/*
* USB redirector usb-guest
*
* Copyright (c) 2011-2012 Red Hat, Inc.
*
* Red Hat Authors:
* Hans de Goede <hdegoede@redhat.com>
*
* Permission is hereby granted, free of charge, to any person obtaining a copy
* of this software and associated documentation files (the "Software"), to deal
* in the Software without restriction, including without limitation the rights
* to use, copy, modify, merge, publish, distribute, sublicense, and/or sell
* copies of the Software, and to permit persons to whom the Software is
* furnished to do so, subject to the following conditions:
*
* The above copyright notice and this permission notice shall be included in
* all copies or substantial portions of the Software.
*
* THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
* IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
* FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL
* THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
* LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM,
* OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN
* THE SOFTWARE.
*/
#include "qemu/osdep.h"
#include "qemu/cutils.h"
#include "qemu/units.h"
#include "qapi/error.h"
#include "qemu/timer.h"
#include "sysemu/runstate.h"
#include "sysemu/sysemu.h"
#include "qapi/qmp/qerror.h"
#include "qemu/error-report.h"
#include "qemu/iov.h"
#include "qemu/module.h"
#include "chardev/char-fe.h"
#include <usbredirparser.h>
#include <usbredirfilter.h>
#include "hw/qdev-properties.h"
#include "hw/qdev-properties-system.h"
#include "hw/usb.h"
#include "migration/qemu-file-types.h"
#include "migration/vmstate.h"
#include "qom/object.h"
/* ERROR is defined below. Remove any previous definition. */
#undef ERROR
#define MAX_ENDPOINTS 32
#define NO_INTERFACE_INFO 255 /* Valid interface_count always <= 32 */
#define EP2I(ep_address) (((ep_address & 0x80) >> 3) | (ep_address & 0x0f))
#define I2EP(i) (((i & 0x10) << 3) | (i & 0x0f))
#define USBEP2I(usb_ep) (((usb_ep)->pid == USB_TOKEN_IN) ? \
((usb_ep)->nr | 0x10) : ((usb_ep)->nr))
#define I2USBEP(d, i) (usb_ep_get(&(d)->dev, \
((i) & 0x10) ? USB_TOKEN_IN : USB_TOKEN_OUT, \
(i) & 0x0f))
#ifndef USBREDIR_VERSION /* This is not defined in older usbredir versions */
#define USBREDIR_VERSION 0
#endif
typedef struct USBRedirDevice USBRedirDevice;
/* Struct to hold buffered packets */
struct buf_packet {
uint8_t *data;
void *free_on_destroy;
uint16_t len;
uint16_t offset;
uint8_t status;
QTAILQ_ENTRY(buf_packet)next;
};
struct endp_data {
USBRedirDevice *dev;
uint8_t type;
uint8_t interval;
uint8_t interface; /* bInterfaceNumber this ep belongs to */
uint16_t max_packet_size; /* In bytes, not wMaxPacketSize format !! */
uint32_t max_streams;
uint8_t iso_started;
uint8_t iso_error; /* For reporting iso errors to the HC */
uint8_t interrupt_started;
uint8_t interrupt_error;
uint8_t bulk_receiving_enabled;
uint8_t bulk_receiving_started;
uint8_t bufpq_prefilled;
uint8_t bufpq_dropping_packets;
QTAILQ_HEAD(, buf_packet) bufpq;
int32_t bufpq_size;
int32_t bufpq_target_size;
USBPacket *pending_async_packet;
};
struct PacketIdQueueEntry {
uint64_t id;
QTAILQ_ENTRY(PacketIdQueueEntry)next;
};
struct PacketIdQueue {
USBRedirDevice *dev;
const char *name;
QTAILQ_HEAD(, PacketIdQueueEntry) head;
int size;
};
struct USBRedirDevice {
USBDevice dev;
/* Properties */
CharBackend cs;
bool enable_streams;
bool suppress_remote_wake;
bool in_write;
uint8_t debug;
int32_t bootindex;
char *filter_str;
/* Data passed from chardev the fd_read cb to the usbredirparser read cb */
const uint8_t *read_buf;
int read_buf_size;
/* Active chardev-watch-tag */
guint watch;
/* For async handling of close / reject */
QEMUBH *chardev_close_bh;
QEMUBH *device_reject_bh;
/* To delay the usb attach in case of quick chardev close + open */
QEMUTimer *attach_timer;
int64_t next_attach_time;
struct usbredirparser *parser;
struct endp_data endpoint[MAX_ENDPOINTS];
struct PacketIdQueue cancelled;
struct PacketIdQueue already_in_flight;
void (*buffered_bulk_in_complete)(USBRedirDevice *, USBPacket *, uint8_t);
/* Data for device filtering */
struct usb_redir_device_connect_header device_info;
struct usb_redir_interface_info_header interface_info;
struct usbredirfilter_rule *filter_rules;
int filter_rules_count;
int compatible_speedmask;
VMChangeStateEntry *vmstate;
};
#define TYPE_USB_REDIR "usb-redir"
DECLARE_INSTANCE_CHECKER(USBRedirDevice, USB_REDIRECT,
TYPE_USB_REDIR)
static void usbredir_hello(void *priv, struct usb_redir_hello_header *h);
static void usbredir_device_connect(void *priv,
struct usb_redir_device_connect_header *device_connect);
static void usbredir_device_disconnect(void *priv);
static void usbredir_interface_info(void *priv,
struct usb_redir_interface_info_header *interface_info);
static void usbredir_ep_info(void *priv,
struct usb_redir_ep_info_header *ep_info);
static void usbredir_configuration_status(void *priv, uint64_t id,
struct usb_redir_configuration_status_header *configuration_status);
static void usbredir_alt_setting_status(void *priv, uint64_t id,
struct usb_redir_alt_setting_status_header *alt_setting_status);
static void usbredir_iso_stream_status(void *priv, uint64_t id,
struct usb_redir_iso_stream_status_header *iso_stream_status);
static void usbredir_interrupt_receiving_status(void *priv, uint64_t id,
struct usb_redir_interrupt_receiving_status_header
*interrupt_receiving_status);
static void usbredir_bulk_streams_status(void *priv, uint64_t id,
struct usb_redir_bulk_streams_status_header *bulk_streams_status);
static void usbredir_bulk_receiving_status(void *priv, uint64_t id,
struct usb_redir_bulk_receiving_status_header *bulk_receiving_status);
static void usbredir_control_packet(void *priv, uint64_t id,
struct usb_redir_control_packet_header *control_packet,
uint8_t *data, int data_len);
static void usbredir_bulk_packet(void *priv, uint64_t id,
struct usb_redir_bulk_packet_header *bulk_packet,
uint8_t *data, int data_len);
static void usbredir_iso_packet(void *priv, uint64_t id,
struct usb_redir_iso_packet_header *iso_packet,
uint8_t *data, int data_len);
static void usbredir_interrupt_packet(void *priv, uint64_t id,
struct usb_redir_interrupt_packet_header *interrupt_header,
uint8_t *data, int data_len);
static void usbredir_buffered_bulk_packet(void *priv, uint64_t id,
struct usb_redir_buffered_bulk_packet_header *buffered_bulk_packet,
uint8_t *data, int data_len);
static void usbredir_handle_status(USBRedirDevice *dev, USBPacket *p,
int status);
#define VERSION "qemu usb-redir guest " QEMU_VERSION
/*
* Logging stuff
*/
#define ERROR(...) \
do { \
if (dev->debug >= usbredirparser_error) { \
error_report("usb-redir error: " __VA_ARGS__); \
} \
} while (0)
#define WARNING(...) \
do { \
if (dev->debug >= usbredirparser_warning) { \
warn_report("" __VA_ARGS__); \
} \
} while (0)
#define INFO(...) \
do { \
if (dev->debug >= usbredirparser_info) { \
error_report("usb-redir: " __VA_ARGS__); \
} \
} while (0)
#define DPRINTF(...) \
do { \
if (dev->debug >= usbredirparser_debug) { \
error_report("usb-redir: " __VA_ARGS__); \
} \
} while (0)
#define DPRINTF2(...) \
do { \
if (dev->debug >= usbredirparser_debug_data) { \
error_report("usb-redir: " __VA_ARGS__); \
} \
} while (0)
static void usbredir_log(void *priv, int level, const char *msg)
{
USBRedirDevice *dev = priv;
if (dev->debug < level) {
return;
}
error_report("%s", msg);
}
static void usbredir_log_data(USBRedirDevice *dev, const char *desc,
const uint8_t *data, int len)
{
if (dev->debug < usbredirparser_debug_data) {
return;
}
qemu_hexdump(stderr, desc, data, len);
}
/*
* usbredirparser io functions
*/
static int usbredir_read(void *priv, uint8_t *data, int count)
{
USBRedirDevice *dev = priv;
if (dev->read_buf_size < count) {
count = dev->read_buf_size;
}
memcpy(data, dev->read_buf, count);
dev->read_buf_size -= count;
if (dev->read_buf_size) {
dev->read_buf += count;
} else {
dev->read_buf = NULL;
}
return count;
}
static gboolean usbredir_write_unblocked(void *do_not_use, GIOCondition cond,
void *opaque)
{
USBRedirDevice *dev = opaque;
dev->watch = 0;
usbredirparser_do_write(dev->parser);
return FALSE;
}
static int usbredir_write(void *priv, uint8_t *data, int count)
{
USBRedirDevice *dev = priv;
int r;
if (!qemu_chr_fe_backend_open(&dev->cs)) {
return 0;
}
/* Don't send new data to the chardev until our state is fully synced */
if (!runstate_check(RUN_STATE_RUNNING)) {
return 0;
}
/* Recursion check */
if (dev->in_write) {
DPRINTF("usbredir_write recursion\n");
return 0;
}
dev->in_write = true;
r = qemu_chr_fe_write(&dev->cs, data, count);
if (r < count) {
if (!dev->watch) {
dev->watch = qemu_chr_fe_add_watch(&dev->cs, G_IO_OUT | G_IO_HUP,
usbredir_write_unblocked, dev);
}
if (r < 0) {
r = 0;
}
}
dev->in_write = false;
return r;
}
/*
* Cancelled and buffered packets helpers
*/
static void packet_id_queue_init(struct PacketIdQueue *q,
USBRedirDevice *dev, const char *name)
{
q->dev = dev;
q->name = name;
QTAILQ_INIT(&q->head);
q->size = 0;
}
static void packet_id_queue_add(struct PacketIdQueue *q, uint64_t id)
{
USBRedirDevice *dev = q->dev;
struct PacketIdQueueEntry *e;
DPRINTF("adding packet id %"PRIu64" to %s queue\n", id, q->name);
e = g_new0(struct PacketIdQueueEntry, 1);
e->id = id;
QTAILQ_INSERT_TAIL(&q->head, e, next);
q->size++;
}
static int packet_id_queue_remove(struct PacketIdQueue *q, uint64_t id)
{
USBRedirDevice *dev = q->dev;
struct PacketIdQueueEntry *e;
QTAILQ_FOREACH(e, &q->head, next) {
if (e->id == id) {
DPRINTF("removing packet id %"PRIu64" from %s queue\n",
id, q->name);
QTAILQ_REMOVE(&q->head, e, next);
q->size--;
g_free(e);
return 1;
}
}
return 0;
}
static void packet_id_queue_empty(struct PacketIdQueue *q)
{
USBRedirDevice *dev = q->dev;
struct PacketIdQueueEntry *e, *next_e;
DPRINTF("removing %d packet-ids from %s queue\n", q->size, q->name);
QTAILQ_FOREACH_SAFE(e, &q->head, next, next_e) {
QTAILQ_REMOVE(&q->head, e, next);
g_free(e);
}
q->size = 0;
}
static void usbredir_cancel_packet(USBDevice *udev, USBPacket *p)
{
USBRedirDevice *dev = USB_REDIRECT(udev);
int i = USBEP2I(p->ep);
if (p->combined) {
usb_combined_packet_cancel(udev, p);
return;
}
if (dev->endpoint[i].pending_async_packet) {
assert(dev->endpoint[i].pending_async_packet == p);
dev->endpoint[i].pending_async_packet = NULL;
return;
}
packet_id_queue_add(&dev->cancelled, p->id);
usbredirparser_send_cancel_data_packet(dev->parser, p->id);
usbredirparser_do_write(dev->parser);
}
static int usbredir_is_cancelled(USBRedirDevice *dev, uint64_t id)
{
if (!dev->dev.attached) {
return 1; /* Treat everything as cancelled after a disconnect */
}
return packet_id_queue_remove(&dev->cancelled, id);
}
static void usbredir_fill_already_in_flight_from_ep(USBRedirDevice *dev,
struct USBEndpoint *ep)
{
static USBPacket *p;
/* async handled packets for bulk receiving eps do not count as inflight */
if (dev->endpoint[USBEP2I(ep)].bulk_receiving_started) {
return;
}
QTAILQ_FOREACH(p, &ep->queue, queue) {
/* Skip combined packets, except for the first */
if (p->combined && p != p->combined->first) {
continue;
}
if (p->state == USB_PACKET_ASYNC) {
packet_id_queue_add(&dev->already_in_flight, p->id);
}
}
}
static void usbredir_fill_already_in_flight(USBRedirDevice *dev)
{
int ep;
struct USBDevice *udev = &dev->dev;
usbredir_fill_already_in_flight_from_ep(dev, &udev->ep_ctl);
for (ep = 0; ep < USB_MAX_ENDPOINTS; ep++) {
usbredir_fill_already_in_flight_from_ep(dev, &udev->ep_in[ep]);
usbredir_fill_already_in_flight_from_ep(dev, &udev->ep_out[ep]);
}
}
static int usbredir_already_in_flight(USBRedirDevice *dev, uint64_t id)
{
return packet_id_queue_remove(&dev->already_in_flight, id);
}
static USBPacket *usbredir_find_packet_by_id(USBRedirDevice *dev,
uint8_t ep, uint64_t id)
{
USBPacket *p;
if (usbredir_is_cancelled(dev, id)) {
return NULL;
}
p = usb_ep_find_packet_by_id(&dev->dev,
(ep & USB_DIR_IN) ? USB_TOKEN_IN : USB_TOKEN_OUT,
ep & 0x0f, id);
if (p == NULL) {
ERROR("could not find packet with id %"PRIu64"\n", id);
}
return p;
}
static int bufp_alloc(USBRedirDevice *dev, uint8_t *data, uint16_t len,
uint8_t status, uint8_t ep, void *free_on_destroy)
{
struct buf_packet *bufp;
if (!dev->endpoint[EP2I(ep)].bufpq_dropping_packets &&
dev->endpoint[EP2I(ep)].bufpq_size >
2 * dev->endpoint[EP2I(ep)].bufpq_target_size) {
DPRINTF("bufpq overflow, dropping packets ep %02X\n", ep);
dev->endpoint[EP2I(ep)].bufpq_dropping_packets = 1;
}
/* Since we're interupting the stream anyways, drop enough packets to get
back to our target buffer size */
if (dev->endpoint[EP2I(ep)].bufpq_dropping_packets) {
if (dev->endpoint[EP2I(ep)].bufpq_size >
dev->endpoint[EP2I(ep)].bufpq_target_size) {
free(free_on_destroy);
return -1;
}
dev->endpoint[EP2I(ep)].bufpq_dropping_packets = 0;
}
bufp = g_new(struct buf_packet, 1);
bufp->data = data;
bufp->len = len;
bufp->offset = 0;
bufp->status = status;
bufp->free_on_destroy = free_on_destroy;
QTAILQ_INSERT_TAIL(&dev->endpoint[EP2I(ep)].bufpq, bufp, next);
dev->endpoint[EP2I(ep)].bufpq_size++;
return 0;
}
static void bufp_free(USBRedirDevice *dev, struct buf_packet *bufp,
uint8_t ep)
{
QTAILQ_REMOVE(&dev->endpoint[EP2I(ep)].bufpq, bufp, next);
dev->endpoint[EP2I(ep)].bufpq_size--;
free(bufp->free_on_destroy);
g_free(bufp);
}
static void usbredir_free_bufpq(USBRedirDevice *dev, uint8_t ep)
{
struct buf_packet *buf, *buf_next;
QTAILQ_FOREACH_SAFE(buf, &dev->endpoint[EP2I(ep)].bufpq, next, buf_next) {
bufp_free(dev, buf, ep);
}
}
/*
* USBDevice callbacks
*/
static void usbredir_handle_reset(USBDevice *udev)
{
USBRedirDevice *dev = USB_REDIRECT(udev);
DPRINTF("reset device\n");
usbredirparser_send_reset(dev->parser);
usbredirparser_do_write(dev->parser);
}
static void usbredir_handle_iso_data(USBRedirDevice *dev, USBPacket *p,
uint8_t ep)
{
int status, len;
if (!dev->endpoint[EP2I(ep)].iso_started &&
!dev->endpoint[EP2I(ep)].iso_error) {
struct usb_redir_start_iso_stream_header start_iso = {
.endpoint = ep,
};
int pkts_per_sec;
if (dev->dev.speed == USB_SPEED_HIGH) {
pkts_per_sec = 8000 / dev->endpoint[EP2I(ep)].interval;
} else {
pkts_per_sec = 1000 / dev->endpoint[EP2I(ep)].interval;
}
/* Testing has shown that we need circa 60 ms buffer */
dev->endpoint[EP2I(ep)].bufpq_target_size = (pkts_per_sec * 60) / 1000;
/* Aim for approx 100 interrupts / second on the client to
balance latency and interrupt load */
start_iso.pkts_per_urb = pkts_per_sec / 100;
if (start_iso.pkts_per_urb < 1) {
start_iso.pkts_per_urb = 1;
} else if (start_iso.pkts_per_urb > 32) {
start_iso.pkts_per_urb = 32;
}
start_iso.no_urbs = DIV_ROUND_UP(
dev->endpoint[EP2I(ep)].bufpq_target_size,
start_iso.pkts_per_urb);
/* Output endpoints pre-fill only 1/2 of the packets, keeping the rest
as overflow buffer. Also see the usbredir protocol documentation */
if (!(ep & USB_DIR_IN)) {
start_iso.no_urbs *= 2;
}
if (start_iso.no_urbs > 16) {
start_iso.no_urbs = 16;
}
/* No id, we look at the ep when receiving a status back */
usbredirparser_send_start_iso_stream(dev->parser, 0, &start_iso);
usbredirparser_do_write(dev->parser);
DPRINTF("iso stream started pkts/sec %d pkts/urb %d urbs %d ep %02X\n",
pkts_per_sec, start_iso.pkts_per_urb, start_iso.no_urbs, ep);
dev->endpoint[EP2I(ep)].iso_started = 1;
dev->endpoint[EP2I(ep)].bufpq_prefilled = 0;
dev->endpoint[EP2I(ep)].bufpq_dropping_packets = 0;
}
if (ep & USB_DIR_IN) {
struct buf_packet *isop;
if (dev->endpoint[EP2I(ep)].iso_started &&
!dev->endpoint[EP2I(ep)].bufpq_prefilled) {
if (dev->endpoint[EP2I(ep)].bufpq_size <
dev->endpoint[EP2I(ep)].bufpq_target_size) {
return;
}
dev->endpoint[EP2I(ep)].bufpq_prefilled = 1;
}
isop = QTAILQ_FIRST(&dev->endpoint[EP2I(ep)].bufpq);
if (isop == NULL) {
DPRINTF("iso-token-in ep %02X, no isop, iso_error: %d\n",
ep, dev->endpoint[EP2I(ep)].iso_error);
/* Re-fill the buffer */
dev->endpoint[EP2I(ep)].bufpq_prefilled = 0;
/* Check iso_error for stream errors, otherwise its an underrun */
status = dev->endpoint[EP2I(ep)].iso_error;
dev->endpoint[EP2I(ep)].iso_error = 0;
p->status = status ? USB_RET_IOERROR : USB_RET_SUCCESS;
return;
}
DPRINTF2("iso-token-in ep %02X status %d len %d queue-size: %d\n", ep,
isop->status, isop->len, dev->endpoint[EP2I(ep)].bufpq_size);
status = isop->status;
len = isop->len;
if (len > p->iov.size) {
ERROR("received iso data is larger then packet ep %02X (%d > %d)\n",
ep, len, (int)p->iov.size);
len = p->iov.size;
status = usb_redir_babble;
}
usb_packet_copy(p, isop->data, len);
bufp_free(dev, isop, ep);
usbredir_handle_status(dev, p, status);
} else {
/* If the stream was not started because of a pending error don't
send the packet to the usb-host */
if (dev->endpoint[EP2I(ep)].iso_started) {
struct usb_redir_iso_packet_header iso_packet = {
.endpoint = ep,
.length = p->iov.size
};
g_autofree uint8_t *buf = g_malloc(p->iov.size);
/* No id, we look at the ep when receiving a status back */
usb_packet_copy(p, buf, p->iov.size);
usbredirparser_send_iso_packet(dev->parser, 0, &iso_packet,
buf, p->iov.size);
usbredirparser_do_write(dev->parser);
}
status = dev->endpoint[EP2I(ep)].iso_error;
dev->endpoint[EP2I(ep)].iso_error = 0;
DPRINTF2("iso-token-out ep %02X status %d len %zd\n", ep, status,
p->iov.size);
usbredir_handle_status(dev, p, status);
}
}
static void usbredir_stop_iso_stream(USBRedirDevice *dev, uint8_t ep)
{
struct usb_redir_stop_iso_stream_header stop_iso_stream = {
.endpoint = ep
};
if (dev->endpoint[EP2I(ep)].iso_started) {
usbredirparser_send_stop_iso_stream(dev->parser, 0, &stop_iso_stream);
DPRINTF("iso stream stopped ep %02X\n", ep);
dev->endpoint[EP2I(ep)].iso_started = 0;
}
dev->endpoint[EP2I(ep)].iso_error = 0;
usbredir_free_bufpq(dev, ep);
}
/*
* The usb-host may poll the endpoint faster then our guest, resulting in lots
* of smaller bulkp-s. The below buffered_bulk_in_complete* functions combine
* data from multiple bulkp-s into a single packet, avoiding bufpq overflows.
*/
static void usbredir_buffered_bulk_add_data_to_packet(USBRedirDevice *dev,
struct buf_packet *bulkp, int count, USBPacket *p, uint8_t ep)
{
usb_packet_copy(p, bulkp->data + bulkp->offset, count);
bulkp->offset += count;
if (bulkp->offset == bulkp->len) {
/* Store status in the last packet with data from this bulkp */
usbredir_handle_status(dev, p, bulkp->status);
bufp_free(dev, bulkp, ep);
}
}
static void usbredir_buffered_bulk_in_complete_raw(USBRedirDevice *dev,
USBPacket *p, uint8_t ep)
{
struct buf_packet *bulkp;
int count;
while ((bulkp = QTAILQ_FIRST(&dev->endpoint[EP2I(ep)].bufpq)) &&
p->actual_length < p->iov.size && p->status == USB_RET_SUCCESS) {
count = bulkp->len - bulkp->offset;
if (count > (p->iov.size - p->actual_length)) {
count = p->iov.size - p->actual_length;
}
usbredir_buffered_bulk_add_data_to_packet(dev, bulkp, count, p, ep);
}
}
static void usbredir_buffered_bulk_in_complete_ftdi(USBRedirDevice *dev,
USBPacket *p, uint8_t ep)
{
const int maxp = dev->endpoint[EP2I(ep)].max_packet_size;
uint8_t header[2] = { 0, 0 };
struct buf_packet *bulkp;
int count;
while ((bulkp = QTAILQ_FIRST(&dev->endpoint[EP2I(ep)].bufpq)) &&
p->actual_length < p->iov.size && p->status == USB_RET_SUCCESS) {
if (bulkp->len < 2) {
WARNING("malformed ftdi bulk in packet\n");
bufp_free(dev, bulkp, ep);
continue;
}
if ((p->actual_length % maxp) == 0) {
usb_packet_copy(p, bulkp->data, 2);
memcpy(header, bulkp->data, 2);
} else {
if (bulkp->data[0] != header[0] || bulkp->data[1] != header[1]) {
break; /* Different header, add to next packet */
}
}
if (bulkp->offset == 0) {
bulkp->offset = 2; /* Skip header */
}
count = bulkp->len - bulkp->offset;
/* Must repeat the header at maxp interval */
if (count > (maxp - (p->actual_length % maxp))) {
count = maxp - (p->actual_length % maxp);
}
usbredir_buffered_bulk_add_data_to_packet(dev, bulkp, count, p, ep);
}
}
static void usbredir_buffered_bulk_in_complete(USBRedirDevice *dev,
USBPacket *p, uint8_t ep)
{
p->status = USB_RET_SUCCESS; /* Clear previous ASYNC status */
dev->buffered_bulk_in_complete(dev, p, ep);
DPRINTF("bulk-token-in ep %02X status %d len %d id %"PRIu64"\n",
ep, p->status, p->actual_length, p->id);
}
static void usbredir_handle_buffered_bulk_in_data(USBRedirDevice *dev,
USBPacket *p, uint8_t ep)
{
/* Input bulk endpoint, buffered packet input */
if (!dev->endpoint[EP2I(ep)].bulk_receiving_started) {
int bpt;
struct usb_redir_start_bulk_receiving_header start = {
.endpoint = ep,
.stream_id = 0,
.no_transfers = 5,
};
/* Round bytes_per_transfer up to a multiple of max_packet_size */
bpt = 512 + dev->endpoint[EP2I(ep)].max_packet_size - 1;
bpt /= dev->endpoint[EP2I(ep)].max_packet_size;
bpt *= dev->endpoint[EP2I(ep)].max_packet_size;
start.bytes_per_transfer = bpt;
/* No id, we look at the ep when receiving a status back */
usbredirparser_send_start_bulk_receiving(dev->parser, 0, &start);
usbredirparser_do_write(dev->parser);
DPRINTF("bulk receiving started bytes/transfer %u count %d ep %02X\n",
start.bytes_per_transfer, start.no_transfers, ep);
dev->endpoint[EP2I(ep)].bulk_receiving_started = 1;
/* We don't really want to drop bulk packets ever, but
having some upper limit to how much we buffer is good. */
dev->endpoint[EP2I(ep)].bufpq_target_size = 5000;
dev->endpoint[EP2I(ep)].bufpq_dropping_packets = 0;
}
if (QTAILQ_EMPTY(&dev->endpoint[EP2I(ep)].bufpq)) {
DPRINTF("bulk-token-in ep %02X, no bulkp\n", ep);
assert(dev->endpoint[EP2I(ep)].pending_async_packet == NULL);
dev->endpoint[EP2I(ep)].pending_async_packet = p;
p->status = USB_RET_ASYNC;
return;
}
usbredir_buffered_bulk_in_complete(dev, p, ep);
}
static void usbredir_stop_bulk_receiving(USBRedirDevice *dev, uint8_t ep)
{
struct usb_redir_stop_bulk_receiving_header stop_bulk = {
.endpoint = ep,
.stream_id = 0,
};
if (dev->endpoint[EP2I(ep)].bulk_receiving_started) {
usbredirparser_send_stop_bulk_receiving(dev->parser, 0, &stop_bulk);
DPRINTF("bulk receiving stopped ep %02X\n", ep);
dev->endpoint[EP2I(ep)].bulk_receiving_started = 0;
}
usbredir_free_bufpq(dev, ep);
}
static void usbredir_handle_bulk_data(USBRedirDevice *dev, USBPacket *p,
uint8_t ep)
{
struct usb_redir_bulk_packet_header bulk_packet;
size_t size = usb_packet_size(p);
const int maxp = dev->endpoint[EP2I(ep)].max_packet_size;
if (usbredir_already_in_flight(dev, p->id)) {
p->status = USB_RET_ASYNC;
return;
}
if (dev->endpoint[EP2I(ep)].bulk_receiving_enabled) {
if (size != 0 && (size % maxp) == 0) {
usbredir_handle_buffered_bulk_in_data(dev, p, ep);
return;
}
WARNING("bulk recv invalid size %zd ep %02x, disabling\n", size, ep);
assert(dev->endpoint[EP2I(ep)].pending_async_packet == NULL);
usbredir_stop_bulk_receiving(dev, ep);
dev->endpoint[EP2I(ep)].bulk_receiving_enabled = 0;
}
DPRINTF("bulk-out ep %02X stream %u len %zd id %"PRIu64"\n",
ep, p->stream, size, p->id);
bulk_packet.endpoint = ep;
bulk_packet.length = size;
bulk_packet.stream_id = p->stream;
bulk_packet.length_high = size >> 16;
assert(bulk_packet.length_high == 0 ||
usbredirparser_peer_has_cap(dev->parser,
usb_redir_cap_32bits_bulk_length));
if (ep & USB_DIR_IN || size == 0) {
usbredirparser_send_bulk_packet(dev->parser, p->id,
&bulk_packet, NULL, 0);
} else {
g_autofree uint8_t *buf = g_malloc(size);
usb_packet_copy(p, buf, size);
usbredir_log_data(dev, "bulk data out:", buf, size);
usbredirparser_send_bulk_packet(dev->parser, p->id,
&bulk_packet, buf, size);
}
usbredirparser_do_write(dev->parser);
p->status = USB_RET_ASYNC;
}
static void usbredir_handle_interrupt_in_data(USBRedirDevice *dev,
USBPacket *p, uint8_t ep)
{
/* Input interrupt endpoint, buffered packet input */
struct buf_packet *intp, *intp_to_free;
int status, len, sum;
if (!dev->endpoint[EP2I(ep)].interrupt_started &&
!dev->endpoint[EP2I(ep)].interrupt_error) {
struct usb_redir_start_interrupt_receiving_header start_int = {
.endpoint = ep,
};
/* No id, we look at the ep when receiving a status back */
usbredirparser_send_start_interrupt_receiving(dev->parser, 0,
&start_int);
usbredirparser_do_write(dev->parser);
DPRINTF("interrupt recv started ep %02X\n", ep);
dev->endpoint[EP2I(ep)].interrupt_started = 1;
/* We don't really want to drop interrupt packets ever, but
having some upper limit to how much we buffer is good. */
dev->endpoint[EP2I(ep)].bufpq_target_size = 1000;
dev->endpoint[EP2I(ep)].bufpq_dropping_packets = 0;
}
/* check for completed interrupt message (with all fragments) */
sum = 0;
QTAILQ_FOREACH(intp, &dev->endpoint[EP2I(ep)].bufpq, next) {
sum += intp->len;
if (intp->len < dev->endpoint[EP2I(ep)].max_packet_size ||
sum >= p->iov.size)
break;
}
if (intp == NULL) {
DPRINTF2("interrupt-token-in ep %02X, no intp, buffered %d\n", ep, sum);
/* Check interrupt_error for stream errors */
status = dev->endpoint[EP2I(ep)].interrupt_error;
dev->endpoint[EP2I(ep)].interrupt_error = 0;
if (status) {
usbredir_handle_status(dev, p, status);
} else {
p->status = USB_RET_NAK;
}
return;
}
/* copy of completed interrupt message */
sum = 0;
status = usb_redir_success;
intp_to_free = NULL;
QTAILQ_FOREACH(intp, &dev->endpoint[EP2I(ep)].bufpq, next) {
if (intp_to_free) {
bufp_free(dev, intp_to_free, ep);
}
DPRINTF("interrupt-token-in ep %02X fragment status %d len %d\n", ep,
intp->status, intp->len);
sum += intp->len;
len = intp->len;
if (status == usb_redir_success) {
status = intp->status;
}
if (sum > p->iov.size) {
ERROR("received int data is larger then packet ep %02X\n", ep);
len -= (sum - p->iov.size);
sum = p->iov.size;
status = usb_redir_babble;
}
usb_packet_copy(p, intp->data, len);
intp_to_free = intp;
if (intp->len < dev->endpoint[EP2I(ep)].max_packet_size ||
sum >= p->iov.size)
break;
}
if (intp_to_free) {
bufp_free(dev, intp_to_free, ep);
}
DPRINTF("interrupt-token-in ep %02X summary status %d len %d\n", ep,
status, sum);
usbredir_handle_status(dev, p, status);
}
/*
* Handle interrupt out data, the usbredir protocol expects us to do this
* async, so that it can report back a completion status. But guests will
* expect immediate completion for an interrupt endpoint, and handling this
* async causes migration issues. So we report success directly, counting
* on the fact that output interrupt packets normally always succeed.
*/
static void usbredir_handle_interrupt_out_data(USBRedirDevice *dev,
USBPacket *p, uint8_t ep)
{
struct usb_redir_interrupt_packet_header interrupt_packet;
g_autofree uint8_t *buf = g_malloc(p->iov.size);
DPRINTF("interrupt-out ep %02X len %zd id %"PRIu64"\n", ep,
p->iov.size, p->id);
interrupt_packet.endpoint = ep;
interrupt_packet.length = p->iov.size;
usb_packet_copy(p, buf, p->iov.size);
usbredir_log_data(dev, "interrupt data out:", buf, p->iov.size);
usbredirparser_send_interrupt_packet(dev->parser, p->id,
&interrupt_packet, buf, p->iov.size);
usbredirparser_do_write(dev->parser);
}
static void usbredir_stop_interrupt_receiving(USBRedirDevice *dev,
uint8_t ep)
{
struct usb_redir_stop_interrupt_receiving_header stop_interrupt_recv = {
.endpoint = ep
};
if (dev->endpoint[EP2I(ep)].interrupt_started) {
usbredirparser_send_stop_interrupt_receiving(dev->parser, 0,
&stop_interrupt_recv);
DPRINTF("interrupt recv stopped ep %02X\n", ep);
dev->endpoint[EP2I(ep)].interrupt_started = 0;
}
dev->endpoint[EP2I(ep)].interrupt_error = 0;
usbredir_free_bufpq(dev, ep);
}
static void usbredir_handle_data(USBDevice *udev, USBPacket *p)
{
USBRedirDevice *dev = USB_REDIRECT(udev);
uint8_t ep;
ep = p->ep->nr;
if (p->pid == USB_TOKEN_IN) {
ep |= USB_DIR_IN;
}
switch (dev->endpoint[EP2I(ep)].type) {
case USB_ENDPOINT_XFER_CONTROL:
ERROR("handle_data called for control transfer on ep %02X\n", ep);
p->status = USB_RET_NAK;
break;
case USB_ENDPOINT_XFER_BULK:
if (p->state == USB_PACKET_SETUP && p->pid == USB_TOKEN_IN &&
p->ep->pipeline) {
p->status = USB_RET_ADD_TO_QUEUE;
break;
}
usbredir_handle_bulk_data(dev, p, ep);
break;
case USB_ENDPOINT_XFER_ISOC:
usbredir_handle_iso_data(dev, p, ep);
break;
case USB_ENDPOINT_XFER_INT:
if (ep & USB_DIR_IN) {
usbredir_handle_interrupt_in_data(dev, p, ep);
} else {
usbredir_handle_interrupt_out_data(dev, p, ep);
}
break;
default:
ERROR("handle_data ep %02X has unknown type %d\n", ep,
dev->endpoint[EP2I(ep)].type);
p->status = USB_RET_NAK;
}
}
static void usbredir_flush_ep_queue(USBDevice *dev, USBEndpoint *ep)
{
if (ep->pid == USB_TOKEN_IN && ep->pipeline) {
usb_ep_combine_input_packets(ep);
}
}
static void usbredir_stop_ep(USBRedirDevice *dev, int i)
{
uint8_t ep = I2EP(i);
switch (dev->endpoint[i].type) {
case USB_ENDPOINT_XFER_BULK:
if (ep & USB_DIR_IN) {
usbredir_stop_bulk_receiving(dev, ep);
}
break;
case USB_ENDPOINT_XFER_ISOC:
usbredir_stop_iso_stream(dev, ep);
break;
case USB_ENDPOINT_XFER_INT:
if (ep & USB_DIR_IN) {
usbredir_stop_interrupt_receiving(dev, ep);
}
break;
}
usbredir_free_bufpq(dev, ep);
}
static void usbredir_ep_stopped(USBDevice *udev, USBEndpoint *uep)
{
USBRedirDevice *dev = USB_REDIRECT(udev);
usbredir_stop_ep(dev, USBEP2I(uep));
usbredirparser_do_write(dev->parser);
}
static void usbredir_set_config(USBRedirDevice *dev, USBPacket *p,
int config)
{
struct usb_redir_set_configuration_header set_config;
int i;
DPRINTF("set config %d id %"PRIu64"\n", config, p->id);
for (i = 0; i < MAX_ENDPOINTS; i++) {
usbredir_stop_ep(dev, i);
}
set_config.configuration = config;
usbredirparser_send_set_configuration(dev->parser, p->id, &set_config);
usbredirparser_do_write(dev->parser);
p->status = USB_RET_ASYNC;
}
static void usbredir_get_config(USBRedirDevice *dev, USBPacket *p)
{
DPRINTF("get config id %"PRIu64"\n", p->id);
usbredirparser_send_get_configuration(dev->parser, p->id);
usbredirparser_do_write(dev->parser);
p->status = USB_RET_ASYNC;
}
static void usbredir_set_interface(USBRedirDevice *dev, USBPacket *p,
int interface, int alt)
{
struct usb_redir_set_alt_setting_header set_alt;
int i;
DPRINTF("set interface %d alt %d id %"PRIu64"\n", interface, alt, p->id);
for (i = 0; i < MAX_ENDPOINTS; i++) {
if (dev->endpoint[i].interface == interface) {
usbredir_stop_ep(dev, i);
}
}
set_alt.interface = interface;
set_alt.alt = alt;
usbredirparser_send_set_alt_setting(dev->parser, p->id, &set_alt);
usbredirparser_do_write(dev->parser);
p->status = USB_RET_ASYNC;
}
static void usbredir_get_interface(USBRedirDevice *dev, USBPacket *p,
int interface)
{
struct usb_redir_get_alt_setting_header get_alt;
DPRINTF("get interface %d id %"PRIu64"\n", interface, p->id);
get_alt.interface = interface;
usbredirparser_send_get_alt_setting(dev->parser, p->id, &get_alt);
usbredirparser_do_write(dev->parser);
p->status = USB_RET_ASYNC;
}
static void usbredir_handle_control(USBDevice *udev, USBPacket *p,
int request, int value, int index, int length, uint8_t *data)
{
USBRedirDevice *dev = USB_REDIRECT(udev);
struct usb_redir_control_packet_header control_packet;
if (usbredir_already_in_flight(dev, p->id)) {
p->status = USB_RET_ASYNC;
return;
}
/* Special cases for certain standard device requests */
switch (request) {
case DeviceOutRequest | USB_REQ_SET_ADDRESS:
DPRINTF("set address %d\n", value);
dev->dev.addr = value;
return;
case DeviceOutRequest | USB_REQ_SET_CONFIGURATION:
usbredir_set_config(dev, p, value & 0xff);
return;
case DeviceRequest | USB_REQ_GET_CONFIGURATION:
usbredir_get_config(dev, p);
return;
case InterfaceOutRequest | USB_REQ_SET_INTERFACE:
usbredir_set_interface(dev, p, index, value);
return;
case InterfaceRequest | USB_REQ_GET_INTERFACE:
usbredir_get_interface(dev, p, index);
return;
}
/* Normal ctrl requests, note request is (bRequestType << 8) | bRequest */
DPRINTF(
"ctrl-out type 0x%x req 0x%x val 0x%x index %d len %d id %"PRIu64"\n",
request >> 8, request & 0xff, value, index, length, p->id);
control_packet.request = request & 0xFF;
control_packet.requesttype = request >> 8;
control_packet.endpoint = control_packet.requesttype & USB_DIR_IN;
control_packet.value = value;
control_packet.index = index;
control_packet.length = length;
if (control_packet.requesttype & USB_DIR_IN) {
usbredirparser_send_control_packet(dev->parser, p->id,
&control_packet, NULL, 0);
} else {
usbredir_log_data(dev, "ctrl data out:", data, length);
usbredirparser_send_control_packet(dev->parser, p->id,
&control_packet, data, length);
}
usbredirparser_do_write(dev->parser);
p->status = USB_RET_ASYNC;
}
static int usbredir_alloc_streams(USBDevice *udev, USBEndpoint **eps,
int nr_eps, int streams)
{
USBRedirDevice *dev = USB_REDIRECT(udev);
#if USBREDIR_VERSION >= 0x000700
struct usb_redir_alloc_bulk_streams_header alloc_streams;
int i;
if (!usbredirparser_peer_has_cap(dev->parser,
usb_redir_cap_bulk_streams)) {
ERROR("peer does not support streams\n");
goto reject;
}
if (streams == 0) {
ERROR("request to allocate 0 streams\n");
return -1;
}
alloc_streams.no_streams = streams;
alloc_streams.endpoints = 0;
for (i = 0; i < nr_eps; i++) {
alloc_streams.endpoints |= 1 << USBEP2I(eps[i]);
}
usbredirparser_send_alloc_bulk_streams(dev->parser, 0, &alloc_streams);
usbredirparser_do_write(dev->parser);
return 0;
#else
ERROR("usbredir_alloc_streams not implemented\n");
goto reject;
#endif
reject:
ERROR("streams are not available, disconnecting\n");
qemu_bh_schedule(dev->device_reject_bh);
return -1;
}
static void usbredir_free_streams(USBDevice *udev, USBEndpoint **eps,
int nr_eps)
{
#if USBREDIR_VERSION >= 0x000700
USBRedirDevice *dev = USB_REDIRECT(udev);
struct usb_redir_free_bulk_streams_header free_streams;
int i;
if (!usbredirparser_peer_has_cap(dev->parser,
usb_redir_cap_bulk_streams)) {
return;
}
free_streams.endpoints = 0;
for (i = 0; i < nr_eps; i++) {
free_streams.endpoints |= 1 << USBEP2I(eps[i]);
}
usbredirparser_send_free_bulk_streams(dev->parser, 0, &free_streams);
usbredirparser_do_write(dev->parser);
#endif
}
/*
* Close events can be triggered by usbredirparser_do_write which gets called
* from within the USBDevice data / control packet callbacks and doing a
* usb_detach from within these callbacks is not a good idea.
*
* So we use a bh handler to take care of close events.
*/
static void usbredir_chardev_close_bh(void *opaque)
{
USBRedirDevice *dev = opaque;
qemu_bh_cancel(dev->device_reject_bh);
usbredir_device_disconnect(dev);
if (dev->parser) {
DPRINTF("destroying usbredirparser\n");
usbredirparser_destroy(dev->parser);
dev->parser = NULL;
}
if (dev->watch) {
g_source_remove(dev->watch);
dev->watch = 0;
}
}
static void usbredir_create_parser(USBRedirDevice *dev)
{
uint32_t caps[USB_REDIR_CAPS_SIZE] = { 0, };
int flags = 0;
DPRINTF("creating usbredirparser\n");
dev->parser = usbredirparser_create();
if (!dev->parser) {
error_report("usbredirparser_create() failed");
exit(1);
}
dev->parser->priv = dev;
dev->parser->log_func = usbredir_log;
dev->parser->read_func = usbredir_read;
dev->parser->write_func = usbredir_write;
dev->parser->hello_func = usbredir_hello;
dev->parser->device_connect_func = usbredir_device_connect;
dev->parser->device_disconnect_func = usbredir_device_disconnect;
dev->parser->interface_info_func = usbredir_interface_info;
dev->parser->ep_info_func = usbredir_ep_info;
dev->parser->configuration_status_func = usbredir_configuration_status;
dev->parser->alt_setting_status_func = usbredir_alt_setting_status;
dev->parser->iso_stream_status_func = usbredir_iso_stream_status;
dev->parser->interrupt_receiving_status_func =
usbredir_interrupt_receiving_status;
dev->parser->bulk_streams_status_func = usbredir_bulk_streams_status;
dev->parser->bulk_receiving_status_func = usbredir_bulk_receiving_status;
dev->parser->control_packet_func = usbredir_control_packet;
dev->parser->bulk_packet_func = usbredir_bulk_packet;
dev->parser->iso_packet_func = usbredir_iso_packet;
dev->parser->interrupt_packet_func = usbredir_interrupt_packet;
dev->parser->buffered_bulk_packet_func = usbredir_buffered_bulk_packet;
dev->read_buf = NULL;
dev->read_buf_size = 0;
usbredirparser_caps_set_cap(caps, usb_redir_cap_connect_device_version);
usbredirparser_caps_set_cap(caps, usb_redir_cap_filter);
usbredirparser_caps_set_cap(caps, usb_redir_cap_ep_info_max_packet_size);
usbredirparser_caps_set_cap(caps, usb_redir_cap_64bits_ids);
usbredirparser_caps_set_cap(caps, usb_redir_cap_32bits_bulk_length);
usbredirparser_caps_set_cap(caps, usb_redir_cap_bulk_receiving);
#if USBREDIR_VERSION >= 0x000700
if (dev->enable_streams) {
usbredirparser_caps_set_cap(caps, usb_redir_cap_bulk_streams);
}
#endif
if (runstate_check(RUN_STATE_INMIGRATE)) {
flags |= usbredirparser_fl_no_hello;
}
usbredirparser_init(dev->parser, VERSION, caps, USB_REDIR_CAPS_SIZE,
flags);
usbredirparser_do_write(dev->parser);
}
static void usbredir_reject_device(USBRedirDevice *dev)
{
usbredir_device_disconnect(dev);
if (usbredirparser_peer_has_cap(dev->parser, usb_redir_cap_filter)) {
usbredirparser_send_filter_reject(dev->parser);
usbredirparser_do_write(dev->parser);
}
}
/*
* We may need to reject the device when the hcd calls alloc_streams, doing
* an usb_detach from within a hcd call is not a good idea, hence this bh.
*/
static void usbredir_device_reject_bh(void *opaque)
{
USBRedirDevice *dev = opaque;
usbredir_reject_device(dev);
}
static void usbredir_do_attach(void *opaque)
{
USBRedirDevice *dev = opaque;
Error *local_err = NULL;
/* In order to work properly with XHCI controllers we need these caps */
if ((dev->dev.port->speedmask & USB_SPEED_MASK_SUPER) && !(
usbredirparser_peer_has_cap(dev->parser,
usb_redir_cap_ep_info_max_packet_size) &&
usbredirparser_peer_has_cap(dev->parser,
usb_redir_cap_32bits_bulk_length) &&
usbredirparser_peer_has_cap(dev->parser,
usb_redir_cap_64bits_ids))) {
ERROR("usb-redir-host lacks capabilities needed for use with XHCI\n");
usbredir_reject_device(dev);
return;
}
usb_device_attach(&dev->dev, &local_err);
if (local_err) {
error_report_err(local_err);
WARNING("rejecting device due to speed mismatch\n");
usbredir_reject_device(dev);
}
}
/*
* chardev callbacks
*/
static int usbredir_chardev_can_read(void *opaque)
{
USBRedirDevice *dev = opaque;
if (!dev->parser) {
WARNING("chardev_can_read called on non open chardev!\n");
return 0;
}
/* Don't read new data from the chardev until our state is fully synced */
if (!runstate_check(RUN_STATE_RUNNING)) {
return 0;
}
/* usbredir_parser_do_read will consume *all* data we give it */
return 1 * MiB;
}
static void usbredir_chardev_read(void *opaque, const uint8_t *buf, int size)
{
USBRedirDevice *dev = opaque;
/* No recursion allowed! */
assert(dev->read_buf == NULL);
dev->read_buf = buf;
dev->read_buf_size = size;
usbredirparser_do_read(dev->parser);
/* Send any acks, etc. which may be queued now */
usbredirparser_do_write(dev->parser);
}
static void usbredir_chardev_event(void *opaque, QEMUChrEvent event)
{
USBRedirDevice *dev = opaque;
switch (event) {
case CHR_EVENT_OPENED:
DPRINTF("chardev open\n");
/* Make sure any pending closes are handled (no-op if none pending) */
usbredir_chardev_close_bh(dev);
qemu_bh_cancel(dev->chardev_close_bh);
usbredir_create_parser(dev);
break;
case CHR_EVENT_CLOSED:
DPRINTF("chardev close\n");
qemu_bh_schedule(dev->chardev_close_bh);
break;
case CHR_EVENT_BREAK:
case CHR_EVENT_MUX_IN:
case CHR_EVENT_MUX_OUT:
/* Ignore */
break;
}
}
/*
* init + destroy
*/
static void usbredir_vm_state_change(void *priv, bool running, RunState state)
{
USBRedirDevice *dev = priv;
if (state == RUN_STATE_RUNNING && dev->parser != NULL) {
usbredirparser_do_write(dev->parser); /* Flush any pending writes */
}
}
static void usbredir_init_endpoints(USBRedirDevice *dev)
{
int i;
usb_ep_init(&dev->dev);
memset(dev->endpoint, 0, sizeof(dev->endpoint));
for (i = 0; i < MAX_ENDPOINTS; i++) {
dev->endpoint[i].dev = dev;
QTAILQ_INIT(&dev->endpoint[i].bufpq);
}
}
static void usbredir_realize(USBDevice *udev, Error **errp)
{
USBRedirDevice *dev = USB_REDIRECT(udev);
int i;
if (!qemu_chr_fe_backend_connected(&dev->cs)) {
error_setg(errp, QERR_MISSING_PARAMETER, "chardev");
return;
}
if (dev->filter_str) {
i = usbredirfilter_string_to_rules(dev->filter_str, ":", "|",
&dev->filter_rules,
&dev->filter_rules_count);
if (i) {
error_setg(errp, QERR_INVALID_PARAMETER_VALUE, "filter",
"a usb device filter string");
return;
}
}
dev->chardev_close_bh = qemu_bh_new(usbredir_chardev_close_bh, dev);
dev->device_reject_bh = qemu_bh_new(usbredir_device_reject_bh, dev);
dev->attach_timer = timer_new_ms(QEMU_CLOCK_VIRTUAL, usbredir_do_attach, dev);
packet_id_queue_init(&dev->cancelled, dev, "cancelled");
packet_id_queue_init(&dev->already_in_flight, dev, "already-in-flight");
usbredir_init_endpoints(dev);
/* We'll do the attach once we receive the speed from the usb-host */
udev->auto_attach = 0;
/* Will be cleared during setup when we find conflicts */
dev->compatible_speedmask = USB_SPEED_MASK_FULL | USB_SPEED_MASK_HIGH;
/* Let the backend know we are ready */
qemu_chr_fe_set_handlers(&dev->cs, usbredir_chardev_can_read,
usbredir_chardev_read, usbredir_chardev_event,
NULL, dev, NULL, true);
dev->vmstate =
qemu_add_vm_change_state_handler(usbredir_vm_state_change, dev);
}
static void usbredir_cleanup_device_queues(USBRedirDevice *dev)
{
int i;
packet_id_queue_empty(&dev->cancelled);
packet_id_queue_empty(&dev->already_in_flight);
for (i = 0; i < MAX_ENDPOINTS; i++) {
usbredir_free_bufpq(dev, I2EP(i));
}
}
static void usbredir_unrealize(USBDevice *udev)
{
USBRedirDevice *dev = USB_REDIRECT(udev);
qemu_chr_fe_deinit(&dev->cs, true);
/* Note must be done after qemu_chr_close, as that causes a close event */
qemu_bh_delete(dev->chardev_close_bh);
qemu_bh_delete(dev->device_reject_bh);
timer_free(dev->attach_timer);
usbredir_cleanup_device_queues(dev);
if (dev->parser) {
usbredirparser_destroy(dev->parser);
}
if (dev->watch) {
g_source_remove(dev->watch);
}
free(dev->filter_rules);
qemu_del_vm_change_state_handler(dev->vmstate);
}
static int usbredir_check_filter(USBRedirDevice *dev)
{
if (dev->interface_info.interface_count == NO_INTERFACE_INFO) {
ERROR("No interface info for device\n");
goto error;
}
if (dev->filter_rules) {
if (!usbredirparser_peer_has_cap(dev->parser,
usb_redir_cap_connect_device_version)) {
ERROR("Device filter specified and peer does not have the "
"connect_device_version capability\n");
goto error;
}
if (usbredirfilter_check(
dev->filter_rules,
dev->filter_rules_count,
dev->device_info.device_class,
dev->device_info.device_subclass,
dev->device_info.device_protocol,
dev->interface_info.interface_class,
dev->interface_info.interface_subclass,
dev->interface_info.interface_protocol,
dev->interface_info.interface_count,
dev->device_info.vendor_id,
dev->device_info.product_id,
dev->device_info.device_version_bcd,
0) != 0) {
goto error;
}
}
return 0;
error:
usbredir_reject_device(dev);
return -1;
}
static void usbredir_check_bulk_receiving(USBRedirDevice *dev)
{
int i, j, quirks;
if (!usbredirparser_peer_has_cap(dev->parser,
usb_redir_cap_bulk_receiving)) {
return;
}
for (i = EP2I(USB_DIR_IN); i < MAX_ENDPOINTS; i++) {
dev->endpoint[i].bulk_receiving_enabled = 0;
}
if (dev->interface_info.interface_count == NO_INTERFACE_INFO) {
return;
}
for (i = 0; i < dev->interface_info.interface_count; i++) {
quirks = usb_get_quirks(dev->device_info.vendor_id,
dev->device_info.product_id,
dev->interface_info.interface_class[i],
dev->interface_info.interface_subclass[i],
dev->interface_info.interface_protocol[i]);
if (!(quirks & USB_QUIRK_BUFFER_BULK_IN)) {
continue;
}
if (quirks & USB_QUIRK_IS_FTDI) {
dev->buffered_bulk_in_complete =
usbredir_buffered_bulk_in_complete_ftdi;
} else {
dev->buffered_bulk_in_complete =
usbredir_buffered_bulk_in_complete_raw;
}
for (j = EP2I(USB_DIR_IN); j < MAX_ENDPOINTS; j++) {
if (dev->endpoint[j].interface ==
dev->interface_info.interface[i] &&
dev->endpoint[j].type == USB_ENDPOINT_XFER_BULK &&
dev->endpoint[j].max_packet_size != 0) {
dev->endpoint[j].bulk_receiving_enabled = 1;
/*
* With buffering pipelining is not necessary. Also packet
* combining and bulk in buffering don't play nice together!
*/
I2USBEP(dev, j)->pipeline = false;
break; /* Only buffer for the first ep of each intf */
}
}
}
}
/*
* usbredirparser packet complete callbacks
*/
static void usbredir_handle_status(USBRedirDevice *dev, USBPacket *p,
int status)
{
switch (status) {
case usb_redir_success:
p->status = USB_RET_SUCCESS; /* Clear previous ASYNC status */
break;
case usb_redir_stall:
p->status = USB_RET_STALL;
break;
case usb_redir_cancelled:
/*
* When the usbredir-host unredirects a device, it will report a status
* of cancelled for all pending packets, followed by a disconnect msg.
*/
p->status = USB_RET_IOERROR;
break;
case usb_redir_inval:
WARNING("got invalid param error from usb-host?\n");
p->status = USB_RET_IOERROR;
break;
case usb_redir_babble:
p->status = USB_RET_BABBLE;
break;
case usb_redir_ioerror:
case usb_redir_timeout:
default:
p->status = USB_RET_IOERROR;
}
}
static void usbredir_hello(void *priv, struct usb_redir_hello_header *h)
{
USBRedirDevice *dev = priv;
/* Try to send the filter info now that we've the usb-host's caps */
if (usbredirparser_peer_has_cap(dev->parser, usb_redir_cap_filter) &&
dev->filter_rules) {
usbredirparser_send_filter_filter(dev->parser, dev->filter_rules,
dev->filter_rules_count);
usbredirparser_do_write(dev->parser);
}
}
static void usbredir_device_connect(void *priv,
struct usb_redir_device_connect_header *device_connect)
{
USBRedirDevice *dev = priv;
const char *speed;
if (timer_pending(dev->attach_timer) || dev->dev.attached) {
ERROR("Received device connect while already connected\n");
return;
}
switch (device_connect->speed) {
case usb_redir_speed_low:
speed = "low speed";
dev->dev.speed = USB_SPEED_LOW;
dev->compatible_speedmask &= ~USB_SPEED_MASK_FULL;
dev->compatible_speedmask &= ~USB_SPEED_MASK_HIGH;
break;
case usb_redir_speed_full:
speed = "full speed";
dev->dev.speed = USB_SPEED_FULL;
dev->compatible_speedmask &= ~USB_SPEED_MASK_HIGH;
break;
case usb_redir_speed_high:
speed = "high speed";
dev->dev.speed = USB_SPEED_HIGH;
break;
case usb_redir_speed_super:
speed = "super speed";
dev->dev.speed = USB_SPEED_SUPER;
break;
default:
speed = "unknown speed";
dev->dev.speed = USB_SPEED_FULL;
}
if (usbredirparser_peer_has_cap(dev->parser,
usb_redir_cap_connect_device_version)) {
INFO("attaching %s device %04x:%04x version %d.%d class %02x\n",
speed, device_connect->vendor_id, device_connect->product_id,
((device_connect->device_version_bcd & 0xf000) >> 12) * 10 +
((device_connect->device_version_bcd & 0x0f00) >> 8),
((device_connect->device_version_bcd & 0x00f0) >> 4) * 10 +
((device_connect->device_version_bcd & 0x000f) >> 0),
device_connect->device_class);
} else {
INFO("attaching %s device %04x:%04x class %02x\n", speed,
device_connect->vendor_id, device_connect->product_id,
device_connect->device_class);
}
dev->dev.speedmask = (1 << dev->dev.speed) | dev->compatible_speedmask;
dev->device_info = *device_connect;
if (usbredir_check_filter(dev)) {
WARNING("Device %04x:%04x rejected by device filter, not attaching\n",
device_connect->vendor_id, device_connect->product_id);
return;
}
usbredir_check_bulk_receiving(dev);
timer_mod(dev->attach_timer, dev->next_attach_time);
}
static void usbredir_device_disconnect(void *priv)
{
USBRedirDevice *dev = priv;
/* Stop any pending attaches */
timer_del(dev->attach_timer);
if (dev->dev.attached) {
DPRINTF("detaching device\n");
usb_device_detach(&dev->dev);
/*
* Delay next usb device attach to give the guest a chance to see
* see the detach / attach in case of quick close / open succession
*/
dev->next_attach_time = qemu_clock_get_ms(QEMU_CLOCK_VIRTUAL) + 200;
}
/* Reset state so that the next dev connected starts with a clean slate */
usbredir_cleanup_device_queues(dev);
usbredir_init_endpoints(dev);
dev->interface_info.interface_count = NO_INTERFACE_INFO;
dev->dev.addr = 0;
dev->dev.speed = 0;
dev->compatible_speedmask = USB_SPEED_MASK_FULL | USB_SPEED_MASK_HIGH;
}
static void usbredir_interface_info(void *priv,
struct usb_redir_interface_info_header *interface_info)
{
USBRedirDevice *dev = priv;
dev->interface_info = *interface_info;
/*
* If we receive interface info after the device has already been
* connected (ie on a set_config), re-check interface dependent things.
*/
if (timer_pending(dev->attach_timer) || dev->dev.attached) {
usbredir_check_bulk_receiving(dev);
if (usbredir_check_filter(dev)) {
ERROR("Device no longer matches filter after interface info "
"change, disconnecting!\n");
}
}
}
static void usbredir_mark_speed_incompatible(USBRedirDevice *dev, int speed)
{
dev->compatible_speedmask &= ~(1 << speed);
dev->dev.speedmask = (1 << dev->dev.speed) | dev->compatible_speedmask;
}
static void usbredir_set_pipeline(USBRedirDevice *dev, struct USBEndpoint *uep)
{
if (uep->type != USB_ENDPOINT_XFER_BULK) {
return;
}
if (uep->pid == USB_TOKEN_OUT) {
uep->pipeline = true;
}
if (uep->pid == USB_TOKEN_IN && uep->max_packet_size != 0 &&
usbredirparser_peer_has_cap(dev->parser,
usb_redir_cap_32bits_bulk_length)) {
uep->pipeline = true;
}
}
static void usbredir_setup_usb_eps(USBRedirDevice *dev)
{
struct USBEndpoint *usb_ep;
int i;
for (i = 0; i < MAX_ENDPOINTS; i++) {
usb_ep = I2USBEP(dev, i);
usb_ep->type = dev->endpoint[i].type;
usb_ep->ifnum = dev->endpoint[i].interface;
usb_ep->max_packet_size = dev->endpoint[i].max_packet_size;
usb_ep->max_streams = dev->endpoint[i].max_streams;
usbredir_set_pipeline(dev, usb_ep);
}
}
static void usbredir_ep_info(void *priv,
struct usb_redir_ep_info_header *ep_info)
{
USBRedirDevice *dev = priv;
int i;
assert(dev != NULL);
for (i = 0; i < MAX_ENDPOINTS; i++) {
dev->endpoint[i].type = ep_info->type[i];
dev->endpoint[i].interval = ep_info->interval[i];
dev->endpoint[i].interface = ep_info->interface[i];
if (usbredirparser_peer_has_cap(dev->parser,
usb_redir_cap_ep_info_max_packet_size)) {
dev->endpoint[i].max_packet_size = ep_info->max_packet_size[i];
}
#if USBREDIR_VERSION >= 0x000700
if (usbredirparser_peer_has_cap(dev->parser,
usb_redir_cap_bulk_streams)) {
dev->endpoint[i].max_streams = ep_info->max_streams[i];
}
#endif
switch (dev->endpoint[i].type) {
case usb_redir_type_invalid:
break;
case usb_redir_type_iso:
usbredir_mark_speed_incompatible(dev, USB_SPEED_FULL);
usbredir_mark_speed_incompatible(dev, USB_SPEED_HIGH);
/* Fall through */
case usb_redir_type_interrupt:
if (!usbredirparser_peer_has_cap(dev->parser,
usb_redir_cap_ep_info_max_packet_size) ||
ep_info->max_packet_size[i] > 64) {
usbredir_mark_speed_incompatible(dev, USB_SPEED_FULL);
}
if (!usbredirparser_peer_has_cap(dev->parser,
usb_redir_cap_ep_info_max_packet_size) ||
ep_info->max_packet_size[i] > 1024) {
usbredir_mark_speed_incompatible(dev, USB_SPEED_HIGH);
}
if (dev->endpoint[i].interval == 0) {
ERROR("Received 0 interval for isoc or irq endpoint\n");
usbredir_reject_device(dev);
return;
}
/* Fall through */
case usb_redir_type_control:
case usb_redir_type_bulk:
DPRINTF("ep: %02X type: %d interface: %d\n", I2EP(i),
dev->endpoint[i].type, dev->endpoint[i].interface);
break;
default:
ERROR("Received invalid endpoint type\n");
usbredir_reject_device(dev);
return;
}
}
/* The new ep info may have caused a speed incompatibility, recheck */
if (dev->dev.attached &&
!(dev->dev.port->speedmask & dev->dev.speedmask)) {
ERROR("Device no longer matches speed after endpoint info change, "
"disconnecting!\n");
usbredir_reject_device(dev);
return;
}
usbredir_setup_usb_eps(dev);
usbredir_check_bulk_receiving(dev);
}
static void usbredir_configuration_status(void *priv, uint64_t id,
struct usb_redir_configuration_status_header *config_status)
{
USBRedirDevice *dev = priv;
USBPacket *p;
DPRINTF("set config status %d config %d id %"PRIu64"\n",
config_status->status, config_status->configuration, id);
p = usbredir_find_packet_by_id(dev, 0, id);
if (p) {
if (dev->dev.setup_buf[0] & USB_DIR_IN) {
dev->dev.data_buf[0] = config_status->configuration;
p->actual_length = 1;
}
usbredir_handle_status(dev, p, config_status->status);
usb_generic_async_ctrl_complete(&dev->dev, p);
}
}
static void usbredir_alt_setting_status(void *priv, uint64_t id,
struct usb_redir_alt_setting_status_header *alt_setting_status)
{
USBRedirDevice *dev = priv;
USBPacket *p;
DPRINTF("alt status %d intf %d alt %d id: %"PRIu64"\n",
alt_setting_status->status, alt_setting_status->interface,
alt_setting_status->alt, id);
p = usbredir_find_packet_by_id(dev, 0, id);
if (p) {
if (dev->dev.setup_buf[0] & USB_DIR_IN) {
dev->dev.data_buf[0] = alt_setting_status->alt;
p->actual_length = 1;
}
usbredir_handle_status(dev, p, alt_setting_status->status);
usb_generic_async_ctrl_complete(&dev->dev, p);
}
}
static void usbredir_iso_stream_status(void *priv, uint64_t id,
struct usb_redir_iso_stream_status_header *iso_stream_status)
{
USBRedirDevice *dev = priv;
uint8_t ep = iso_stream_status->endpoint;
DPRINTF("iso status %d ep %02X id %"PRIu64"\n", iso_stream_status->status,
ep, id);
if (!dev->dev.attached || !dev->endpoint[EP2I(ep)].iso_started) {
return;
}
dev->endpoint[EP2I(ep)].iso_error = iso_stream_status->status;
if (iso_stream_status->status == usb_redir_stall) {
DPRINTF("iso stream stopped by peer ep %02X\n", ep);
dev->endpoint[EP2I(ep)].iso_started = 0;
}
}
static void usbredir_interrupt_receiving_status(void *priv, uint64_t id,
struct usb_redir_interrupt_receiving_status_header
*interrupt_receiving_status)
{
USBRedirDevice *dev = priv;
uint8_t ep = interrupt_receiving_status->endpoint;
DPRINTF("interrupt recv status %d ep %02X id %"PRIu64"\n",
interrupt_receiving_status->status, ep, id);
if (!dev->dev.attached || !dev->endpoint[EP2I(ep)].interrupt_started) {
return;
}
dev->endpoint[EP2I(ep)].interrupt_error =
interrupt_receiving_status->status;
if (interrupt_receiving_status->status == usb_redir_stall) {
DPRINTF("interrupt receiving stopped by peer ep %02X\n", ep);
dev->endpoint[EP2I(ep)].interrupt_started = 0;
}
}
static void usbredir_bulk_streams_status(void *priv, uint64_t id,
struct usb_redir_bulk_streams_status_header *bulk_streams_status)
{
#if USBREDIR_VERSION >= 0x000700
USBRedirDevice *dev = priv;
if (bulk_streams_status->status == usb_redir_success) {
DPRINTF("bulk streams status %d eps %08x\n",
bulk_streams_status->status, bulk_streams_status->endpoints);
} else {
ERROR("bulk streams %s failed status %d eps %08x\n",
(bulk_streams_status->no_streams == 0) ? "free" : "alloc",
bulk_streams_status->status, bulk_streams_status->endpoints);
ERROR("usb-redir-host does not provide streams, disconnecting\n");
usbredir_reject_device(dev);
}
#endif
}
static void usbredir_bulk_receiving_status(void *priv, uint64_t id,
struct usb_redir_bulk_receiving_status_header *bulk_receiving_status)
{
USBRedirDevice *dev = priv;
uint8_t ep = bulk_receiving_status->endpoint;
DPRINTF("bulk recv status %d ep %02X id %"PRIu64"\n",
bulk_receiving_status->status, ep, id);
if (!dev->dev.attached || !dev->endpoint[EP2I(ep)].bulk_receiving_started) {
return;
}
if (bulk_receiving_status->status == usb_redir_stall) {
DPRINTF("bulk receiving stopped by peer ep %02X\n", ep);
dev->endpoint[EP2I(ep)].bulk_receiving_started = 0;
}
}
static void usbredir_control_packet(void *priv, uint64_t id,
struct usb_redir_control_packet_header *control_packet,
uint8_t *data, int data_len)
{
USBRedirDevice *dev = priv;
USBPacket *p;
int len = control_packet->length;
DPRINTF("ctrl-in status %d len %d id %"PRIu64"\n", control_packet->status,
len, id);
/* Fix up USB-3 ep0 maxpacket size to allow superspeed connected devices
* to work redirected to a not superspeed capable hcd */
if (dev->dev.speed == USB_SPEED_SUPER &&
!((dev->dev.port->speedmask & USB_SPEED_MASK_SUPER)) &&
control_packet->requesttype == 0x80 &&
control_packet->request == 6 &&
control_packet->value == 0x100 && control_packet->index == 0 &&
data_len >= 18 && data[7] == 9) {
data[7] = 64;
}
p = usbredir_find_packet_by_id(dev, 0, id);
if (p) {
usbredir_handle_status(dev, p, control_packet->status);
if (data_len > 0) {
usbredir_log_data(dev, "ctrl data in:", data, data_len);
if (data_len > sizeof(dev->dev.data_buf)) {
ERROR("ctrl buffer too small (%d > %zu)\n",
data_len, sizeof(dev->dev.data_buf));
p->status = USB_RET_STALL;
data_len = len = sizeof(dev->dev.data_buf);
}
memcpy(dev->dev.data_buf, data, data_len);
}
p->actual_length = len;
/*
* If this is GET_DESCRIPTOR request for configuration descriptor,
* remove 'remote wakeup' flag from it to prevent idle power down
* in Windows guest
*/
if (dev->suppress_remote_wake &&
control_packet->requesttype == USB_DIR_IN &&
control_packet->request == USB_REQ_GET_DESCRIPTOR &&
control_packet->value == (USB_DT_CONFIG << 8) &&
control_packet->index == 0 &&
/* bmAttributes field of config descriptor */
len > 7 && (dev->dev.data_buf[7] & USB_CFG_ATT_WAKEUP)) {
DPRINTF("Removed remote wake %04X:%04X\n",
dev->device_info.vendor_id,
dev->device_info.product_id);
dev->dev.data_buf[7] &= ~USB_CFG_ATT_WAKEUP;
}
usb_generic_async_ctrl_complete(&dev->dev, p);
}
free(data);
}
static void usbredir_bulk_packet(void *priv, uint64_t id,
struct usb_redir_bulk_packet_header *bulk_packet,
uint8_t *data, int data_len)
{
USBRedirDevice *dev = priv;
uint8_t ep = bulk_packet->endpoint;
int len = (bulk_packet->length_high << 16) | bulk_packet->length;
USBPacket *p;
DPRINTF("bulk-in status %d ep %02X stream %u len %d id %"PRIu64"\n",
bulk_packet->status, ep, bulk_packet->stream_id, len, id);
p = usbredir_find_packet_by_id(dev, ep, id);
if (p) {
size_t size = usb_packet_size(p);
usbredir_handle_status(dev, p, bulk_packet->status);
if (data_len > 0) {
usbredir_log_data(dev, "bulk data in:", data, data_len);
if (data_len > size) {
ERROR("bulk got more data then requested (%d > %zd)\n",
data_len, p->iov.size);
p->status = USB_RET_BABBLE;
data_len = len = size;
}
usb_packet_copy(p, data, data_len);
}
p->actual_length = len;
if (p->pid == USB_TOKEN_IN && p->ep->pipeline) {
usb_combined_input_packet_complete(&dev->dev, p);
} else {
usb_packet_complete(&dev->dev, p);
}
}
free(data);
}
static void usbredir_iso_packet(void *priv, uint64_t id,
struct usb_redir_iso_packet_header *iso_packet,
uint8_t *data, int data_len)
{
USBRedirDevice *dev = priv;
uint8_t ep = iso_packet->endpoint;
DPRINTF2("iso-in status %d ep %02X len %d id %"PRIu64"\n",
iso_packet->status, ep, data_len, id);
if (dev->endpoint[EP2I(ep)].type != USB_ENDPOINT_XFER_ISOC) {
ERROR("received iso packet for non iso endpoint %02X\n", ep);
free(data);
return;
}
if (dev->endpoint[EP2I(ep)].iso_started == 0) {
DPRINTF("received iso packet for non started stream ep %02X\n", ep);
free(data);
return;
}
/* bufp_alloc also adds the packet to the ep queue */
bufp_alloc(dev, data, data_len, iso_packet->status, ep, data);
}
static void usbredir_interrupt_packet(void *priv, uint64_t id,
struct usb_redir_interrupt_packet_header *interrupt_packet,
uint8_t *data, int data_len)
{
USBRedirDevice *dev = priv;
uint8_t ep = interrupt_packet->endpoint;
DPRINTF("interrupt-in status %d ep %02X len %d id %"PRIu64"\n",
interrupt_packet->status, ep, data_len, id);
if (dev->endpoint[EP2I(ep)].type != USB_ENDPOINT_XFER_INT) {
ERROR("received int packet for non interrupt endpoint %02X\n", ep);
free(data);
return;
}
if (ep & USB_DIR_IN) {
if (dev->endpoint[EP2I(ep)].interrupt_started == 0) {
DPRINTF("received int packet while not started ep %02X\n", ep);
free(data);
return;
}
/* bufp_alloc also adds the packet to the ep queue */
bufp_alloc(dev, data, data_len, interrupt_packet->status, ep, data);
/* insufficient data solved with USB_RET_NAK */
usb_wakeup(usb_ep_get(&dev->dev, USB_TOKEN_IN, ep & 0x0f), 0);
} else {
/*
* We report output interrupt packets as completed directly upon
* submission, so all we can do here if one failed is warn.
*/
if (interrupt_packet->status) {
WARNING("interrupt output failed status %d ep %02X id %"PRIu64"\n",
interrupt_packet->status, ep, id);
}
}
}
static void usbredir_buffered_bulk_packet(void *priv, uint64_t id,
struct usb_redir_buffered_bulk_packet_header *buffered_bulk_packet,
uint8_t *data, int data_len)
{
USBRedirDevice *dev = priv;
uint8_t status, ep = buffered_bulk_packet->endpoint;
void *free_on_destroy;
int i, len;
DPRINTF("buffered-bulk-in status %d ep %02X len %d id %"PRIu64"\n",
buffered_bulk_packet->status, ep, data_len, id);
if (dev->endpoint[EP2I(ep)].type != USB_ENDPOINT_XFER_BULK) {
ERROR("received buffered-bulk packet for non bulk ep %02X\n", ep);
free(data);
return;
}
if (dev->endpoint[EP2I(ep)].bulk_receiving_started == 0) {
DPRINTF("received buffered-bulk packet on not started ep %02X\n", ep);
free(data);
return;
}
/* Data must be in maxp chunks for buffered_bulk_add_*_data_to_packet */
len = dev->endpoint[EP2I(ep)].max_packet_size;
status = usb_redir_success;
free_on_destroy = NULL;
for (i = 0; i < data_len; i += len) {
int r;
if (len >= (data_len - i)) {
len = data_len - i;
status = buffered_bulk_packet->status;
free_on_destroy = data;
}
/* bufp_alloc also adds the packet to the ep queue */
r = bufp_alloc(dev, data + i, len, status, ep, free_on_destroy);
if (r) {
break;
}
}
if (dev->endpoint[EP2I(ep)].pending_async_packet) {
USBPacket *p = dev->endpoint[EP2I(ep)].pending_async_packet;
dev->endpoint[EP2I(ep)].pending_async_packet = NULL;
usbredir_buffered_bulk_in_complete(dev, p, ep);
usb_packet_complete(&dev->dev, p);
}
}
/*
* Migration code
*/
static int usbredir_pre_save(void *priv)
{
USBRedirDevice *dev = priv;
usbredir_fill_already_in_flight(dev);
return 0;
}
static int usbredir_post_load(void *priv, int version_id)
{
USBRedirDevice *dev = priv;
if (dev == NULL || dev->parser == NULL) {
return 0;
}
switch (dev->device_info.speed) {
case usb_redir_speed_low:
dev->dev.speed = USB_SPEED_LOW;
break;
case usb_redir_speed_full:
dev->dev.speed = USB_SPEED_FULL;
break;
case usb_redir_speed_high:
dev->dev.speed = USB_SPEED_HIGH;
break;
case usb_redir_speed_super:
dev->dev.speed = USB_SPEED_SUPER;
break;
default:
dev->dev.speed = USB_SPEED_FULL;
}
dev->dev.speedmask = (1 << dev->dev.speed);
usbredir_setup_usb_eps(dev);
usbredir_check_bulk_receiving(dev);
return 0;
}
/* For usbredirparser migration */
static int usbredir_put_parser(QEMUFile *f, void *priv, size_t unused,
const VMStateField *field, JSONWriter *vmdesc)
{
USBRedirDevice *dev = priv;
uint8_t *data;
int len;
if (dev->parser == NULL) {
qemu_put_be32(f, 0);
return 0;
}
usbredirparser_serialize(dev->parser, &data, &len);
if (!data) {
error_report("usbredirparser_serialize failed");
exit(1);
}
qemu_put_be32(f, len);
qemu_put_buffer(f, data, len);
free(data);
return 0;
}
static int usbredir_get_parser(QEMUFile *f, void *priv, size_t unused,
const VMStateField *field)
{
USBRedirDevice *dev = priv;
uint8_t *data;
int len, ret;
len = qemu_get_be32(f);
if (len == 0) {
return 0;
}
/*
* If our chardev is not open already at this point the usbredir connection
* has been broken (non seamless migration, or restore from disk).
*
* In this case create a temporary parser to receive the migration data,
* and schedule the close_bh to report the device as disconnected to the
* guest and to destroy the parser again.
*/
if (dev->parser == NULL) {
WARNING("usb-redir connection broken during migration\n");
usbredir_create_parser(dev);
qemu_bh_schedule(dev->chardev_close_bh);
}
data = g_malloc(len);
qemu_get_buffer(f, data, len);
ret = usbredirparser_unserialize(dev->parser, data, len);
g_free(data);
return ret;
}
static const VMStateInfo usbredir_parser_vmstate_info = {
.name = "usb-redir-parser",
.put = usbredir_put_parser,
.get = usbredir_get_parser,
};
/* For buffered packets (iso/irq) queue migration */
static int usbredir_put_bufpq(QEMUFile *f, void *priv, size_t unused,
const VMStateField *field, JSONWriter *vmdesc)
{
struct endp_data *endp = priv;
USBRedirDevice *dev = endp->dev;
struct buf_packet *bufp;
int len, i = 0;
qemu_put_be32(f, endp->bufpq_size);
QTAILQ_FOREACH(bufp, &endp->bufpq, next) {
len = bufp->len - bufp->offset;
DPRINTF("put_bufpq %d/%d len %d status %d\n", i + 1, endp->bufpq_size,
len, bufp->status);
qemu_put_be32(f, len);
qemu_put_be32(f, bufp->status);
qemu_put_buffer(f, bufp->data + bufp->offset, len);
i++;
}
assert(i == endp->bufpq_size);
return 0;
}
static int usbredir_get_bufpq(QEMUFile *f, void *priv, size_t unused,
const VMStateField *field)
{
struct endp_data *endp = priv;
USBRedirDevice *dev = endp->dev;
struct buf_packet *bufp;
int i;
endp->bufpq_size = qemu_get_be32(f);
for (i = 0; i < endp->bufpq_size; i++) {
bufp = g_new(struct buf_packet, 1);
bufp->len = qemu_get_be32(f);
bufp->status = qemu_get_be32(f);
bufp->offset = 0;
bufp->data = malloc(bufp->len); /* regular malloc! */
if (!bufp->data) {
error_report("usbredir_get_bufpq: out of memory");
exit(1);
}
bufp->free_on_destroy = bufp->data;
qemu_get_buffer(f, bufp->data, bufp->len);
QTAILQ_INSERT_TAIL(&endp->bufpq, bufp, next);
DPRINTF("get_bufpq %d/%d len %d status %d\n", i + 1, endp->bufpq_size,
bufp->len, bufp->status);
}
return 0;
}
static const VMStateInfo usbredir_ep_bufpq_vmstate_info = {
.name = "usb-redir-bufpq",
.put = usbredir_put_bufpq,
.get = usbredir_get_bufpq,
};
/* For endp_data migration */
static bool usbredir_bulk_receiving_needed(void *priv)
{
struct endp_data *endp = priv;
return endp->bulk_receiving_started;
}
static const VMStateDescription usbredir_bulk_receiving_vmstate = {
.name = "usb-redir-ep/bulk-receiving",
.version_id = 1,
.minimum_version_id = 1,
.needed = usbredir_bulk_receiving_needed,
.fields = (VMStateField[]) {
VMSTATE_UINT8(bulk_receiving_started, struct endp_data),
VMSTATE_END_OF_LIST()
}
};
static bool usbredir_stream_needed(void *priv)
{
struct endp_data *endp = priv;
return endp->max_streams;
}
static const VMStateDescription usbredir_stream_vmstate = {
.name = "usb-redir-ep/stream-state",
.version_id = 1,
.minimum_version_id = 1,
.needed = usbredir_stream_needed,
.fields = (VMStateField[]) {
VMSTATE_UINT32(max_streams, struct endp_data),
VMSTATE_END_OF_LIST()
}
};
static const VMStateDescription usbredir_ep_vmstate = {
.name = "usb-redir-ep",
.version_id = 1,
.minimum_version_id = 1,
.fields = (VMStateField[]) {
VMSTATE_UINT8(type, struct endp_data),
VMSTATE_UINT8(interval, struct endp_data),
VMSTATE_UINT8(interface, struct endp_data),
VMSTATE_UINT16(max_packet_size, struct endp_data),
VMSTATE_UINT8(iso_started, struct endp_data),
VMSTATE_UINT8(iso_error, struct endp_data),
VMSTATE_UINT8(interrupt_started, struct endp_data),
VMSTATE_UINT8(interrupt_error, struct endp_data),
VMSTATE_UINT8(bufpq_prefilled, struct endp_data),
VMSTATE_UINT8(bufpq_dropping_packets, struct endp_data),
{
.name = "bufpq",
.version_id = 0,
.field_exists = NULL,
.size = 0,
.info = &usbredir_ep_bufpq_vmstate_info,
.flags = VMS_SINGLE,
.offset = 0,
},
VMSTATE_INT32(bufpq_target_size, struct endp_data),
VMSTATE_END_OF_LIST()
},
.subsections = (const VMStateDescription*[]) {
&usbredir_bulk_receiving_vmstate,
&usbredir_stream_vmstate,
NULL
}
};
/* For PacketIdQueue migration */
static int usbredir_put_packet_id_q(QEMUFile *f, void *priv, size_t unused,
const VMStateField *field,
JSONWriter *vmdesc)
{
struct PacketIdQueue *q = priv;
USBRedirDevice *dev = q->dev;
struct PacketIdQueueEntry *e;
int remain = q->size;
DPRINTF("put_packet_id_q %s size %d\n", q->name, q->size);
qemu_put_be32(f, q->size);
QTAILQ_FOREACH(e, &q->head, next) {
qemu_put_be64(f, e->id);
remain--;
}
assert(remain == 0);
return 0;
}
static int usbredir_get_packet_id_q(QEMUFile *f, void *priv, size_t unused,
const VMStateField *field)
{
struct PacketIdQueue *q = priv;
USBRedirDevice *dev = q->dev;
int i, size;
uint64_t id;
size = qemu_get_be32(f);
DPRINTF("get_packet_id_q %s size %d\n", q->name, size);
for (i = 0; i < size; i++) {
id = qemu_get_be64(f);
packet_id_queue_add(q, id);
}
assert(q->size == size);
return 0;
}
static const VMStateInfo usbredir_ep_packet_id_q_vmstate_info = {
.name = "usb-redir-packet-id-q",
.put = usbredir_put_packet_id_q,
.get = usbredir_get_packet_id_q,
};
static const VMStateDescription usbredir_ep_packet_id_queue_vmstate = {
.name = "usb-redir-packet-id-queue",
.version_id = 1,
.minimum_version_id = 1,
.fields = (VMStateField[]) {
{
.name = "queue",
.version_id = 0,
.field_exists = NULL,
.size = 0,
.info = &usbredir_ep_packet_id_q_vmstate_info,
.flags = VMS_SINGLE,
.offset = 0,
},
VMSTATE_END_OF_LIST()
}
};
/* For usb_redir_device_connect_header migration */
static const VMStateDescription usbredir_device_info_vmstate = {
.name = "usb-redir-device-info",
.version_id = 1,
.minimum_version_id = 1,
.fields = (VMStateField[]) {
VMSTATE_UINT8(speed, struct usb_redir_device_connect_header),
VMSTATE_UINT8(device_class, struct usb_redir_device_connect_header),
VMSTATE_UINT8(device_subclass, struct usb_redir_device_connect_header),
VMSTATE_UINT8(device_protocol, struct usb_redir_device_connect_header),
VMSTATE_UINT16(vendor_id, struct usb_redir_device_connect_header),
VMSTATE_UINT16(product_id, struct usb_redir_device_connect_header),
VMSTATE_UINT16(device_version_bcd,
struct usb_redir_device_connect_header),
VMSTATE_END_OF_LIST()
}
};
/* For usb_redir_interface_info_header migration */
static const VMStateDescription usbredir_interface_info_vmstate = {
.name = "usb-redir-interface-info",
.version_id = 1,
.minimum_version_id = 1,
.fields = (VMStateField[]) {
VMSTATE_UINT32(interface_count,
struct usb_redir_interface_info_header),
VMSTATE_UINT8_ARRAY(interface,
struct usb_redir_interface_info_header, 32),
VMSTATE_UINT8_ARRAY(interface_class,
struct usb_redir_interface_info_header, 32),
VMSTATE_UINT8_ARRAY(interface_subclass,
struct usb_redir_interface_info_header, 32),
VMSTATE_UINT8_ARRAY(interface_protocol,
struct usb_redir_interface_info_header, 32),
VMSTATE_END_OF_LIST()
}
};
/* And finally the USBRedirDevice vmstate itself */
static const VMStateDescription usbredir_vmstate = {
.name = "usb-redir",
.version_id = 1,
.minimum_version_id = 1,
.pre_save = usbredir_pre_save,
.post_load = usbredir_post_load,
.fields = (VMStateField[]) {
VMSTATE_USB_DEVICE(dev, USBRedirDevice),
VMSTATE_TIMER_PTR(attach_timer, USBRedirDevice),
{
.name = "parser",
.version_id = 0,
.field_exists = NULL,
.size = 0,
.info = &usbredir_parser_vmstate_info,
.flags = VMS_SINGLE,
.offset = 0,
},
VMSTATE_STRUCT_ARRAY(endpoint, USBRedirDevice, MAX_ENDPOINTS, 1,
usbredir_ep_vmstate, struct endp_data),
VMSTATE_STRUCT(cancelled, USBRedirDevice, 1,
usbredir_ep_packet_id_queue_vmstate,
struct PacketIdQueue),
VMSTATE_STRUCT(already_in_flight, USBRedirDevice, 1,
usbredir_ep_packet_id_queue_vmstate,
struct PacketIdQueue),
VMSTATE_STRUCT(device_info, USBRedirDevice, 1,
usbredir_device_info_vmstate,
struct usb_redir_device_connect_header),
VMSTATE_STRUCT(interface_info, USBRedirDevice, 1,
usbredir_interface_info_vmstate,
struct usb_redir_interface_info_header),
VMSTATE_END_OF_LIST()
}
};
static Property usbredir_properties[] = {
DEFINE_PROP_CHR("chardev", USBRedirDevice, cs),
DEFINE_PROP_UINT8("debug", USBRedirDevice, debug, usbredirparser_warning),
DEFINE_PROP_STRING("filter", USBRedirDevice, filter_str),
DEFINE_PROP_BOOL("streams", USBRedirDevice, enable_streams, true),
DEFINE_PROP_BOOL("suppress-remote-wake", USBRedirDevice,
suppress_remote_wake, true),
DEFINE_PROP_END_OF_LIST(),
};
static void usbredir_class_initfn(ObjectClass *klass, void *data)
{
USBDeviceClass *uc = USB_DEVICE_CLASS(klass);
DeviceClass *dc = DEVICE_CLASS(klass);
uc->realize = usbredir_realize;
uc->product_desc = "USB Redirection Device";
uc->unrealize = usbredir_unrealize;
uc->cancel_packet = usbredir_cancel_packet;
uc->handle_reset = usbredir_handle_reset;
uc->handle_data = usbredir_handle_data;
uc->handle_control = usbredir_handle_control;
uc->flush_ep_queue = usbredir_flush_ep_queue;
uc->ep_stopped = usbredir_ep_stopped;
uc->alloc_streams = usbredir_alloc_streams;
uc->free_streams = usbredir_free_streams;
dc->vmsd = &usbredir_vmstate;
device_class_set_props(dc, usbredir_properties);
set_bit(DEVICE_CATEGORY_MISC, dc->categories);
}
static void usbredir_instance_init(Object *obj)
{
USBDevice *udev = USB_DEVICE(obj);
USBRedirDevice *dev = USB_REDIRECT(udev);
device_add_bootindex_property(obj, &dev->bootindex,
"bootindex", NULL,
&udev->qdev);
}
static const TypeInfo usbredir_dev_info = {
.name = TYPE_USB_REDIR,
.parent = TYPE_USB_DEVICE,
.instance_size = sizeof(USBRedirDevice),
.class_init = usbredir_class_initfn,
.instance_init = usbredir_instance_init,
};
module_obj(TYPE_USB_REDIR);
module_kconfig(USB);
static void usbredir_register_types(void)
{
type_register_static(&usbredir_dev_info);
}
type_init(usbredir_register_types)