/*
* Test Server
*
* Copyright IBM, Corp. 2011
*
* Authors:
* Anthony Liguori <aliguori@us.ibm.com>
*
* This work is licensed under the terms of the GNU GPL, version 2 or later.
* See the COPYING file in the top-level directory.
*
*/
#include "qemu/osdep.h"
#include "qapi/error.h"
#include "qemu-common.h"
#include "cpu.h"
#include "sysemu/qtest.h"
#include "hw/qdev.h"
#include "sysemu/char.h"
#include "exec/ioport.h"
#include "exec/memory.h"
#include "hw/irq.h"
#include "sysemu/accel.h"
#include "sysemu/sysemu.h"
#include "sysemu/cpus.h"
#include "qemu/config-file.h"
#include "qemu/option.h"
#include "qemu/error-report.h"
#include "qemu/cutils.h"
#ifdef TARGET_PPC64
#include "hw/ppc/spapr_rtas.h"
#endif
#define MAX_IRQ 256
bool qtest_allowed;
static DeviceState *irq_intercept_dev;
static FILE *qtest_log_fp;
static CharBackend qtest_chr;
static GString *inbuf;
static int irq_levels[MAX_IRQ];
static qemu_timeval start_time;
static bool qtest_opened;
#define FMT_timeval "%ld.%06ld"
/**
* QTest Protocol
*
* Line based protocol, request/response based. Server can send async messages
* so clients should always handle many async messages before the response
* comes in.
*
* Valid requests
*
* Clock management:
*
* The qtest client is completely in charge of the QEMU_CLOCK_VIRTUAL. qtest commands
* let you adjust the value of the clock (monotonically). All the commands
* return the current value of the clock in nanoseconds.
*
* > clock_step
* < OK VALUE
*
* Advance the clock to the next deadline. Useful when waiting for
* asynchronous events.
*
* > clock_step NS
* < OK VALUE
*
* Advance the clock by NS nanoseconds.
*
* > clock_set NS
* < OK VALUE
*
* Advance the clock to NS nanoseconds (do nothing if it's already past).
*
* PIO and memory access:
*
* > outb ADDR VALUE
* < OK
*
* > outw ADDR VALUE
* < OK
*
* > outl ADDR VALUE
* < OK
*
* > inb ADDR
* < OK VALUE
*
* > inw ADDR
* < OK VALUE
*
* > inl ADDR
* < OK VALUE
*
* > writeb ADDR VALUE
* < OK
*
* > writew ADDR VALUE
* < OK
*
* > writel ADDR VALUE
* < OK
*
* > writeq ADDR VALUE
* < OK
*
* > readb ADDR
* < OK VALUE
*
* > readw ADDR
* < OK VALUE
*
* > readl ADDR
* < OK VALUE
*
* > readq ADDR
* < OK VALUE
*
* > read ADDR SIZE
* < OK DATA
*
* > write ADDR SIZE DATA
* < OK
*
* > b64read ADDR SIZE
* < OK B64_DATA
*
* > b64write ADDR SIZE B64_DATA
* < OK
*
* > memset ADDR SIZE VALUE
* < OK
*
* ADDR, SIZE, VALUE are all integers parsed with strtoul() with a base of 0.
* For 'memset' a zero size is permitted and does nothing.
*
* DATA is an arbitrarily long hex number prefixed with '0x'. If it's smaller
* than the expected size, the value will be zero filled at the end of the data
* sequence.
*
* B64_DATA is an arbitrarily long base64 encoded string.
* If the sizes do not match, the data will be truncated.
*
* IRQ management:
*
* > irq_intercept_in QOM-PATH
* < OK
*
* > irq_intercept_out QOM-PATH
* < OK
*
* Attach to the gpio-in (resp. gpio-out) pins exported by the device at
* QOM-PATH. When the pin is triggered, one of the following async messages
* will be printed to the qtest stream:
*
* IRQ raise NUM
* IRQ lower NUM
*
* where NUM is an IRQ number. For the PC, interrupts can be intercepted
* simply with "irq_intercept_in ioapic" (note that IRQ0 comes out with
* NUM=0 even though it is remapped to GSI 2).
*/
static int hex2nib(char ch)
{
if (ch >= '0' && ch <= '9') {
return ch - '0';
} else if (ch >= 'a' && ch <= 'f') {
return 10 + (ch - 'a');
} else if (ch >= 'A' && ch <= 'F') {
return 10 + (ch - 'A');
} else {
return -1;
}
}
static void qtest_get_time(qemu_timeval *tv)
{
qemu_gettimeofday(tv);
tv->tv_sec -= start_time.tv_sec;
tv->tv_usec -= start_time.tv_usec;
if (tv->tv_usec < 0) {
tv->tv_usec += 1000000;
tv->tv_sec -= 1;
}
}
static void qtest_send_prefix(CharBackend *chr)
{
qemu_timeval tv;
if (!qtest_log_fp || !qtest_opened) {
return;
}
qtest_get_time(&tv);
fprintf(qtest_log_fp, "[S +" FMT_timeval "] ",
(long) tv.tv_sec, (long) tv.tv_usec);
}
static void GCC_FMT_ATTR(1, 2) qtest_log_send(const char *fmt, ...)
{
va_list ap;
if (!qtest_log_fp || !qtest_opened) {
return;
}
qtest_send_prefix(NULL);
va_start(ap, fmt);
vfprintf(qtest_log_fp, fmt, ap);
va_end(ap);
}
static void do_qtest_send(CharBackend *chr, const char *str, size_t len)
{
qemu_chr_fe_write_all(chr, (uint8_t *)str, len);
if (qtest_log_fp && qtest_opened) {
fprintf(qtest_log_fp, "%s", str);
}
}
static void qtest_send(CharBackend *chr, const char *str)
{
do_qtest_send(chr, str, strlen(str));
}
static void GCC_FMT_ATTR(2, 3) qtest_sendf(CharBackend *chr,
const char *fmt, ...)
{
va_list ap;
gchar *buffer;
va_start(ap, fmt);
buffer = g_strdup_vprintf(fmt, ap);
qtest_send(chr, buffer);
va_end(ap);
}
static void qtest_irq_handler(void *opaque, int n, int level)
{
qemu_irq old_irq = *(qemu_irq *)opaque;
qemu_set_irq(old_irq, level);
if (irq_levels[n] != level) {
CharBackend *chr = &qtest_chr;
irq_levels[n] = level;
qtest_send_prefix(chr);
qtest_sendf(chr, "IRQ %s %d\n",
level ? "raise" : "lower", n);
}
}
static void qtest_process_command(CharBackend *chr, gchar **words)
{
const gchar *command;
g_assert(words);
command = words[0];
if (qtest_log_fp) {
qemu_timeval tv;
int i;
qtest_get_time(&tv);
fprintf(qtest_log_fp, "[R +" FMT_timeval "]",
(long) tv.tv_sec, (long) tv.tv_usec);
for (i = 0; words[i]; i++) {
fprintf(qtest_log_fp, " %s", words[i]);
}
fprintf(qtest_log_fp, "\n");
}
g_assert(command);
if (strcmp(words[0], "irq_intercept_out") == 0
|| strcmp(words[0], "irq_intercept_in") == 0) {
DeviceState *dev;
NamedGPIOList *ngl;
g_assert(words[1]);
dev = DEVICE(object_resolve_path(words[1], NULL));
if (!dev) {
qtest_send_prefix(chr);
qtest_send(chr, "FAIL Unknown device\n");
return;
}
if (irq_intercept_dev) {
qtest_send_prefix(chr);
if (irq_intercept_dev != dev) {
qtest_send(chr, "FAIL IRQ intercept already enabled\n");
} else {
qtest_send(chr, "OK\n");
}
return;
}
QLIST_FOREACH(ngl, &dev->gpios, node) {
/* We don't support intercept of named GPIOs yet */
if (ngl->name) {
continue;
}
if (words[0][14] == 'o') {
int i;
for (i = 0; i < ngl->num_out; ++i) {
qemu_irq *disconnected = g_new0(qemu_irq, 1);
qemu_irq icpt = qemu_allocate_irq(qtest_irq_handler,
disconnected, i);
*disconnected = qdev_intercept_gpio_out(dev, icpt,
ngl->name, i);
}
} else {
qemu_irq_intercept_in(ngl->in, qtest_irq_handler,
ngl->num_in);
}
}
irq_intercept_dev = dev;
qtest_send_prefix(chr);
qtest_send(chr, "OK\n");
} else if (strcmp(words[0], "outb") == 0 ||
strcmp(words[0], "outw") == 0 ||
strcmp(words[0], "outl") == 0) {
unsigned long addr;
unsigned long value;
g_assert(words[1] && words[2]);
g_assert(qemu_strtoul(words[1], NULL, 0, &addr) == 0);
g_assert(qemu_strtoul(words[2], NULL, 0, &value) == 0);
g_assert(addr <= 0xffff);
if (words[0][3] == 'b') {
cpu_outb(addr, value);
} else if (words[0][3] == 'w') {
cpu_outw(addr, value);
} else if (words[0][3] == 'l') {
cpu_outl(addr, value);
}
qtest_send_prefix(chr);
qtest_send(chr, "OK\n");
} else if (strcmp(words[0], "inb") == 0 ||
strcmp(words[0], "inw") == 0 ||
strcmp(words[0], "inl") == 0) {
unsigned long addr;
uint32_t value = -1U;
g_assert(words[1]);
g_assert(qemu_strtoul(words[1], NULL, 0, &addr) == 0);
g_assert(addr <= 0xffff);
if (words[0][2] == 'b') {
value = cpu_inb(addr);
} else if (words[0][2] == 'w') {
value = cpu_inw(addr);
} else if (words[0][2] == 'l') {
value = cpu_inl(addr);
}
qtest_send_prefix(chr);
qtest_sendf(chr, "OK 0x%04x\n", value);
} else if (strcmp(words[0], "writeb") == 0 ||
strcmp(words[0], "writew") == 0 ||
strcmp(words[0], "writel") == 0 ||
strcmp(words[0], "writeq") == 0) {
uint64_t addr;
uint64_t value;
g_assert(words[1] && words[2]);
g_assert(qemu_strtoull(words[1], NULL, 0, &addr) == 0);
g_assert(qemu_strtoull(words[2], NULL, 0, &value) == 0);
if (words[0][5] == 'b') {
uint8_t data = value;
cpu_physical_memory_write(addr, &data, 1);
} else if (words[0][5] == 'w') {
uint16_t data = value;
tswap16s(&data);
cpu_physical_memory_write(addr, &data, 2);
} else if (words[0][5] == 'l') {
uint32_t data = value;
tswap32s(&data);
cpu_physical_memory_write(addr, &data, 4);
} else if (words[0][5] == 'q') {
uint64_t data = value;
tswap64s(&data);
cpu_physical_memory_write(addr, &data, 8);
}
qtest_send_prefix(chr);
qtest_send(chr, "OK\n");
} else if (strcmp(words[0], "readb") == 0 ||
strcmp(words[0], "readw") == 0 ||
strcmp(words[0], "readl") == 0 ||
strcmp(words[0], "readq") == 0) {
uint64_t addr;
uint64_t value = UINT64_C(-1);
g_assert(words[1]);
g_assert(qemu_strtoull(words[1], NULL, 0, &addr) == 0);
if (words[0][4] == 'b') {
uint8_t data;
cpu_physical_memory_read(addr, &data, 1);
value = data;
} else if (words[0][4] == 'w') {
uint16_t data;
cpu_physical_memory_read(addr, &data, 2);
value = tswap16(data);
} else if (words[0][4] == 'l') {
uint32_t data;
cpu_physical_memory_read(addr, &data, 4);
value = tswap32(data);
} else if (words[0][4] == 'q') {
cpu_physical_memory_read(addr, &value, 8);
tswap64s(&value);
}
qtest_send_prefix(chr);
qtest_sendf(chr, "OK 0x%016" PRIx64 "\n", value);
} else if (strcmp(words[0], "read") == 0) {
uint64_t addr, len, i;
uint8_t *data;
char *enc;
g_assert(words[1] && words[2]);
g_assert(qemu_strtoull(words[1], NULL, 0, &addr) == 0);
g_assert(qemu_strtoull(words[2], NULL, 0, &len) == 0);
data = g_malloc(len);
cpu_physical_memory_read(addr, data, len);
enc = g_malloc(2 * len + 1);
for (i = 0; i < len; i++) {
sprintf(&enc[i * 2], "%02x", data[i]);
}
qtest_send_prefix(chr);
qtest_sendf(chr, "OK 0x%s\n", enc);
g_free(data);
g_free(enc);
} else if (strcmp(words[0], "b64read") == 0) {
uint64_t addr, len;
uint8_t *data;
gchar *b64_data;
g_assert(words[1] && words[2]);
g_assert(qemu_strtoull(words[1], NULL, 0, &addr) == 0);
g_assert(qemu_strtoull(words[2], NULL, 0, &len) == 0);
data = g_malloc(len);
cpu_physical_memory_read(addr, data, len);
b64_data = g_base64_encode(data, len);
qtest_send_prefix(chr);
qtest_sendf(chr, "OK %s\n", b64_data);
g_free(data);
g_free(b64_data);
} else if (strcmp(words[0], "write") == 0) {
uint64_t addr, len, i;
uint8_t *data;
size_t data_len;
g_assert(words[1] && words[2] && words[3]);
g_assert(qemu_strtoull(words[1], NULL, 0, &addr) == 0);
g_assert(qemu_strtoull(words[2], NULL, 0, &len) == 0);
data_len = strlen(words[3]);
if (data_len < 3) {
qtest_send(chr, "ERR invalid argument size\n");
return;
}
data = g_malloc(len);
for (i = 0; i < len; i++) {
if ((i * 2 + 4) <= data_len) {
data[i] = hex2nib(words[3][i * 2 + 2]) << 4;
data[i] |= hex2nib(words[3][i * 2 + 3]);
} else {
data[i] = 0;
}
}
cpu_physical_memory_write(addr, data, len);
g_free(data);
qtest_send_prefix(chr);
qtest_send(chr, "OK\n");
} else if (strcmp(words[0], "memset") == 0) {
uint64_t addr, len;
uint8_t *data;
unsigned long pattern;
g_assert(words[1] && words[2] && words[3]);
g_assert(qemu_strtoull(words[1], NULL, 0, &addr) == 0);
g_assert(qemu_strtoull(words[2], NULL, 0, &len) == 0);
g_assert(qemu_strtoul(words[3], NULL, 0, &pattern) == 0);
if (len) {
data = g_malloc(len);
memset(data, pattern, len);
cpu_physical_memory_write(addr, data, len);
g_free(data);
}
qtest_send_prefix(chr);
qtest_send(chr, "OK\n");
} else if (strcmp(words[0], "b64write") == 0) {
uint64_t addr, len;
uint8_t *data;
size_t data_len;
gsize out_len;
g_assert(words[1] && words[2] && words[3]);
g_assert(qemu_strtoull(words[1], NULL, 0, &addr) == 0);
g_assert(qemu_strtoull(words[2], NULL, 0, &len) == 0);
data_len = strlen(words[3]);
if (data_len < 3) {
qtest_send(chr, "ERR invalid argument size\n");
return;
}
data = g_base64_decode_inplace(words[3], &out_len);
if (out_len != len) {
qtest_log_send("b64write: data length mismatch (told %"PRIu64", "
"found %zu)\n",
len, out_len);
out_len = MIN(out_len, len);
}
cpu_physical_memory_write(addr, data, out_len);
qtest_send_prefix(chr);
qtest_send(chr, "OK\n");
} else if (strcmp(words[0], "endianness") == 0) {
qtest_send_prefix(chr);
#if defined(TARGET_WORDS_BIGENDIAN)
qtest_sendf(chr, "OK big\n");
#else
qtest_sendf(chr, "OK little\n");
#endif
#ifdef TARGET_PPC64
} else if (strcmp(words[0], "rtas") == 0) {
uint64_t res, args, ret;
unsigned long nargs, nret;
g_assert(qemu_strtoul(words[2], NULL, 0, &nargs) == 0);
g_assert(qemu_strtoull(words[3], NULL, 0, &args) == 0);
g_assert(qemu_strtoul(words[4], NULL, 0, &nret) == 0);
g_assert(qemu_strtoull(words[5], NULL, 0, &ret) == 0);
res = qtest_rtas_call(words[1], nargs, args, nret, ret);
qtest_send_prefix(chr);
qtest_sendf(chr, "OK %"PRIu64"\n", res);
#endif
} else if (qtest_enabled() && strcmp(words[0], "clock_step") == 0) {
int64_t ns;
if (words[1]) {
g_assert(qemu_strtoll(words[1], NULL, 0, &ns) == 0);
} else {
ns = qemu_clock_deadline_ns_all(QEMU_CLOCK_VIRTUAL);
}
qtest_clock_warp(qemu_clock_get_ns(QEMU_CLOCK_VIRTUAL) + ns);
qtest_send_prefix(chr);
qtest_sendf(chr, "OK %"PRIi64"\n",
(int64_t)qemu_clock_get_ns(QEMU_CLOCK_VIRTUAL));
} else if (qtest_enabled() && strcmp(words[0], "clock_set") == 0) {
int64_t ns;
g_assert(words[1]);
g_assert(qemu_strtoll(words[1], NULL, 0, &ns) == 0);
qtest_clock_warp(ns);
qtest_send_prefix(chr);
qtest_sendf(chr, "OK %"PRIi64"\n",
(int64_t)qemu_clock_get_ns(QEMU_CLOCK_VIRTUAL));
} else {
qtest_send_prefix(chr);
qtest_sendf(chr, "FAIL Unknown command '%s'\n", words[0]);
}
}
static void qtest_process_inbuf(CharBackend *chr, GString *inbuf)
{
char *end;
while ((end = strchr(inbuf->str, '\n')) != NULL) {
size_t offset;
GString *cmd;
gchar **words;
offset = end - inbuf->str;
cmd = g_string_new_len(inbuf->str, offset);
g_string_erase(inbuf, 0, offset + 1);
words = g_strsplit(cmd->str, " ", 0);
qtest_process_command(chr, words);
g_strfreev(words);
g_string_free(cmd, TRUE);
}
}
static void qtest_read(void *opaque, const uint8_t *buf, int size)
{
CharBackend *chr = opaque;
g_string_append_len(inbuf, (const gchar *)buf, size);
qtest_process_inbuf(chr, inbuf);
}
static int qtest_can_read(void *opaque)
{
return 1024;
}
static void qtest_event(void *opaque, int event)
{
int i;
switch (event) {
case CHR_EVENT_OPENED:
/*
* We used to call qemu_system_reset() here, hoping we could
* use the same process for multiple tests that way. Never
* used. Injects an extra reset even when it's not used, and
* that can mess up tests, e.g. -boot once.
*/
for (i = 0; i < ARRAY_SIZE(irq_levels); i++) {
irq_levels[i] = 0;
}
qemu_gettimeofday(&start_time);
qtest_opened = true;
if (qtest_log_fp) {
fprintf(qtest_log_fp, "[I " FMT_timeval "] OPENED\n",
(long) start_time.tv_sec, (long) start_time.tv_usec);
}
break;
case CHR_EVENT_CLOSED:
qtest_opened = false;
if (qtest_log_fp) {
qemu_timeval tv;
qtest_get_time(&tv);
fprintf(qtest_log_fp, "[I +" FMT_timeval "] CLOSED\n",
(long) tv.tv_sec, (long) tv.tv_usec);
}
break;
default:
break;
}
}
static int qtest_init_accel(MachineState *ms)
{
QemuOpts *opts = qemu_opts_create(qemu_find_opts("icount"), NULL, 0,
&error_abort);
qemu_opt_set(opts, "shift", "0", &error_abort);
configure_icount(opts, &error_abort);
qemu_opts_del(opts);
return 0;
}
void qtest_init(const char *qtest_chrdev, const char *qtest_log, Error **errp)
{
CharDriverState *chr;
chr = qemu_chr_new("qtest", qtest_chrdev);
if (chr == NULL) {
error_setg(errp, "Failed to initialize device for qtest: \"%s\"",
qtest_chrdev);
return;
}
if (qtest_log) {
if (strcmp(qtest_log, "none") != 0) {
qtest_log_fp = fopen(qtest_log, "w+");
}
} else {
qtest_log_fp = stderr;
}
qemu_chr_fe_init(&qtest_chr, chr, errp);
qemu_chr_fe_set_handlers(&qtest_chr, qtest_can_read, qtest_read,
qtest_event, &qtest_chr, NULL, true);
qemu_chr_fe_set_echo(&qtest_chr, true);
inbuf = g_string_new("");
}
bool qtest_driver(void)
{
return qtest_chr.chr != NULL;
}
static void qtest_accel_class_init(ObjectClass *oc, void *data)
{
AccelClass *ac = ACCEL_CLASS(oc);
ac->name = "QTest";
ac->available = qtest_available;
ac->init_machine = qtest_init_accel;
ac->allowed = &qtest_allowed;
}
#define TYPE_QTEST_ACCEL ACCEL_CLASS_NAME("qtest")
static const TypeInfo qtest_accel_type = {
.name = TYPE_QTEST_ACCEL,
.parent = TYPE_ACCEL,
.class_init = qtest_accel_class_init,
};
static void qtest_type_init(void)
{
type_register_static(&qtest_accel_type);
}
type_init(qtest_type_init);