/*
* QEMU Sun4m & Sun4d & Sun4c System Emulator
*
* Copyright (c) 2003-2005 Fabrice Bellard
*
* Permission is hereby granted, free of charge, to any person obtaining a copy
* of this software and associated documentation files (the "Software"), to deal
* in the Software without restriction, including without limitation the rights
* to use, copy, modify, merge, publish, distribute, sublicense, and/or sell
* copies of the Software, and to permit persons to whom the Software is
* furnished to do so, subject to the following conditions:
*
* The above copyright notice and this permission notice shall be included in
* all copies or substantial portions of the Software.
*
* THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
* IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
* FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL
* THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
* LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM,
* OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN
* THE SOFTWARE.
*/
#include "hw.h"
#include "qemu-timer.h"
#include "sun4m.h"
#include "nvram.h"
#include "sparc32_dma.h"
#include "fdc.h"
#include "sysemu.h"
#include "net.h"
#include "boards.h"
#include "firmware_abi.h"
#include "scsi.h"
#include "pc.h"
#include "isa.h"
#include "fw_cfg.h"
#include "escc.h"
//#define DEBUG_IRQ
/*
* Sun4m architecture was used in the following machines:
*
* SPARCserver 6xxMP/xx
* SPARCclassic (SPARCclassic Server)(SPARCstation LC) (4/15),
* SPARCclassic X (4/10)
* SPARCstation LX/ZX (4/30)
* SPARCstation Voyager
* SPARCstation 10/xx, SPARCserver 10/xx
* SPARCstation 5, SPARCserver 5
* SPARCstation 20/xx, SPARCserver 20
* SPARCstation 4
*
* Sun4d architecture was used in the following machines:
*
* SPARCcenter 2000
* SPARCserver 1000
*
* Sun4c architecture was used in the following machines:
* SPARCstation 1/1+, SPARCserver 1/1+
* SPARCstation SLC
* SPARCstation IPC
* SPARCstation ELC
* SPARCstation IPX
*
* See for example: http://www.sunhelp.org/faq/sunref1.html
*/
#ifdef DEBUG_IRQ
#define DPRINTF(fmt, args...) \
do { printf("CPUIRQ: " fmt , ##args); } while (0)
#else
#define DPRINTF(fmt, args...)
#endif
#define KERNEL_LOAD_ADDR 0x00004000
#define CMDLINE_ADDR 0x007ff000
#define INITRD_LOAD_ADDR 0x00800000
#define PROM_SIZE_MAX (1024 * 1024)
#define PROM_VADDR 0xffd00000
#define PROM_FILENAME "openbios-sparc32"
#define CFG_ADDR 0xd00000510ULL
#define FW_CFG_SUN4M_DEPTH (FW_CFG_ARCH_LOCAL + 0x00)
#define MAX_CPUS 16
#define MAX_PILS 16
#define ESCC_CLOCK 4915200
struct sun4m_hwdef {
target_phys_addr_t iommu_base, slavio_base;
target_phys_addr_t intctl_base, counter_base, nvram_base, ms_kb_base;
target_phys_addr_t serial_base, fd_base;
target_phys_addr_t idreg_base, dma_base, esp_base, le_base;
target_phys_addr_t tcx_base, cs_base, apc_base, aux1_base, aux2_base;
target_phys_addr_t ecc_base;
uint32_t ecc_version;
long vram_size, nvram_size;
// IRQ numbers are not PIL ones, but master interrupt controller
// register bit numbers
int esp_irq, le_irq, clock_irq, clock1_irq;
int ser_irq, ms_kb_irq, fd_irq, me_irq, cs_irq, ecc_irq;
uint8_t nvram_machine_id;
uint16_t machine_id;
uint32_t iommu_version;
uint32_t intbit_to_level[32];
uint64_t max_mem;
const char * const default_cpu_model;
};
#define MAX_IOUNITS 5
struct sun4d_hwdef {
target_phys_addr_t iounit_bases[MAX_IOUNITS], slavio_base;
target_phys_addr_t counter_base, nvram_base, ms_kb_base;
target_phys_addr_t serial_base;
target_phys_addr_t espdma_base, esp_base;
target_phys_addr_t ledma_base, le_base;
target_phys_addr_t tcx_base;
target_phys_addr_t sbi_base;
unsigned long vram_size, nvram_size;
// IRQ numbers are not PIL ones, but SBI register bit numbers
int esp_irq, le_irq, clock_irq, clock1_irq;
int ser_irq, ms_kb_irq, me_irq;
uint8_t nvram_machine_id;
uint16_t machine_id;
uint32_t iounit_version;
uint64_t max_mem;
const char * const default_cpu_model;
};
struct sun4c_hwdef {
target_phys_addr_t iommu_base, slavio_base;
target_phys_addr_t intctl_base, counter_base, nvram_base, ms_kb_base;
target_phys_addr_t serial_base, fd_base;
target_phys_addr_t idreg_base, dma_base, esp_base, le_base;
target_phys_addr_t tcx_base, aux1_base;
long vram_size, nvram_size;
// IRQ numbers are not PIL ones, but master interrupt controller
// register bit numbers
int esp_irq, le_irq, clock_irq, clock1_irq;
int ser_irq, ms_kb_irq, fd_irq, me_irq;
uint8_t nvram_machine_id;
uint16_t machine_id;
uint32_t iommu_version;
uint32_t intbit_to_level[32];
uint64_t max_mem;
const char * const default_cpu_model;
};
int DMA_get_channel_mode (int nchan)
{
return 0;
}
int DMA_read_memory (int nchan, void *buf, int pos, int size)
{
return 0;
}
int DMA_write_memory (int nchan, void *buf, int pos, int size)
{
return 0;
}
void DMA_hold_DREQ (int nchan) {}
void DMA_release_DREQ (int nchan) {}
void DMA_schedule(int nchan) {}
void DMA_init (int high_page_enable) {}
void DMA_register_channel (int nchan,
DMA_transfer_handler transfer_handler,
void *opaque)
{
}
static int fw_cfg_boot_set(void *opaque, const char *boot_device)
{
fw_cfg_add_i16(opaque, FW_CFG_BOOT_DEVICE, boot_device[0]);
return 0;
}
static void nvram_init(m48t59_t *nvram, uint8_t *macaddr, const char *cmdline,
const char *boot_devices, ram_addr_t RAM_size,
uint32_t kernel_size,
int width, int height, int depth,
int nvram_machine_id, const char *arch)
{
unsigned int i;
uint32_t start, end;
uint8_t image[0x1ff0];
struct OpenBIOS_nvpart_v1 *part_header;
memset(image, '\0', sizeof(image));
start = 0;
// OpenBIOS nvram variables
// Variable partition
part_header = (struct OpenBIOS_nvpart_v1 *)&image[start];
part_header->signature = OPENBIOS_PART_SYSTEM;
pstrcpy(part_header->name, sizeof(part_header->name), "system");
end = start + sizeof(struct OpenBIOS_nvpart_v1);
for (i = 0; i < nb_prom_envs; i++)
end = OpenBIOS_set_var(image, end, prom_envs[i]);
// End marker
image[end++] = '\0';
end = start + ((end - start + 15) & ~15);
OpenBIOS_finish_partition(part_header, end - start);
// free partition
start = end;
part_header = (struct OpenBIOS_nvpart_v1 *)&image[start];
part_header->signature = OPENBIOS_PART_FREE;
pstrcpy(part_header->name, sizeof(part_header->name), "free");
end = 0x1fd0;
OpenBIOS_finish_partition(part_header, end - start);
Sun_init_header((struct Sun_nvram *)&image[0x1fd8], macaddr,
nvram_machine_id);
for (i = 0; i < sizeof(image); i++)
m48t59_write(nvram, i, image[i]);
}
static void *slavio_intctl;
void pic_info(Monitor *mon)
{
if (slavio_intctl)
slavio_pic_info(mon, slavio_intctl);
}
void irq_info(Monitor *mon)
{
if (slavio_intctl)
slavio_irq_info(mon, slavio_intctl);
}
void cpu_check_irqs(CPUState *env)
{
if (env->pil_in && (env->interrupt_index == 0 ||
(env->interrupt_index & ~15) == TT_EXTINT)) {
unsigned int i;
for (i = 15; i > 0; i--) {
if (env->pil_in & (1 << i)) {
int old_interrupt = env->interrupt_index;
env->interrupt_index = TT_EXTINT | i;
if (old_interrupt != env->interrupt_index) {
DPRINTF("Set CPU IRQ %d\n", i);
cpu_interrupt(env, CPU_INTERRUPT_HARD);
}
break;
}
}
} else if (!env->pil_in && (env->interrupt_index & ~15) == TT_EXTINT) {
DPRINTF("Reset CPU IRQ %d\n", env->interrupt_index & 15);
env->interrupt_index = 0;
cpu_reset_interrupt(env, CPU_INTERRUPT_HARD);
}
}
static void cpu_set_irq(void *opaque, int irq, int level)
{
CPUState *env = opaque;
if (level) {
DPRINTF("Raise CPU IRQ %d\n", irq);
env->halted = 0;
env->pil_in |= 1 << irq;
cpu_check_irqs(env);
} else {
DPRINTF("Lower CPU IRQ %d\n", irq);
env->pil_in &= ~(1 << irq);
cpu_check_irqs(env);
}
}
static void dummy_cpu_set_irq(void *opaque, int irq, int level)
{
}
static void *slavio_misc;
void qemu_system_powerdown(void)
{
slavio_set_power_fail(slavio_misc, 1);
}
static void main_cpu_reset(void *opaque)
{
CPUState *env = opaque;
cpu_reset(env);
env->halted = 0;
}
static void secondary_cpu_reset(void *opaque)
{
CPUState *env = opaque;
cpu_reset(env);
env->halted = 1;
}
static void cpu_halt_signal(void *opaque, int irq, int level)
{
if (level && cpu_single_env)
cpu_interrupt(cpu_single_env, CPU_INTERRUPT_HALT);
}
static unsigned long sun4m_load_kernel(const char *kernel_filename,
const char *initrd_filename,
ram_addr_t RAM_size)
{
int linux_boot;
unsigned int i;
long initrd_size, kernel_size;
linux_boot = (kernel_filename != NULL);
kernel_size = 0;
if (linux_boot) {
kernel_size = load_elf(kernel_filename, -0xf0000000ULL, NULL, NULL,
NULL);
if (kernel_size < 0)
kernel_size = load_aout(kernel_filename, KERNEL_LOAD_ADDR,
RAM_size - KERNEL_LOAD_ADDR);
if (kernel_size < 0)
kernel_size = load_image_targphys(kernel_filename,
KERNEL_LOAD_ADDR,
RAM_size - KERNEL_LOAD_ADDR);
if (kernel_size < 0) {
fprintf(stderr, "qemu: could not load kernel '%s'\n",
kernel_filename);
exit(1);
}
/* load initrd */
initrd_size = 0;
if (initrd_filename) {
initrd_size = load_image_targphys(initrd_filename,
INITRD_LOAD_ADDR,
RAM_size - INITRD_LOAD_ADDR);
if (initrd_size < 0) {
fprintf(stderr, "qemu: could not load initial ram disk '%s'\n",
initrd_filename);
exit(1);
}
}
if (initrd_size > 0) {
for (i = 0; i < 64 * TARGET_PAGE_SIZE; i += TARGET_PAGE_SIZE) {
if (ldl_phys(KERNEL_LOAD_ADDR + i) == 0x48647253) { // HdrS
stl_phys(KERNEL_LOAD_ADDR + i + 16, INITRD_LOAD_ADDR);
stl_phys(KERNEL_LOAD_ADDR + i + 20, initrd_size);
break;
}
}
}
}
return kernel_size;
}
static void sun4m_hw_init(const struct sun4m_hwdef *hwdef, ram_addr_t RAM_size,
const char *boot_device,
const char *kernel_filename,
const char *kernel_cmdline,
const char *initrd_filename, const char *cpu_model)
{
CPUState *env, *envs[MAX_CPUS];
unsigned int i;
void *iommu, *espdma, *ledma, *main_esp, *nvram;
qemu_irq *cpu_irqs[MAX_CPUS], *slavio_irq, *slavio_cpu_irq,
*espdma_irq, *ledma_irq;
qemu_irq *esp_reset, *le_reset;
qemu_irq *fdc_tc;
qemu_irq *cpu_halt;
ram_addr_t ram_offset, prom_offset, idreg_offset;
unsigned long kernel_size;
int ret;
char buf[1024];
BlockDriverState *fd[MAX_FD];
int drive_index;
void *fw_cfg;
/* init CPUs */
if (!cpu_model)
cpu_model = hwdef->default_cpu_model;
for(i = 0; i < smp_cpus; i++) {
env = cpu_init(cpu_model);
if (!env) {
fprintf(stderr, "qemu: Unable to find Sparc CPU definition\n");
exit(1);
}
cpu_sparc_set_id(env, i);
envs[i] = env;
if (i == 0) {
qemu_register_reset(main_cpu_reset, env);
} else {
qemu_register_reset(secondary_cpu_reset, env);
env->halted = 1;
}
cpu_irqs[i] = qemu_allocate_irqs(cpu_set_irq, envs[i], MAX_PILS);
env->prom_addr = hwdef->slavio_base;
}
for (i = smp_cpus; i < MAX_CPUS; i++)
cpu_irqs[i] = qemu_allocate_irqs(dummy_cpu_set_irq, NULL, MAX_PILS);
/* allocate RAM */
if ((uint64_t)RAM_size > hwdef->max_mem) {
fprintf(stderr,
"qemu: Too much memory for this machine: %d, maximum %d\n",
(unsigned int)(RAM_size / (1024 * 1024)),
(unsigned int)(hwdef->max_mem / (1024 * 1024)));
exit(1);
}
ram_offset = qemu_ram_alloc(RAM_size);
cpu_register_physical_memory(0, RAM_size, ram_offset);
/* load boot prom */
prom_offset = qemu_ram_alloc(PROM_SIZE_MAX);
cpu_register_physical_memory(hwdef->slavio_base,
(PROM_SIZE_MAX + TARGET_PAGE_SIZE - 1) &
TARGET_PAGE_MASK,
prom_offset | IO_MEM_ROM);
if (bios_name == NULL)
bios_name = PROM_FILENAME;
snprintf(buf, sizeof(buf), "%s/%s", bios_dir, bios_name);
ret = load_elf(buf, hwdef->slavio_base - PROM_VADDR, NULL, NULL, NULL);
if (ret < 0 || ret > PROM_SIZE_MAX)
ret = load_image_targphys(buf, hwdef->slavio_base, PROM_SIZE_MAX);
if (ret < 0 || ret > PROM_SIZE_MAX) {
fprintf(stderr, "qemu: could not load prom '%s'\n",
buf);
exit(1);
}
/* set up devices */
slavio_intctl = slavio_intctl_init(hwdef->intctl_base,
hwdef->intctl_base + 0x10000ULL,
&hwdef->intbit_to_level[0],
&slavio_irq, &slavio_cpu_irq,
cpu_irqs,
hwdef->clock_irq);
if (hwdef->idreg_base) {
static const uint8_t idreg_data[] = { 0xfe, 0x81, 0x01, 0x03 };
idreg_offset = qemu_ram_alloc(sizeof(idreg_data));
cpu_register_physical_memory(hwdef->idreg_base, sizeof(idreg_data),
idreg_offset | IO_MEM_ROM);
cpu_physical_memory_write_rom(hwdef->idreg_base, idreg_data,
sizeof(idreg_data));
}
iommu = iommu_init(hwdef->iommu_base, hwdef->iommu_version,
slavio_irq[hwdef->me_irq]);
espdma = sparc32_dma_init(hwdef->dma_base, slavio_irq[hwdef->esp_irq],
iommu, &espdma_irq, &esp_reset);
ledma = sparc32_dma_init(hwdef->dma_base + 16ULL,
slavio_irq[hwdef->le_irq], iommu, &ledma_irq,
&le_reset);
if (graphic_depth != 8 && graphic_depth != 24) {
fprintf(stderr, "qemu: Unsupported depth: %d\n", graphic_depth);
exit (1);
}
tcx_init(hwdef->tcx_base, hwdef->vram_size, graphic_width, graphic_height,
graphic_depth);
lance_init(&nd_table[0], hwdef->le_base, ledma, *ledma_irq, le_reset);
nvram = m48t59_init(slavio_irq[0], hwdef->nvram_base, 0,
hwdef->nvram_size, 8);
slavio_timer_init_all(hwdef->counter_base, slavio_irq[hwdef->clock1_irq],
slavio_cpu_irq, smp_cpus);
slavio_serial_ms_kbd_init(hwdef->ms_kb_base, slavio_irq[hwdef->ms_kb_irq],
nographic, ESCC_CLOCK, 1);
// Slavio TTYA (base+4, Linux ttyS0) is the first Qemu serial device
// Slavio TTYB (base+0, Linux ttyS1) is the second Qemu serial device
escc_init(hwdef->serial_base, slavio_irq[hwdef->ser_irq], slavio_irq[hwdef->ser_irq],
serial_hds[0], serial_hds[1], ESCC_CLOCK, 1);
cpu_halt = qemu_allocate_irqs(cpu_halt_signal, NULL, 1);
slavio_misc = slavio_misc_init(hwdef->slavio_base, hwdef->apc_base,
hwdef->aux1_base, hwdef->aux2_base,
slavio_irq[hwdef->me_irq], cpu_halt[0],
&fdc_tc);
if (hwdef->fd_base) {
/* there is zero or one floppy drive */
memset(fd, 0, sizeof(fd));
drive_index = drive_get_index(IF_FLOPPY, 0, 0);
if (drive_index != -1)
fd[0] = drives_table[drive_index].bdrv;
sun4m_fdctrl_init(slavio_irq[hwdef->fd_irq], hwdef->fd_base, fd,
fdc_tc);
}
if (drive_get_max_bus(IF_SCSI) > 0) {
fprintf(stderr, "qemu: too many SCSI bus\n");
exit(1);
}
main_esp = esp_init(hwdef->esp_base, 2,
espdma_memory_read, espdma_memory_write,
espdma, *espdma_irq, esp_reset);
for (i = 0; i < ESP_MAX_DEVS; i++) {
drive_index = drive_get_index(IF_SCSI, 0, i);
if (drive_index == -1)
continue;
esp_scsi_attach(main_esp, drives_table[drive_index].bdrv, i);
}
if (hwdef->cs_base)
cs_init(hwdef->cs_base, hwdef->cs_irq, slavio_intctl);
kernel_size = sun4m_load_kernel(kernel_filename, initrd_filename,
RAM_size);
nvram_init(nvram, (uint8_t *)&nd_table[0].macaddr, kernel_cmdline,
boot_device, RAM_size, kernel_size, graphic_width,
graphic_height, graphic_depth, hwdef->nvram_machine_id,
"Sun4m");
if (hwdef->ecc_base)
ecc_init(hwdef->ecc_base, slavio_irq[hwdef->ecc_irq],
hwdef->ecc_version);
fw_cfg = fw_cfg_init(0, 0, CFG_ADDR, CFG_ADDR + 2);
fw_cfg_add_i32(fw_cfg, FW_CFG_ID, 1);
fw_cfg_add_i64(fw_cfg, FW_CFG_RAM_SIZE, (uint64_t)ram_size);
fw_cfg_add_i16(fw_cfg, FW_CFG_MACHINE_ID, hwdef->machine_id);
fw_cfg_add_i16(fw_cfg, FW_CFG_SUN4M_DEPTH, graphic_depth);
fw_cfg_add_i32(fw_cfg, FW_CFG_KERNEL_ADDR, KERNEL_LOAD_ADDR);
fw_cfg_add_i32(fw_cfg, FW_CFG_KERNEL_SIZE, kernel_size);
if (kernel_cmdline) {
fw_cfg_add_i32(fw_cfg, FW_CFG_KERNEL_CMDLINE, CMDLINE_ADDR);
pstrcpy_targphys(CMDLINE_ADDR, TARGET_PAGE_SIZE, kernel_cmdline);
} else {
fw_cfg_add_i32(fw_cfg, FW_CFG_KERNEL_CMDLINE, 0);
}
fw_cfg_add_i32(fw_cfg, FW_CFG_INITRD_ADDR, INITRD_LOAD_ADDR);
fw_cfg_add_i32(fw_cfg, FW_CFG_INITRD_SIZE, 0); // not used
fw_cfg_add_i16(fw_cfg, FW_CFG_BOOT_DEVICE, boot_device[0]);
qemu_register_boot_set(fw_cfg_boot_set, fw_cfg);
}
enum {
ss2_id = 0,
ss5_id = 32,
vger_id,
lx_id,
ss4_id,
scls_id,
sbook_id,
ss10_id = 64,
ss20_id,
ss600mp_id,
ss1000_id = 96,
ss2000_id,
};
static const struct sun4m_hwdef sun4m_hwdefs[] = {
/* SS-5 */
{
.iommu_base = 0x10000000,
.tcx_base = 0x50000000,
.cs_base = 0x6c000000,
.slavio_base = 0x70000000,
.ms_kb_base = 0x71000000,
.serial_base = 0x71100000,
.nvram_base = 0x71200000,
.fd_base = 0x71400000,
.counter_base = 0x71d00000,
.intctl_base = 0x71e00000,
.idreg_base = 0x78000000,
.dma_base = 0x78400000,
.esp_base = 0x78800000,
.le_base = 0x78c00000,
.apc_base = 0x6a000000,
.aux1_base = 0x71900000,
.aux2_base = 0x71910000,
.vram_size = 0x00100000,
.nvram_size = 0x2000,
.esp_irq = 18,
.le_irq = 16,
.clock_irq = 7,
.clock1_irq = 19,
.ms_kb_irq = 14,
.ser_irq = 15,
.fd_irq = 22,
.me_irq = 30,
.cs_irq = 5,
.nvram_machine_id = 0x80,
.machine_id = ss5_id,
.iommu_version = 0x05000000,
.intbit_to_level = {
2, 3, 5, 7, 9, 11, 0, 14, 3, 5, 7, 9, 11, 13, 12, 12,
6, 0, 4, 10, 8, 0, 11, 0, 0, 0, 0, 0, 15, 0, 15, 0,
},
.max_mem = 0x10000000,
.default_cpu_model = "Fujitsu MB86904",
},
/* SS-10 */
{
.iommu_base = 0xfe0000000ULL,
.tcx_base = 0xe20000000ULL,
.slavio_base = 0xff0000000ULL,
.ms_kb_base = 0xff1000000ULL,
.serial_base = 0xff1100000ULL,
.nvram_base = 0xff1200000ULL,
.fd_base = 0xff1700000ULL,
.counter_base = 0xff1300000ULL,
.intctl_base = 0xff1400000ULL,
.idreg_base = 0xef0000000ULL,
.dma_base = 0xef0400000ULL,
.esp_base = 0xef0800000ULL,
.le_base = 0xef0c00000ULL,
.apc_base = 0xefa000000ULL, // XXX should not exist
.aux1_base = 0xff1800000ULL,
.aux2_base = 0xff1a01000ULL,
.ecc_base = 0xf00000000ULL,
.ecc_version = 0x10000000, // version 0, implementation 1
.vram_size = 0x00100000,
.nvram_size = 0x2000,
.esp_irq = 18,
.le_irq = 16,
.clock_irq = 7,
.clock1_irq = 19,
.ms_kb_irq = 14,
.ser_irq = 15,
.fd_irq = 22,
.me_irq = 30,
.ecc_irq = 28,
.nvram_machine_id = 0x72,
.machine_id = ss10_id,
.iommu_version = 0x03000000,
.intbit_to_level = {
2, 3, 5, 7, 9, 11, 0, 14, 3, 5, 7, 9, 11, 13, 12, 12,
6, 0, 4, 10, 8, 0, 11, 0, 0, 0, 0, 0, 15, 0, 15, 0,
},
.max_mem = 0xf00000000ULL,
.default_cpu_model = "TI SuperSparc II",
},
/* SS-600MP */
{
.iommu_base = 0xfe0000000ULL,
.tcx_base = 0xe20000000ULL,
.slavio_base = 0xff0000000ULL,
.ms_kb_base = 0xff1000000ULL,
.serial_base = 0xff1100000ULL,
.nvram_base = 0xff1200000ULL,
.counter_base = 0xff1300000ULL,
.intctl_base = 0xff1400000ULL,
.dma_base = 0xef0081000ULL,
.esp_base = 0xef0080000ULL,
.le_base = 0xef0060000ULL,
.apc_base = 0xefa000000ULL, // XXX should not exist
.aux1_base = 0xff1800000ULL,
.aux2_base = 0xff1a01000ULL, // XXX should not exist
.ecc_base = 0xf00000000ULL,
.ecc_version = 0x00000000, // version 0, implementation 0
.vram_size = 0x00100000,
.nvram_size = 0x2000,
.esp_irq = 18,
.le_irq = 16,
.clock_irq = 7,
.clock1_irq = 19,
.ms_kb_irq = 14,
.ser_irq = 15,
.fd_irq = 22,
.me_irq = 30,
.ecc_irq = 28,
.nvram_machine_id = 0x71,
.machine_id = ss600mp_id,
.iommu_version = 0x01000000,
.intbit_to_level = {
2, 3, 5, 7, 9, 11, 0, 14, 3, 5, 7, 9, 11, 13, 12, 12,
6, 0, 4, 10, 8, 0, 11, 0, 0, 0, 0, 0, 15, 0, 15, 0,
},
.max_mem = 0xf00000000ULL,
.default_cpu_model = "TI SuperSparc II",
},
/* SS-20 */
{
.iommu_base = 0xfe0000000ULL,
.tcx_base = 0xe20000000ULL,
.slavio_base = 0xff0000000ULL,
.ms_kb_base = 0xff1000000ULL,
.serial_base = 0xff1100000ULL,
.nvram_base = 0xff1200000ULL,
.fd_base = 0xff1700000ULL,
.counter_base = 0xff1300000ULL,
.intctl_base = 0xff1400000ULL,
.idreg_base = 0xef0000000ULL,
.dma_base = 0xef0400000ULL,
.esp_base = 0xef0800000ULL,
.le_base = 0xef0c00000ULL,
.apc_base = 0xefa000000ULL, // XXX should not exist
.aux1_base = 0xff1800000ULL,
.aux2_base = 0xff1a01000ULL,
.ecc_base = 0xf00000000ULL,
.ecc_version = 0x20000000, // version 0, implementation 2
.vram_size = 0x00100000,
.nvram_size = 0x2000,
.esp_irq = 18,
.le_irq = 16,
.clock_irq = 7,
.clock1_irq = 19,
.ms_kb_irq = 14,
.ser_irq = 15,
.fd_irq = 22,
.me_irq = 30,
.ecc_irq = 28,
.nvram_machine_id = 0x72,
.machine_id = ss20_id,
.iommu_version = 0x13000000,
.intbit_to_level = {
2, 3, 5, 7, 9, 11, 0, 14, 3, 5, 7, 9, 11, 13, 12, 12,
6, 0, 4, 10, 8, 0, 11, 0, 0, 0, 0, 0, 15, 0, 15, 0,
},
.max_mem = 0xf00000000ULL,
.default_cpu_model = "TI SuperSparc II",
},
/* Voyager */
{
.iommu_base = 0x10000000,
.tcx_base = 0x50000000,
.slavio_base = 0x70000000,
.ms_kb_base = 0x71000000,
.serial_base = 0x71100000,
.nvram_base = 0x71200000,
.fd_base = 0x71400000,
.counter_base = 0x71d00000,
.intctl_base = 0x71e00000,
.idreg_base = 0x78000000,
.dma_base = 0x78400000,
.esp_base = 0x78800000,
.le_base = 0x78c00000,
.apc_base = 0x71300000, // pmc
.aux1_base = 0x71900000,
.aux2_base = 0x71910000,
.vram_size = 0x00100000,
.nvram_size = 0x2000,
.esp_irq = 18,
.le_irq = 16,
.clock_irq = 7,
.clock1_irq = 19,
.ms_kb_irq = 14,
.ser_irq = 15,
.fd_irq = 22,
.me_irq = 30,
.nvram_machine_id = 0x80,
.machine_id = vger_id,
.iommu_version = 0x05000000,
.intbit_to_level = {
2, 3, 5, 7, 9, 11, 0, 14, 3, 5, 7, 9, 11, 13, 12, 12,
6, 0, 4, 10, 8, 0, 11, 0, 0, 0, 0, 0, 15, 0, 15, 0,
},
.max_mem = 0x10000000,
.default_cpu_model = "Fujitsu MB86904",
},
/* LX */
{
.iommu_base = 0x10000000,
.tcx_base = 0x50000000,
.slavio_base = 0x70000000,
.ms_kb_base = 0x71000000,
.serial_base = 0x71100000,
.nvram_base = 0x71200000,
.fd_base = 0x71400000,
.counter_base = 0x71d00000,
.intctl_base = 0x71e00000,
.idreg_base = 0x78000000,
.dma_base = 0x78400000,
.esp_base = 0x78800000,
.le_base = 0x78c00000,
.aux1_base = 0x71900000,
.aux2_base = 0x71910000,
.vram_size = 0x00100000,
.nvram_size = 0x2000,
.esp_irq = 18,
.le_irq = 16,
.clock_irq = 7,
.clock1_irq = 19,
.ms_kb_irq = 14,
.ser_irq = 15,
.fd_irq = 22,
.me_irq = 30,
.nvram_machine_id = 0x80,
.machine_id = lx_id,
.iommu_version = 0x04000000,
.intbit_to_level = {
2, 3, 5, 7, 9, 11, 0, 14, 3, 5, 7, 9, 11, 13, 12, 12,
6, 0, 4, 10, 8, 0, 11, 0, 0, 0, 0, 0, 15, 0, 15, 0,
},
.max_mem = 0x10000000,
.default_cpu_model = "TI MicroSparc I",
},
/* SS-4 */
{
.iommu_base = 0x10000000,
.tcx_base = 0x50000000,
.cs_base = 0x6c000000,
.slavio_base = 0x70000000,
.ms_kb_base = 0x71000000,
.serial_base = 0x71100000,
.nvram_base = 0x71200000,
.fd_base = 0x71400000,
.counter_base = 0x71d00000,
.intctl_base = 0x71e00000,
.idreg_base = 0x78000000,
.dma_base = 0x78400000,
.esp_base = 0x78800000,
.le_base = 0x78c00000,
.apc_base = 0x6a000000,
.aux1_base = 0x71900000,
.aux2_base = 0x71910000,
.vram_size = 0x00100000,
.nvram_size = 0x2000,
.esp_irq = 18,
.le_irq = 16,
.clock_irq = 7,
.clock1_irq = 19,
.ms_kb_irq = 14,
.ser_irq = 15,
.fd_irq = 22,
.me_irq = 30,
.cs_irq = 5,
.nvram_machine_id = 0x80,
.machine_id = ss4_id,
.iommu_version = 0x05000000,
.intbit_to_level = {
2, 3, 5, 7, 9, 11, 0, 14, 3, 5, 7, 9, 11, 13, 12, 12,
6, 0, 4, 10, 8, 0, 11, 0, 0, 0, 0, 0, 15, 0, 15, 0,
},
.max_mem = 0x10000000,
.default_cpu_model = "Fujitsu MB86904",
},
/* SPARCClassic */
{
.iommu_base = 0x10000000,
.tcx_base = 0x50000000,
.slavio_base = 0x70000000,
.ms_kb_base = 0x71000000,
.serial_base = 0x71100000,
.nvram_base = 0x71200000,
.fd_base = 0x71400000,
.counter_base = 0x71d00000,
.intctl_base = 0x71e00000,
.idreg_base = 0x78000000,
.dma_base = 0x78400000,
.esp_base = 0x78800000,
.le_base = 0x78c00000,
.apc_base = 0x6a000000,
.aux1_base = 0x71900000,
.aux2_base = 0x71910000,
.vram_size = 0x00100000,
.nvram_size = 0x2000,
.esp_irq = 18,
.le_irq = 16,
.clock_irq = 7,
.clock1_irq = 19,
.ms_kb_irq = 14,
.ser_irq = 15,
.fd_irq = 22,
.me_irq = 30,
.nvram_machine_id = 0x80,
.machine_id = scls_id,
.iommu_version = 0x05000000,
.intbit_to_level = {
2, 3, 5, 7, 9, 11, 0, 14, 3, 5, 7, 9, 11, 13, 12, 12,
6, 0, 4, 10, 8, 0, 11, 0, 0, 0, 0, 0, 15, 0, 15, 0,
},
.max_mem = 0x10000000,
.default_cpu_model = "TI MicroSparc I",
},
/* SPARCbook */
{
.iommu_base = 0x10000000,
.tcx_base = 0x50000000, // XXX
.slavio_base = 0x70000000,
.ms_kb_base = 0x71000000,
.serial_base = 0x71100000,
.nvram_base = 0x71200000,
.fd_base = 0x71400000,
.counter_base = 0x71d00000,
.intctl_base = 0x71e00000,
.idreg_base = 0x78000000,
.dma_base = 0x78400000,
.esp_base = 0x78800000,
.le_base = 0x78c00000,
.apc_base = 0x6a000000,
.aux1_base = 0x71900000,
.aux2_base = 0x71910000,
.vram_size = 0x00100000,
.nvram_size = 0x2000,
.esp_irq = 18,
.le_irq = 16,
.clock_irq = 7,
.clock1_irq = 19,
.ms_kb_irq = 14,
.ser_irq = 15,
.fd_irq = 22,
.me_irq = 30,
.nvram_machine_id = 0x80,
.machine_id = sbook_id,
.iommu_version = 0x05000000,
.intbit_to_level = {
2, 3, 5, 7, 9, 11, 0, 14, 3, 5, 7, 9, 11, 13, 12, 12,
6, 0, 4, 10, 8, 0, 11, 0, 0, 0, 0, 0, 15, 0, 15, 0,
},
.max_mem = 0x10000000,
.default_cpu_model = "TI MicroSparc I",
},
};
/* SPARCstation 5 hardware initialisation */
static void ss5_init(ram_addr_t RAM_size, int vga_ram_size,
const char *boot_device,
const char *kernel_filename, const char *kernel_cmdline,
const char *initrd_filename, const char *cpu_model)
{
sun4m_hw_init(&sun4m_hwdefs[0], RAM_size, boot_device, kernel_filename,
kernel_cmdline, initrd_filename, cpu_model);
}
/* SPARCstation 10 hardware initialisation */
static void ss10_init(ram_addr_t RAM_size, int vga_ram_size,
const char *boot_device,
const char *kernel_filename, const char *kernel_cmdline,
const char *initrd_filename, const char *cpu_model)
{
sun4m_hw_init(&sun4m_hwdefs[1], RAM_size, boot_device, kernel_filename,
kernel_cmdline, initrd_filename, cpu_model);
}
/* SPARCserver 600MP hardware initialisation */
static void ss600mp_init(ram_addr_t RAM_size, int vga_ram_size,
const char *boot_device,
const char *kernel_filename,
const char *kernel_cmdline,
const char *initrd_filename, const char *cpu_model)
{
sun4m_hw_init(&sun4m_hwdefs[2], RAM_size, boot_device, kernel_filename,
kernel_cmdline, initrd_filename, cpu_model);
}
/* SPARCstation 20 hardware initialisation */
static void ss20_init(ram_addr_t RAM_size, int vga_ram_size,
const char *boot_device,
const char *kernel_filename, const char *kernel_cmdline,
const char *initrd_filename, const char *cpu_model)
{
sun4m_hw_init(&sun4m_hwdefs[3], RAM_size, boot_device, kernel_filename,
kernel_cmdline, initrd_filename, cpu_model);
}
/* SPARCstation Voyager hardware initialisation */
static void vger_init(ram_addr_t RAM_size, int vga_ram_size,
const char *boot_device,
const char *kernel_filename, const char *kernel_cmdline,
const char *initrd_filename, const char *cpu_model)
{
sun4m_hw_init(&sun4m_hwdefs[4], RAM_size, boot_device, kernel_filename,
kernel_cmdline, initrd_filename, cpu_model);
}
/* SPARCstation LX hardware initialisation */
static void ss_lx_init(ram_addr_t RAM_size, int vga_ram_size,
const char *boot_device,
const char *kernel_filename, const char *kernel_cmdline,
const char *initrd_filename, const char *cpu_model)
{
sun4m_hw_init(&sun4m_hwdefs[5], RAM_size, boot_device, kernel_filename,
kernel_cmdline, initrd_filename, cpu_model);
}
/* SPARCstation 4 hardware initialisation */
static void ss4_init(ram_addr_t RAM_size, int vga_ram_size,
const char *boot_device,
const char *kernel_filename, const char *kernel_cmdline,
const char *initrd_filename, const char *cpu_model)
{
sun4m_hw_init(&sun4m_hwdefs[6], RAM_size, boot_device, kernel_filename,
kernel_cmdline, initrd_filename, cpu_model);
}
/* SPARCClassic hardware initialisation */
static void scls_init(ram_addr_t RAM_size, int vga_ram_size,
const char *boot_device,
const char *kernel_filename, const char *kernel_cmdline,
const char *initrd_filename, const char *cpu_model)
{
sun4m_hw_init(&sun4m_hwdefs[7], RAM_size, boot_device, kernel_filename,
kernel_cmdline, initrd_filename, cpu_model);
}
/* SPARCbook hardware initialisation */
static void sbook_init(ram_addr_t RAM_size, int vga_ram_size,
const char *boot_device,
const char *kernel_filename, const char *kernel_cmdline,
const char *initrd_filename, const char *cpu_model)
{
sun4m_hw_init(&sun4m_hwdefs[8], RAM_size, boot_device, kernel_filename,
kernel_cmdline, initrd_filename, cpu_model);
}
QEMUMachine ss5_machine = {
.name = "SS-5",
.desc = "Sun4m platform, SPARCstation 5",
.init = ss5_init,
.use_scsi = 1,
};
QEMUMachine ss10_machine = {
.name = "SS-10",
.desc = "Sun4m platform, SPARCstation 10",
.init = ss10_init,
.use_scsi = 1,
.max_cpus = 4,
};
QEMUMachine ss600mp_machine = {
.name = "SS-600MP",
.desc = "Sun4m platform, SPARCserver 600MP",
.init = ss600mp_init,
.use_scsi = 1,
.max_cpus = 4,
};
QEMUMachine ss20_machine = {
.name = "SS-20",
.desc = "Sun4m platform, SPARCstation 20",
.init = ss20_init,
.use_scsi = 1,
.max_cpus = 4,
};
QEMUMachine voyager_machine = {
.name = "Voyager",
.desc = "Sun4m platform, SPARCstation Voyager",
.init = vger_init,
.use_scsi = 1,
};
QEMUMachine ss_lx_machine = {
.name = "LX",
.desc = "Sun4m platform, SPARCstation LX",
.init = ss_lx_init,
.use_scsi = 1,
};
QEMUMachine ss4_machine = {
.name = "SS-4",
.desc = "Sun4m platform, SPARCstation 4",
.init = ss4_init,
.use_scsi = 1,
};
QEMUMachine scls_machine = {
.name = "SPARCClassic",
.desc = "Sun4m platform, SPARCClassic",
.init = scls_init,
.use_scsi = 1,
};
QEMUMachine sbook_machine = {
.name = "SPARCbook",
.desc = "Sun4m platform, SPARCbook",
.init = sbook_init,
.use_scsi = 1,
};
static const struct sun4d_hwdef sun4d_hwdefs[] = {
/* SS-1000 */
{
.iounit_bases = {
0xfe0200000ULL,
0xfe1200000ULL,
0xfe2200000ULL,
0xfe3200000ULL,
-1,
},
.tcx_base = 0x820000000ULL,
.slavio_base = 0xf00000000ULL,
.ms_kb_base = 0xf00240000ULL,
.serial_base = 0xf00200000ULL,
.nvram_base = 0xf00280000ULL,
.counter_base = 0xf00300000ULL,
.espdma_base = 0x800081000ULL,
.esp_base = 0x800080000ULL,
.ledma_base = 0x800040000ULL,
.le_base = 0x800060000ULL,
.sbi_base = 0xf02800000ULL,
.vram_size = 0x00100000,
.nvram_size = 0x2000,
.esp_irq = 3,
.le_irq = 4,
.clock_irq = 14,
.clock1_irq = 10,
.ms_kb_irq = 12,
.ser_irq = 12,
.nvram_machine_id = 0x80,
.machine_id = ss1000_id,
.iounit_version = 0x03000000,
.max_mem = 0xf00000000ULL,
.default_cpu_model = "TI SuperSparc II",
},
/* SS-2000 */
{
.iounit_bases = {
0xfe0200000ULL,
0xfe1200000ULL,
0xfe2200000ULL,
0xfe3200000ULL,
0xfe4200000ULL,
},
.tcx_base = 0x820000000ULL,
.slavio_base = 0xf00000000ULL,
.ms_kb_base = 0xf00240000ULL,
.serial_base = 0xf00200000ULL,
.nvram_base = 0xf00280000ULL,
.counter_base = 0xf00300000ULL,
.espdma_base = 0x800081000ULL,
.esp_base = 0x800080000ULL,
.ledma_base = 0x800040000ULL,
.le_base = 0x800060000ULL,
.sbi_base = 0xf02800000ULL,
.vram_size = 0x00100000,
.nvram_size = 0x2000,
.esp_irq = 3,
.le_irq = 4,
.clock_irq = 14,
.clock1_irq = 10,
.ms_kb_irq = 12,
.ser_irq = 12,
.nvram_machine_id = 0x80,
.machine_id = ss2000_id,
.iounit_version = 0x03000000,
.max_mem = 0xf00000000ULL,
.default_cpu_model = "TI SuperSparc II",
},
};
static void sun4d_hw_init(const struct sun4d_hwdef *hwdef, ram_addr_t RAM_size,
const char *boot_device,
const char *kernel_filename,
const char *kernel_cmdline,
const char *initrd_filename, const char *cpu_model)
{
CPUState *env, *envs[MAX_CPUS];
unsigned int i;
void *iounits[MAX_IOUNITS], *espdma, *ledma, *main_esp, *nvram, *sbi;
qemu_irq *cpu_irqs[MAX_CPUS], *sbi_irq, *sbi_cpu_irq,
*espdma_irq, *ledma_irq;
qemu_irq *esp_reset, *le_reset;
ram_addr_t ram_offset, prom_offset;
unsigned long kernel_size;
int ret;
char buf[1024];
int drive_index;
void *fw_cfg;
/* init CPUs */
if (!cpu_model)
cpu_model = hwdef->default_cpu_model;
for (i = 0; i < smp_cpus; i++) {
env = cpu_init(cpu_model);
if (!env) {
fprintf(stderr, "qemu: Unable to find Sparc CPU definition\n");
exit(1);
}
cpu_sparc_set_id(env, i);
envs[i] = env;
if (i == 0) {
qemu_register_reset(main_cpu_reset, env);
} else {
qemu_register_reset(secondary_cpu_reset, env);
env->halted = 1;
}
cpu_irqs[i] = qemu_allocate_irqs(cpu_set_irq, envs[i], MAX_PILS);
env->prom_addr = hwdef->slavio_base;
}
for (i = smp_cpus; i < MAX_CPUS; i++)
cpu_irqs[i] = qemu_allocate_irqs(dummy_cpu_set_irq, NULL, MAX_PILS);
/* allocate RAM */
if ((uint64_t)RAM_size > hwdef->max_mem) {
fprintf(stderr,
"qemu: Too much memory for this machine: %d, maximum %d\n",
(unsigned int)(RAM_size / (1024 * 1024)),
(unsigned int)(hwdef->max_mem / (1024 * 1024)));
exit(1);
}
ram_offset = qemu_ram_alloc(RAM_size);
cpu_register_physical_memory(0, RAM_size, ram_offset);
/* load boot prom */
prom_offset = qemu_ram_alloc(PROM_SIZE_MAX);
cpu_register_physical_memory(hwdef->slavio_base,
(PROM_SIZE_MAX + TARGET_PAGE_SIZE - 1) &
TARGET_PAGE_MASK,
prom_offset | IO_MEM_ROM);
if (bios_name == NULL)
bios_name = PROM_FILENAME;
snprintf(buf, sizeof(buf), "%s/%s", bios_dir, bios_name);
ret = load_elf(buf, hwdef->slavio_base - PROM_VADDR, NULL, NULL, NULL);
if (ret < 0 || ret > PROM_SIZE_MAX)
ret = load_image_targphys(buf, hwdef->slavio_base, PROM_SIZE_MAX);
if (ret < 0 || ret > PROM_SIZE_MAX) {
fprintf(stderr, "qemu: could not load prom '%s'\n",
buf);
exit(1);
}
/* set up devices */
sbi = sbi_init(hwdef->sbi_base, &sbi_irq, &sbi_cpu_irq, cpu_irqs);
for (i = 0; i < MAX_IOUNITS; i++)
if (hwdef->iounit_bases[i] != (target_phys_addr_t)-1)
iounits[i] = iommu_init(hwdef->iounit_bases[i],
hwdef->iounit_version,
sbi_irq[hwdef->me_irq]);
espdma = sparc32_dma_init(hwdef->espdma_base, sbi_irq[hwdef->esp_irq],
iounits[0], &espdma_irq, &esp_reset);
ledma = sparc32_dma_init(hwdef->ledma_base, sbi_irq[hwdef->le_irq],
iounits[0], &ledma_irq, &le_reset);
if (graphic_depth != 8 && graphic_depth != 24) {
fprintf(stderr, "qemu: Unsupported depth: %d\n", graphic_depth);
exit (1);
}
tcx_init(hwdef->tcx_base, hwdef->vram_size, graphic_width, graphic_height,
graphic_depth);
lance_init(&nd_table[0], hwdef->le_base, ledma, *ledma_irq, le_reset);
nvram = m48t59_init(sbi_irq[0], hwdef->nvram_base, 0,
hwdef->nvram_size, 8);
slavio_timer_init_all(hwdef->counter_base, sbi_irq[hwdef->clock1_irq],
sbi_cpu_irq, smp_cpus);
slavio_serial_ms_kbd_init(hwdef->ms_kb_base, sbi_irq[hwdef->ms_kb_irq],
nographic, ESCC_CLOCK, 1);
// Slavio TTYA (base+4, Linux ttyS0) is the first Qemu serial device
// Slavio TTYB (base+0, Linux ttyS1) is the second Qemu serial device
escc_init(hwdef->serial_base, sbi_irq[hwdef->ser_irq], sbi_irq[hwdef->ser_irq],
serial_hds[0], serial_hds[1], ESCC_CLOCK, 1);
if (drive_get_max_bus(IF_SCSI) > 0) {
fprintf(stderr, "qemu: too many SCSI bus\n");
exit(1);
}
main_esp = esp_init(hwdef->esp_base, 2,
espdma_memory_read, espdma_memory_write,
espdma, *espdma_irq, esp_reset);
for (i = 0; i < ESP_MAX_DEVS; i++) {
drive_index = drive_get_index(IF_SCSI, 0, i);
if (drive_index == -1)
continue;
esp_scsi_attach(main_esp, drives_table[drive_index].bdrv, i);
}
kernel_size = sun4m_load_kernel(kernel_filename, initrd_filename,
RAM_size);
nvram_init(nvram, (uint8_t *)&nd_table[0].macaddr, kernel_cmdline,
boot_device, RAM_size, kernel_size, graphic_width,
graphic_height, graphic_depth, hwdef->nvram_machine_id,
"Sun4d");
fw_cfg = fw_cfg_init(0, 0, CFG_ADDR, CFG_ADDR + 2);
fw_cfg_add_i32(fw_cfg, FW_CFG_ID, 1);
fw_cfg_add_i64(fw_cfg, FW_CFG_RAM_SIZE, (uint64_t)ram_size);
fw_cfg_add_i16(fw_cfg, FW_CFG_MACHINE_ID, hwdef->machine_id);
fw_cfg_add_i16(fw_cfg, FW_CFG_SUN4M_DEPTH, graphic_depth);
fw_cfg_add_i32(fw_cfg, FW_CFG_KERNEL_ADDR, KERNEL_LOAD_ADDR);
fw_cfg_add_i32(fw_cfg, FW_CFG_KERNEL_SIZE, kernel_size);
if (kernel_cmdline) {
fw_cfg_add_i32(fw_cfg, FW_CFG_KERNEL_CMDLINE, CMDLINE_ADDR);
pstrcpy_targphys(CMDLINE_ADDR, TARGET_PAGE_SIZE, kernel_cmdline);
} else {
fw_cfg_add_i32(fw_cfg, FW_CFG_KERNEL_CMDLINE, 0);
}
fw_cfg_add_i32(fw_cfg, FW_CFG_INITRD_ADDR, INITRD_LOAD_ADDR);
fw_cfg_add_i32(fw_cfg, FW_CFG_INITRD_SIZE, 0); // not used
fw_cfg_add_i16(fw_cfg, FW_CFG_BOOT_DEVICE, boot_device[0]);
qemu_register_boot_set(fw_cfg_boot_set, fw_cfg);
}
/* SPARCserver 1000 hardware initialisation */
static void ss1000_init(ram_addr_t RAM_size, int vga_ram_size,
const char *boot_device,
const char *kernel_filename, const char *kernel_cmdline,
const char *initrd_filename, const char *cpu_model)
{
sun4d_hw_init(&sun4d_hwdefs[0], RAM_size, boot_device, kernel_filename,
kernel_cmdline, initrd_filename, cpu_model);
}
/* SPARCcenter 2000 hardware initialisation */
static void ss2000_init(ram_addr_t RAM_size, int vga_ram_size,
const char *boot_device,
const char *kernel_filename, const char *kernel_cmdline,
const char *initrd_filename, const char *cpu_model)
{
sun4d_hw_init(&sun4d_hwdefs[1], RAM_size, boot_device, kernel_filename,
kernel_cmdline, initrd_filename, cpu_model);
}
QEMUMachine ss1000_machine = {
.name = "SS-1000",
.desc = "Sun4d platform, SPARCserver 1000",
.init = ss1000_init,
.use_scsi = 1,
.max_cpus = 8,
};
QEMUMachine ss2000_machine = {
.name = "SS-2000",
.desc = "Sun4d platform, SPARCcenter 2000",
.init = ss2000_init,
.use_scsi = 1,
.max_cpus = 20,
};
static const struct sun4c_hwdef sun4c_hwdefs[] = {
/* SS-2 */
{
.iommu_base = 0xf8000000,
.tcx_base = 0xfe000000,
.slavio_base = 0xf6000000,
.intctl_base = 0xf5000000,
.counter_base = 0xf3000000,
.ms_kb_base = 0xf0000000,
.serial_base = 0xf1000000,
.nvram_base = 0xf2000000,
.fd_base = 0xf7200000,
.dma_base = 0xf8400000,
.esp_base = 0xf8800000,
.le_base = 0xf8c00000,
.aux1_base = 0xf7400003,
.vram_size = 0x00100000,
.nvram_size = 0x800,
.esp_irq = 2,
.le_irq = 3,
.clock_irq = 5,
.clock1_irq = 7,
.ms_kb_irq = 1,
.ser_irq = 1,
.fd_irq = 1,
.me_irq = 1,
.nvram_machine_id = 0x55,
.machine_id = ss2_id,
.max_mem = 0x10000000,
.default_cpu_model = "Cypress CY7C601",
},
};
static void sun4c_hw_init(const struct sun4c_hwdef *hwdef, ram_addr_t RAM_size,
const char *boot_device,
const char *kernel_filename,
const char *kernel_cmdline,
const char *initrd_filename, const char *cpu_model)
{
CPUState *env;
unsigned int i;
void *iommu, *espdma, *ledma, *main_esp, *nvram;
qemu_irq *cpu_irqs, *slavio_irq, *espdma_irq, *ledma_irq;
qemu_irq *esp_reset, *le_reset;
qemu_irq *fdc_tc;
ram_addr_t ram_offset, prom_offset;
unsigned long kernel_size;
int ret;
char buf[1024];
BlockDriverState *fd[MAX_FD];
int drive_index;
void *fw_cfg;
/* init CPU */
if (!cpu_model)
cpu_model = hwdef->default_cpu_model;
env = cpu_init(cpu_model);
if (!env) {
fprintf(stderr, "qemu: Unable to find Sparc CPU definition\n");
exit(1);
}
cpu_sparc_set_id(env, 0);
qemu_register_reset(main_cpu_reset, env);
cpu_irqs = qemu_allocate_irqs(cpu_set_irq, env, MAX_PILS);
env->prom_addr = hwdef->slavio_base;
/* allocate RAM */
if ((uint64_t)RAM_size > hwdef->max_mem) {
fprintf(stderr,
"qemu: Too much memory for this machine: %d, maximum %d\n",
(unsigned int)(RAM_size / (1024 * 1024)),
(unsigned int)(hwdef->max_mem / (1024 * 1024)));
exit(1);
}
ram_offset = qemu_ram_alloc(RAM_size);
cpu_register_physical_memory(0, RAM_size, ram_offset);
/* load boot prom */
prom_offset = qemu_ram_alloc(PROM_SIZE_MAX);
cpu_register_physical_memory(hwdef->slavio_base,
(PROM_SIZE_MAX + TARGET_PAGE_SIZE - 1) &
TARGET_PAGE_MASK,
prom_offset | IO_MEM_ROM);
if (bios_name == NULL)
bios_name = PROM_FILENAME;
snprintf(buf, sizeof(buf), "%s/%s", bios_dir, bios_name);
ret = load_elf(buf, hwdef->slavio_base - PROM_VADDR, NULL, NULL, NULL);
if (ret < 0 || ret > PROM_SIZE_MAX)
ret = load_image_targphys(buf, hwdef->slavio_base, PROM_SIZE_MAX);
if (ret < 0 || ret > PROM_SIZE_MAX) {
fprintf(stderr, "qemu: could not load prom '%s'\n",
buf);
exit(1);
}
/* set up devices */
slavio_intctl = sun4c_intctl_init(hwdef->intctl_base,
&slavio_irq, cpu_irqs);
iommu = iommu_init(hwdef->iommu_base, hwdef->iommu_version,
slavio_irq[hwdef->me_irq]);
espdma = sparc32_dma_init(hwdef->dma_base, slavio_irq[hwdef->esp_irq],
iommu, &espdma_irq, &esp_reset);
ledma = sparc32_dma_init(hwdef->dma_base + 16ULL,
slavio_irq[hwdef->le_irq], iommu, &ledma_irq,
&le_reset);
if (graphic_depth != 8 && graphic_depth != 24) {
fprintf(stderr, "qemu: Unsupported depth: %d\n", graphic_depth);
exit (1);
}
tcx_init(hwdef->tcx_base, hwdef->vram_size, graphic_width, graphic_height,
graphic_depth);
lance_init(&nd_table[0], hwdef->le_base, ledma, *ledma_irq, le_reset);
nvram = m48t59_init(slavio_irq[0], hwdef->nvram_base, 0,
hwdef->nvram_size, 2);
slavio_serial_ms_kbd_init(hwdef->ms_kb_base, slavio_irq[hwdef->ms_kb_irq],
nographic, ESCC_CLOCK, 1);
// Slavio TTYA (base+4, Linux ttyS0) is the first Qemu serial device
// Slavio TTYB (base+0, Linux ttyS1) is the second Qemu serial device
escc_init(hwdef->serial_base, slavio_irq[hwdef->ser_irq],
slavio_irq[hwdef->ser_irq], serial_hds[0], serial_hds[1],
ESCC_CLOCK, 1);
slavio_misc = slavio_misc_init(0, 0, hwdef->aux1_base, 0,
slavio_irq[hwdef->me_irq], NULL, &fdc_tc);
if (hwdef->fd_base != (target_phys_addr_t)-1) {
/* there is zero or one floppy drive */
memset(fd, 0, sizeof(fd));
drive_index = drive_get_index(IF_FLOPPY, 0, 0);
if (drive_index != -1)
fd[0] = drives_table[drive_index].bdrv;
sun4m_fdctrl_init(slavio_irq[hwdef->fd_irq], hwdef->fd_base, fd,
fdc_tc);
}
if (drive_get_max_bus(IF_SCSI) > 0) {
fprintf(stderr, "qemu: too many SCSI bus\n");
exit(1);
}
main_esp = esp_init(hwdef->esp_base, 2,
espdma_memory_read, espdma_memory_write,
espdma, *espdma_irq, esp_reset);
for (i = 0; i < ESP_MAX_DEVS; i++) {
drive_index = drive_get_index(IF_SCSI, 0, i);
if (drive_index == -1)
continue;
esp_scsi_attach(main_esp, drives_table[drive_index].bdrv, i);
}
kernel_size = sun4m_load_kernel(kernel_filename, initrd_filename,
RAM_size);
nvram_init(nvram, (uint8_t *)&nd_table[0].macaddr, kernel_cmdline,
boot_device, RAM_size, kernel_size, graphic_width,
graphic_height, graphic_depth, hwdef->nvram_machine_id,
"Sun4c");
fw_cfg = fw_cfg_init(0, 0, CFG_ADDR, CFG_ADDR + 2);
fw_cfg_add_i32(fw_cfg, FW_CFG_ID, 1);
fw_cfg_add_i64(fw_cfg, FW_CFG_RAM_SIZE, (uint64_t)ram_size);
fw_cfg_add_i16(fw_cfg, FW_CFG_MACHINE_ID, hwdef->machine_id);
fw_cfg_add_i16(fw_cfg, FW_CFG_SUN4M_DEPTH, graphic_depth);
fw_cfg_add_i32(fw_cfg, FW_CFG_KERNEL_ADDR, KERNEL_LOAD_ADDR);
fw_cfg_add_i32(fw_cfg, FW_CFG_KERNEL_SIZE, kernel_size);
if (kernel_cmdline) {
fw_cfg_add_i32(fw_cfg, FW_CFG_KERNEL_CMDLINE, CMDLINE_ADDR);
pstrcpy_targphys(CMDLINE_ADDR, TARGET_PAGE_SIZE, kernel_cmdline);
} else {
fw_cfg_add_i32(fw_cfg, FW_CFG_KERNEL_CMDLINE, 0);
}
fw_cfg_add_i32(fw_cfg, FW_CFG_INITRD_ADDR, INITRD_LOAD_ADDR);
fw_cfg_add_i32(fw_cfg, FW_CFG_INITRD_SIZE, 0); // not used
fw_cfg_add_i16(fw_cfg, FW_CFG_BOOT_DEVICE, boot_device[0]);
qemu_register_boot_set(fw_cfg_boot_set, fw_cfg);
}
/* SPARCstation 2 hardware initialisation */
static void ss2_init(ram_addr_t RAM_size, int vga_ram_size,
const char *boot_device,
const char *kernel_filename, const char *kernel_cmdline,
const char *initrd_filename, const char *cpu_model)
{
sun4c_hw_init(&sun4c_hwdefs[0], RAM_size, boot_device, kernel_filename,
kernel_cmdline, initrd_filename, cpu_model);
}
QEMUMachine ss2_machine = {
.name = "SS-2",
.desc = "Sun4c platform, SPARCstation 2",
.init = ss2_init,
.use_scsi = 1,
};