass);
PCIDeviceClass *k = PCI_DEVICE_CLASS(klass);
k->realize = pvrdma_realize;
k->exit = pvrdma_exit;
k->vendor_id = PCI_VENDOR_ID_VMWARE;
k->device_id = PCI_DEVICE_ID_VMWARE_PVRDMA;
k->revision = 0x00;
k->class_id = PCI_CLASS_NETWORK_OTHER;
dc->desc = "RDMA Device";
dc->props = pvrdma_dev_properties;
set_bit(DEVICE_CATEGORY_NETWORK, dc->categories);
}
static const TypeInfo pvrdma_info = {
.name = PVRDMA_HW_NAME,
.parent = TYPE_PCI_DEVICE,
.instance_size = sizeof(PVRDMADev),
.class_init = pvrdma_class_init,
.interfaces = (InterfaceInfo[]) {
{ INTERFACE_CONVENTIONAL_PCI_DEVICE },
{ }
}
};
static void register_types(void)
{
type_register_static(&pvrdma_info);
}
type_init(register_types)