/*
* ARM SSE (Subsystems for Embedded): IoTKit, SSE-200
*
* Copyright (c) 2018 Linaro Limited
* Written by Peter Maydell
*
* This program is free software; you can redistribute it and/or modify
* it under the terms of the GNU General Public License version 2 or
* (at your option) any later version.
*/
/*
* This is a model of the Arm "Subsystems for Embedded" family of
* hardware, which include the IoT Kit and the SSE-050, SSE-100 and
* SSE-200. Currently we model:
* - the Arm IoT Kit which is documented in
* http://infocenter.arm.com/help/index.jsp?topic=/com.arm.doc.ecm0601256/index.html
* - the SSE-200 which is documented in
* http://infocenter.arm.com/help/topic/com.arm.doc.101104_0100_00_en/corelink_sse200_subsystem_for_embedded_technical_reference_manual_101104_0100_00_en.pdf
*
* The IoTKit contains:
* a Cortex-M33
* the IDAU
* some timers and watchdogs
* two peripheral protection controllers
* a memory protection controller
* a security controller
* a bus fabric which arranges that some parts of the address
* space are secure and non-secure aliases of each other
* The SSE-200 additionally contains:
* a second Cortex-M33
* two Message Handling Units (MHUs)
* an optional CryptoCell (which we do not model)
* more SRAM banks with associated MPCs
* multiple Power Policy Units (PPUs)
* a control interface for an icache for each CPU
* per-CPU identity and control register blocks
*
* QEMU interface:
* + QOM property "memory" is a MemoryRegion containing the devices provided
* by the board model.
* + QOM property "MAINCLK" is the frequency of the main system clock
* + QOM property "EXP_NUMIRQ" sets the number of expansion interrupts.
* (In hardware, the SSE-200 permits the number of expansion interrupts
* for the two CPUs to be configured separately, but we restrict it to
* being the same for both, to avoid having to have separate Property
* lists for different variants. This restriction can be relaxed later
* if necessary.)
* + QOM property "SRAM_ADDR_WIDTH" sets the number of bits used for the
* address of each SRAM bank (and thus the total amount of internal SRAM)
* + QOM property "init-svtor" sets the initial value of the CPU SVTOR register
* (where it expects to load the PC and SP from the vector table on reset)
* + QOM properties "CPU0_FPU", "CPU0_DSP", "CPU1_FPU" and "CPU1_DSP" which
* set whether the CPUs have the FPU and DSP features present. The default
* (matching the hardware) is that for CPU0 in an IoTKit and CPU1 in an
* SSE-200 both are present; CPU0 in an SSE-200 has neither.
* Since the IoTKit has only one CPU, it does not have the CPU1_* properties.
* + Named GPIO inputs "EXP_IRQ" 0..n are the expansion interrupts for CPU 0,
* which are wired to its NVIC lines 32 .. n+32
* + Named GPIO inputs "EXP_CPU1_IRQ" 0..n are the expansion interrupts for
* CPU 1, which are wired to its NVIC lines 32 .. n+32
* + sysbus MMIO region 0 is the "AHB Slave Expansion" which allows
* bus master devices in the board model to make transactions into
* all the devices and memory areas in the IoTKit
* Controlling up to 4 AHB expansion PPBs which a system using the IoTKit
* might provide:
* + named GPIO outputs apb_ppcexp{0,1,2,3}_nonsec[0..15]
* + named GPIO outputs apb_ppcexp{0,1,2,3}_ap[0..15]
* + named GPIO outputs apb_ppcexp{0,1,2,3}_irq_enable
* + named GPIO outputs apb_ppcexp{0,1,2,3}_irq_clear
* + named GPIO inputs apb_ppcexp{0,1,2,3}_irq_status
* Controlling each of the 4 expansion AHB PPCs which a system using the IoTKit
* might provide:
* + named GPIO outputs ahb_ppcexp{0,1,2,3}_nonsec[0..15]
* + named GPIO outputs ahb_ppcexp{0,1,2,3}_ap[0..15]
* + named GPIO outputs ahb_ppcexp{0,1,2,3}_irq_enable
* + named GPIO outputs ahb_ppcexp{0,1,2,3}_irq_clear
* + named GPIO inputs ahb_ppcexp{0,1,2,3}_irq_status
* Controlling each of the 16 expansion MPCs which a system using the IoTKit
* might provide:
* + named GPIO inputs mpcexp_status[0..15]
* Controlling each of the 16 expansion MSCs which a system using the IoTKit
* might provide:
* + named GPIO inputs mscexp_status[0..15]
* + named GPIO outputs mscexp_clear[0..15]
* + named GPIO outputs mscexp_ns[0..15]
*/
#ifndef ARMSSE_H
#define ARMSSE_H
#include "hw/sysbus.h"
#include "hw/arm/armv7m.h"
#include "hw/misc/iotkit-secctl.h"
#include "hw/misc/tz-ppc.h"
#include "hw/misc/tz-mpc.h"
#include "hw/timer/cmsdk-apb-timer.h"
#include "hw/timer/cmsdk-apb-dualtimer.h"
#include "hw/watchdog/cmsdk-apb-watchdog.h"
#include "hw/misc/iotkit-sysctl.h"
#include "hw/misc/iotkit-sysinfo.h"
#include "hw/misc/armsse-cpuid.h"
#include "hw/misc/armsse-mhu.h"
#include "hw/misc/unimp.h"
#include "hw/or-irq.h"
#include "hw/core/split-irq.h"
#include "hw/cpu/cluster.h"
#include "qom/object.h"
#define TYPE_ARM_SSE "arm-sse"
OBJECT_DECLARE_TYPE(ARMSSE, ARMSSEClass,
ARM_SSE)
/*
* These type names are for specific IoTKit subsystems; other than
* instantiating them, code using these devices should always handle
* them via the ARMSSE base class, so they have no IOTKIT() etc macros.
*/
#define TYPE_IOTKIT "iotkit"
#define TYPE_SSE200 "sse-200"
/* We have an IRQ splitter and an OR gate input for each external PPC
* and the 2 internal PPCs
*/
#define NUM_EXTERNAL_PPCS (IOTS_NUM_AHB_EXP_PPC + IOTS_NUM_APB_EXP_PPC)
#define NUM_PPCS (NUM_EXTERNAL_PPCS + 2)
#define MAX_SRAM_BANKS 4
#if MAX_SRAM_BANKS > IOTS_NUM_MPC
#error Too many SRAM banks
#endif
#define SSE_MAX_CPUS 2
/* These define what each PPU in the ppu[] index is for */
#define CPU0CORE_PPU 0
#define CPU1CORE_PPU 1
#define DBG_PPU 2
#define RAM0_PPU 3
#define RAM1_PPU 4
#define RAM2_PPU 5
#define RAM3_PPU 6
#define NUM_PPUS 7
struct ARMSSE {
/*< private >*/
SysBusDevice parent_obj;
/*< public >*/
ARMv7MState armv7m[SSE_MAX_CPUS];
CPUClusterState cluster[SSE_MAX_CPUS];
IoTKitSecCtl secctl;
TZPPC apb_ppc0;
TZPPC apb_ppc1;
TZMPC mpc[IOTS_NUM_MPC];
CMSDKAPBTIMER timer0;
CMSDKAPBTIMER timer1;
CMSDKAPBTIMER s32ktimer;
qemu_or_irq ppc_irq_orgate;
SplitIRQ sec_resp_splitter;
SplitIRQ ppc_irq_splitter[NUM_PPCS];
SplitIRQ mpc_irq_splitter[IOTS_NUM_EXP_MPC + IOTS_NUM_MPC];
qemu_or_irq mpc_irq_orgate;
qemu_or_irq nmi_orgate;
SplitIRQ cpu_irq_splitter[32];
CMSDKAPBDualTimer dualtimer;
CMSDKAPBWatchdog s32kwatchdog;
CMSDKAPBWatchdog nswatchdog;
CMSDKAPBWatchdog swatchdog;
IoTKitSysCtl sysctl;
IoTKitSysCtl sysinfo;
ARMSSEMHU mhu[2];
UnimplementedDeviceState ppu[NUM_PPUS];
UnimplementedDeviceState cachectrl[SSE_MAX_CPUS];
UnimplementedDeviceState cpusecctrl[SSE_MAX_CPUS];
ARMSSECPUID cpuid[SSE_MAX_CPUS];
/*
* 'container' holds all devices seen by all CPUs.
* 'cpu_container[i]' is the view that CPU i has: this has the
* per-CPU devices of that CPU, plus as the background 'container'
* (or an alias of it, since we can only use it directly once).
* container_alias[i] is the alias of 'container' used by CPU i+1;
* CPU 0 can use 'container' directly.
*/
MemoryRegion container;
MemoryRegion container_alias[SSE_MAX_CPUS - 1];
MemoryRegion cpu_container[SSE_MAX_CPUS];
MemoryRegion alias1;
MemoryRegion alias2;
MemoryRegion alias3[SSE_MAX_CPUS];
MemoryRegion sram[MAX_SRAM_BANKS];
qemu_irq *exp_irqs[SSE_MAX_CPUS];
qemu_irq ppc0_irq;
qemu_irq ppc1_irq;
qemu_irq sec_resp_cfg;
qemu_irq sec_resp_cfg_in;
qemu_irq nsc_cfg_in;
qemu_irq irq_status_in[NUM_EXTERNAL_PPCS];
qemu_irq mpcexp_status_in[IOTS_NUM_EXP_MPC];
uint32_t nsccfg;
/* Properties */
MemoryRegion *board_memory;
uint32_t exp_numirq;
uint32_t mainclk_frq;
uint32_t sram_addr_width;
uint32_t init_svtor;
bool cpu_fpu[SSE_MAX_CPUS];
bool cpu_dsp[SSE_MAX_CPUS];
};
typedef struct ARMSSEInfo ARMSSEInfo;
struct ARMSSEClass {
SysBusDeviceClass parent_class;
const ARMSSEInfo *info;
};
#endif