/*
* Helpers for loads and stores
*
* Copyright (c) 2003-2005 Fabrice Bellard
*
* This library is free software; you can redistribute it and/or
* modify it under the terms of the GNU Lesser General Public
* License as published by the Free Software Foundation; either
* version 2 of the License, or (at your option) any later version.
*
* This library is distributed in the hope that it will be useful,
* but WITHOUT ANY WARRANTY; without even the implied warranty of
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
* Lesser General Public License for more details.
*
* You should have received a copy of the GNU Lesser General Public
* License along with this library; if not, see <http://www.gnu.org/licenses/>.
*/
#include "cpu.h"
#include "exec/helper-proto.h"
#include "exec/cpu_ldst.h"
//#define DEBUG_MMU
//#define DEBUG_MXCC
//#define DEBUG_UNALIGNED
//#define DEBUG_UNASSIGNED
//#define DEBUG_ASI
//#define DEBUG_CACHE_CONTROL
#ifdef DEBUG_MMU
#define DPRINTF_MMU(fmt, ...) \
do { printf("MMU: " fmt , ## __VA_ARGS__); } while (0)
#else
#define DPRINTF_MMU(fmt, ...) do {} while (0)
#endif
#ifdef DEBUG_MXCC
#define DPRINTF_MXCC(fmt, ...) \
do { printf("MXCC: " fmt , ## __VA_ARGS__); } while (0)
#else
#define DPRINTF_MXCC(fmt, ...) do {} while (0)
#endif
#ifdef DEBUG_ASI
#define DPRINTF_ASI(fmt, ...) \
do { printf("ASI: " fmt , ## __VA_ARGS__); } while (0)
#endif
#ifdef DEBUG_CACHE_CONTROL
#define DPRINTF_CACHE_CONTROL(fmt, ...) \
do { printf("CACHE_CONTROL: " fmt , ## __VA_ARGS__); } while (0)
#else
#define DPRINTF_CACHE_CONTROL(fmt, ...) do {} while (0)
#endif
#ifdef TARGET_SPARC64
#ifndef TARGET_ABI32
#define AM_CHECK(env1) ((env1)->pstate & PS_AM)
#else
#define AM_CHECK(env1) (1)
#endif
#endif
#define QT0 (env->qt0)
#define QT1 (env->qt1)
#if defined(TARGET_SPARC64) && !defined(CONFIG_USER_ONLY)
/* Calculates TSB pointer value for fault page size 8k or 64k */
static uint64_t ultrasparc_tsb_pointer(uint64_t tsb_register,
uint64_t tag_access_register,
int page_size)
{
uint64_t tsb_base = tsb_register & ~0x1fffULL;
int tsb_split = (tsb_register & 0x1000ULL) ? 1 : 0;
int tsb_size = tsb_register & 0xf;
/* discard lower 13 bits which hold tag access context */
uint64_t tag_access_va = tag_access_register & ~0x1fffULL;
/* now reorder bits */
uint64_t tsb_base_mask = ~0x1fffULL;
uint64_t va = tag_access_va;
/* move va bits to correct position */
if (page_size == 8*1024) {
va >>= 9;
} else if (page_size == 64*1024) {
va >>= 12;
}
if (tsb_size) {
tsb_base_mask <<= tsb_size;
}
/* calculate tsb_base mask and adjust va if split is in use */
if (tsb_split) {
if (page_size == 8*1024) {
va &= ~(1ULL << (13 + tsb_size));
} else if (page_size == 64*1024) {
va |= (1ULL << (13 + tsb_size));
}
tsb_base_mask <<= 1;
}
return ((tsb_base & tsb_base_mask) | (va & ~tsb_base_mask)) & ~0xfULL;
}
/* Calculates tag target register value by reordering bits
in tag access register */
static uint64_t ultrasparc_tag_target(uint64_t tag_access_register)
{
return ((tag_access_register & 0x1fff) << 48) | (tag_access_register >> 22);
}
static void replace_tlb_entry(SparcTLBEntry *tlb,
uint64_t tlb_tag, uint64_t tlb_tte,
CPUSPARCState *env1)
{
target_ulong mask, size, va, offset;
/* flush page range if translation is valid */
if (TTE_IS_VALID(tlb->tte)) {
CPUState *cs = CPU(sparc_env_get_cpu(env1));
mask = 0xffffffffffffe000ULL;
mask <<= 3 * ((tlb->tte >> 61) & 3);
size = ~mask + 1;
va = tlb->tag & mask;
for (offset = 0; offset < size; offset += TARGET_PAGE_SIZE) {
tlb_flush_page(cs, va + offset);
}
}
tlb->tag = tlb_tag;
tlb->tte = tlb_tte;
}
static void demap_tlb(SparcTLBEntry *tlb, target_ulong demap_addr,
const char *strmmu, CPUSPARCState *env1)
{
unsigned int i;
target_ulong mask;
uint64_t context;
int is_demap_context = (demap_addr >> 6) & 1;
/* demap context */
switch ((demap_addr >> 4) & 3) {
case 0: /* primary */
context = env1->dmmu.mmu_primary_context;
break;
case 1: /* secondary */
context = env1->dmmu.mmu_secondary_context;
break;
case 2: /* nucleus */
context = 0;
break;
case 3: /* reserved */
default:
return;
}
for (i = 0; i < 64; i++) {
if (TTE_IS_VALID(tlb[i].tte)) {
if (is_demap_context) {
/* will remove non-global entries matching context value */
if (TTE_IS_GLOBAL(tlb[i].tte) ||
!tlb_compare_context(&tlb[i], context)) {
continue;
}
} else {
/* demap page
will remove any entry matching VA */
mask = 0xffffffffffffe000ULL;
mask <<= 3 * ((tlb[i].tte >> 61) & 3);
if (!compare_masked(demap_addr, tlb[i].tag, mask)) {
continue;
}
/* entry should be global or matching context value */
if (!TTE_IS_GLOBAL(tlb[i].tte) &&
!tlb_compare_context(&tlb[i], context)) {
continue;
}
}
replace_tlb_entry(&tlb[i], 0, 0, env1);
#ifdef DEBUG_MMU
DPRINTF_MMU("%s demap invalidated entry [%02u]\n", strmmu, i);
dump_mmu(stdout, fprintf, env1);
#endif
}
}
}
static void replace_tlb_1bit_lru(SparcTLBEntry *tlb,
uint64_t tlb_tag, uint64_t tlb_tte,
const char *strmmu, CPUSPARCState *env1)
{
unsigned int i, replace_used;
/* Try replacing invalid entry */
for (i = 0; i < 64; i++) {
if (!TTE_IS_VALID(tlb[i].tte)) {
replace_tlb_entry(&tlb[i], tlb_tag, tlb_tte, env1);
#ifdef DEBUG_MMU
DPRINTF_MMU("%s lru replaced invalid entry [%i]\n", strmmu, i);
dump_mmu(stdout, fprintf, env1);
#endif
return;
}
}
/* All entries are valid, try replacing unlocked entry */
for (replace_used = 0; replace_used < 2; ++replace_used) {
/* Used entries are not replaced on first pass */
for (i = 0; i < 64; i++) {
if (!TTE_IS_LOCKED(tlb[i].tte) && !TTE_IS_USED(tlb[i].tte)) {
replace_tlb_entry(&tlb[i], tlb_tag, tlb_tte, env1);
#ifdef DEBUG_MMU
DPRINTF_MMU("%s lru replaced unlocked %s entry [%i]\n",
strmmu, (replace_used ? "used" : "unused"), i);
dump_mmu(stdout, fprintf, env1);
#endif
return;
}
}
/* Now reset used bit and search for unused entries again */
for (i = 0; i < 64; i++) {
TTE_SET_UNUSED(tlb[i].tte);
}
}
#ifdef DEBUG_MMU
DPRINTF_MMU("%s lru replacement failed: no entries available\n", strmmu);
#endif
/* error state? */
}
#endif
#if defined(TARGET_SPARC64) || defined(CONFIG_USER_ONLY)
static inline target_ulong address_mask(CPUSPARCState *env1, target_ulong addr)
{
#ifdef TARGET_SPARC64
if (AM_CHECK(env1)) {
addr &= 0xffffffffULL;
}
#endif
return addr;
}
#endif
#ifdef TARGET_SPARC64
/* returns true if access using this ASI is to have address translated by MMU
otherwise access is to raw physical address */
/* TODO: check sparc32 bits */
static inline int is_translating_asi(int asi)
{
/* Ultrasparc IIi translating asi
- note this list is defined by cpu implementation
*/
switch (asi) {
case 0x04 ... 0x11:
case 0x16 ... 0x19:
case 0x1E ... 0x1F:
case 0x24 ... 0x2C:
case 0x70 ... 0x73:
case 0x78 ... 0x79:
case 0x80 ... 0xFF:
return 1;
default:
return 0;
}
}
static inline target_ulong asi_address_mask(CPUSPARCState *env,
int asi, target_ulong addr)
{
if (is_translating_asi(asi)) {
return address_mask(env, addr);
} else {
return addr;
}
}
#endif
void helper_check_align(CPUSPARCState *env, target_ulong addr, uint32_t align)
{
if (addr & align) {
#ifdef DEBUG_UNALIGNED
printf("Unaligned access to 0x" TARGET_FMT_lx " from 0x" TARGET_FMT_lx
"\n", addr, env->pc);
#endif
helper_raise_exception(env, TT_UNALIGNED);
}
}
#if !defined(TARGET_SPARC64) && !defined(CONFIG_USER_ONLY) && \
defined(DEBUG_MXCC)
static void dump_mxcc(CPUSPARCState *env)
{
printf("mxccdata: %016" PRIx64 " %016" PRIx64 " %016" PRIx64 " %016" PRIx64
"\n",
env->mxccdata[0], env->mxccdata[1],
env->mxccdata[2], env->mxccdata[3]);
printf("mxccregs: %016" PRIx64 " %016" PRIx64 " %016" PRIx64 " %016" PRIx64
"\n"
" %016" PRIx64 " %016" PRIx64 " %016" PRIx64 " %016" PRIx64
"\n",
env->mxccregs[0], env->mxccregs[1],
env->mxccregs[2], env->mxccregs[3],
env->mxccregs[4], env->mxccregs[5],
env->mxccregs[6], env->mxccregs[7]);
}
#endif
#if (defined(TARGET_SPARC64) || !defined(CONFIG_USER_ONLY)) \
&& defined(DEBUG_ASI)
static void dump_asi(const char *txt, target_ulong addr, int asi, int size,
uint64_t r1)
{
switch (size) {
case 1:
DPRINTF_ASI("%s "TARGET_FMT_lx " asi 0x%02x = %02" PRIx64 "\n", txt,
addr, asi, r1 & 0xff);
break;
case 2:
DPRINTF_ASI("%s "TARGET_FMT_lx " asi 0x%02x = %04" PRIx64 "\n", txt,
addr, asi, r1 & 0xffff);
break;
case 4:
DPRINTF_ASI("%s "TARGET_FMT_lx " asi 0x%02x = %08" PRIx64 "\n", txt,
addr, asi, r1 & 0xffffffff);
break;
case 8:
DPRINTF_ASI("%s "TARGET_FMT_lx " asi 0x%02x = %016" PRIx64 "\n", txt,
addr, asi, r1);
break;
}
}
#endif
#ifndef TARGET_SPARC64
#ifndef CONFIG_USER_ONLY
/* Leon3 cache control */
static void leon3_cache_control_st(CPUSPARCState *env, target_ulong addr,
uint64_t val, int size)
{
DPRINTF_CACHE_CONTROL("st addr:%08x, val:%" PRIx64 ", size:%d\n",
addr, val, size);
if (size != 4) {
DPRINTF_CACHE_CONTROL("32bits only\n");
return;
}
switch (addr) {
case 0x00: /* Cache control */
/* These values must always be read as zeros */
val &= ~CACHE_CTRL_FD;
val &= ~CACHE_CTRL_FI;
val &= ~CACHE_CTRL_IB;
val &= ~CACHE_CTRL_IP;
val &= ~CACHE_CTRL_DP;
env->cache_control = val;
break;
case 0x04: /* Instruction cache configuration */
case 0x08: /* Data cache configuration */
/* Read Only */
break;
default:
DPRINTF_CACHE_CONTROL("write unknown register %08x\n", addr);
break;
};
}
static uint64_t leon3_cache_control_ld(CPUSPARCState *env, target_ulong addr,
int size)
{
uint64_t ret = 0;
if (size != 4) {
DPRINTF_CACHE_CONTROL("32bits only\n");
return 0;
}
switch (addr) {
case 0x00: /* Cache control */
ret = env->cache_control;
break;
/* Configuration registers are read and only always keep those
predefined values */
case 0x04: /* Instruction cache configuration */
ret = 0x10220000;
break;
case 0x08: /* Data cache configuration */
ret = 0x18220000;
break;
default:
DPRINTF_CACHE_CONTROL("read unknown register %08x\n", addr);
break;
};
DPRINTF_CACHE_CONTROL("ld addr:%08x, ret:0x%" PRIx64 ", size:%d\n",
addr, ret, size);
return ret;
}
uint64_t helper_ld_asi(CPUSPARCState *env, target_ulong addr, int asi, int size,
int sign)
{
CPUState *cs = CPU(sparc_env_get_cpu(env));
uint64_t ret = 0;
#if defined(DEBUG_MXCC) || defined(DEBUG_ASI)
uint32_t last_addr = addr;
#endif
helper_check_align(env, addr, size - 1);
switch (asi) {
case 2: /* SuperSparc MXCC registers and Leon3 cache control */
switch (addr) {
case 0x00: /* Leon3 Cache Control */
case 0x08: /* Leon3 Instruction Cache config */
case 0x0C: /* Leon3 Date Cache config */
if (env->def->features & CPU_FEATURE_CACHE_CTRL) {
ret = leon3_cache_control_ld(env, addr, size);
}
break;
case 0x01c00a00: /* MXCC control register */
if (size == 8) {
ret = env->mxccregs[3];
} else {
qemu_log_mask(LOG_UNIMP,
"%08x: unimplemented access size: %d\n", addr,
size);
}
break;
case 0x01c00a04: /* MXCC control register */
if (size == 4) {
ret = env->mxccregs[3];
} else {
qemu_log_mask(LOG_UNIMP,
"%08x: unimplemented access size: %d\n", addr,
size);
}
break;
case 0x01c00c00: /* Module reset register */
if (size == 8) {
ret = env->mxccregs[5];
/* should we do something here? */
} else {
qemu_log_mask(LOG_UNIMP,
"%08x: unimplemented access size: %d\n", addr,
size);
}
break;
case 0x01c00f00: /* MBus port address register */
if (size == 8) {
ret = env->mxccregs[7];
} else {
qemu_log_mask(LOG_UNIMP,
"%08x: unimplemented access size: %d\n", addr,
size);
}
break;
default:
qemu_log_mask(LOG_UNIMP,
"%08x: unimplemented address, size: %d\n", addr,
size);
break;
}
DPRINTF_MXCC("asi = %d, size = %d, sign = %d, "
"addr = %08x -> ret = %" PRIx64 ","
"addr = %08x\n", asi, size, sign, last_addr, ret, addr);
#ifdef DEBUG_MXCC
dump_mxcc(env);
#endif
break;
case 3: /* MMU probe */
case 0x18: /* LEON3 MMU probe */
{
int mmulev;
mmulev = (addr >> 8) & 15;
if (mmulev > 4) {
ret = 0;
} else {
ret = mmu_probe(env, addr, mmulev);
}
DPRINTF_MMU("mmu_probe: 0x%08x (lev %d) -> 0x%08" PRIx64 "\n",
addr, mmulev, ret);
}
break;
case 4: /* read MMU regs */
case 0x19: /* LEON3 read MMU regs */
{
int reg = (addr >> 8) & 0x1f;
ret = env->mmuregs[reg];
if (reg == 3) { /* Fault status cleared on read */
env->mmuregs[3] = 0;
} else if (reg == 0x13) { /* Fault status read */
ret = env->mmuregs[3];
} else if (reg == 0x14) { /* Fault address read */
ret = env->mmuregs[4];
}
DPRINTF_MMU("mmu_read: reg[%d] = 0x%08" PRIx64 "\n", reg, ret);
}
break;
case 5: /* Turbosparc ITLB Diagnostic */
case 6: /* Turbosparc DTLB Diagnostic */
case 7: /* Turbosparc IOTLB Diagnostic */
break;
case 9: /* Supervisor code access */
switch (size) {
case 1:
ret = cpu_ldub_code(env, addr);
break;
case 2:
ret = cpu_lduw_code(env, addr);
break;
default:
case 4:
ret = cpu_ldl_code(env, addr);
break;
case 8:
ret = cpu_ldq_code(env, addr);
break;
}
break;
case 0xa: /* User data access */
switch (size) {
case 1:
ret = cpu_ldub_user(env, addr);
break;
case 2:
ret = cpu_lduw_user(env, addr);
break;
default:
case 4:
ret = cpu_ldl_user(env, addr);
break;
case 8:
ret = cpu_ldq_user(env, addr);
break;
}
break;
case 0xb: /* Supervisor data access */
case 0x80:
switch (size) {
case 1:
ret = cpu_ldub_kernel(env, addr);
break;
case 2:
ret = cpu_lduw_kernel(env, addr);
break;
default:
case 4:
ret = cpu_ldl_kernel(env, addr);
break;
case 8:
ret = cpu_ldq_kernel(env, addr);
break;
}
break;
case 0xc: /* I-cache tag */
case 0xd: /* I-cache data */
case 0xe: /* D-cache tag */
case 0xf: /* D-cache data */
break;
case 0x20: /* MMU passthrough */
case 0x1c: /* LEON MMU passthrough */
switch (size) {
case 1:
ret = ldub_phys(cs->as, addr);
break;
case 2:
ret = lduw_phys(cs->as, addr);
break;
default:
case 4:
ret = ldl_phys(cs->as, addr);
break;
case 8:
ret = ldq_phys(cs->as, addr);
break;
}
break;
case 0x21 ... 0x2f: /* MMU passthrough, 0x100000000 to 0xfffffffff */
switch (size) {
case 1:
ret = ldub_phys(cs->as, (hwaddr)addr
| ((hwaddr)(asi & 0xf) << 32));
break;
case 2:
ret = lduw_phys(cs->as, (hwaddr)addr
| ((hwaddr)(asi & 0xf) << 32));
break;
default:
case 4:
ret = ldl_phys(cs->as, (hwaddr)addr
| ((hwaddr)(asi & 0xf) << 32));
break;
case 8:
ret = ldq_phys(cs->as, (hwaddr)addr
| ((hwaddr)(asi & 0xf) << 32));
break;
}
break;
case 0x30: /* Turbosparc secondary cache diagnostic */
case 0x31: /* Turbosparc RAM snoop */
case 0x32: /* Turbosparc page table descriptor diagnostic */
case 0x39: /* data cache diagnostic register */
ret = 0;
break;
case 0x38: /* SuperSPARC MMU Breakpoint Control Registers */
{
int reg = (addr >> 8) & 3;
switch (reg) {
case 0: /* Breakpoint Value (Addr) */
ret = env->mmubpregs[reg];
break;
case 1: /* Breakpoint Mask */
ret = env->mmubpregs[reg];
break;
case 2: /* Breakpoint Control */
ret = env->mmubpregs[reg];
break;
case 3: /* Breakpoint Status */
ret = env->mmubpregs[reg];
env->mmubpregs[reg] = 0ULL;
break;
}
DPRINTF_MMU("read breakpoint reg[%d] 0x%016" PRIx64 "\n", reg,
ret);
}
break;
case 0x49: /* SuperSPARC MMU Counter Breakpoint Value */
ret = env->mmubpctrv;
break;
case 0x4a: /* SuperSPARC MMU Counter Breakpoint Control */
ret = env->mmubpctrc;
break;
case 0x4b: /* SuperSPARC MMU Counter Breakpoint Status */
ret = env->mmubpctrs;
break;
case 0x4c: /* SuperSPARC MMU Breakpoint Action */
ret = env->mmubpaction;
break;
case 8: /* User code access, XXX */
default:
cpu_unassigned_access(cs, addr, false, false, asi, size);
ret = 0;
break;
}
if (sign) {
switch (size) {
case 1:
ret = (int8_t) ret;
break;
case 2:
ret = (int16_t) ret;
break;
case 4:
ret = (int32_t) ret;
break;
default:
break;
}
}
#ifdef DEBUG_ASI
dump_asi("read ", last_addr, asi, size, ret);
#endif
return ret;
}
void helper_st_asi(CPUSPARCState *env, target_ulong addr, uint64_t val, int asi,
int size)
{
SPARCCPU *cpu = sparc_env_get_cpu(env);
CPUState *cs = CPU(cpu);
helper_check_align(env, addr, size - 1);
switch (asi) {
case 2: /* SuperSparc MXCC registers and Leon3 cache control */
switch (addr) {
case 0x00: /* Leon3 Cache Control */
case 0x08: /* Leon3 Instruction Cache config */
case 0x0C: /* Leon3 Date Cache config */
if (env->def->features & CPU_FEATURE_CACHE_CTRL) {
leon3_cache_control_st(env, addr, val, size);
}
break;
case 0x01c00000: /* MXCC stream data register 0 */
if (size == 8) {
env->mxccdata[0] = val;
} else {
qemu_log_mask(LOG_UNIMP,
"%08x: unimplemented access size: %d\n", addr,
size);
}
break;
case 0x01c00008: /* MXCC stream data register 1 */
if (size == 8) {
env->mxccdata[1] = val;
} else {
qemu_log_mask(LOG_UNIMP,
"%08x: unimplemented access size: %d\n", addr,
size);
}
break;
case 0x01c00010: /* MXCC stream data register 2 */
if (size == 8) {
env->mxccdata[2] = val;
} else {
qemu_log_mask(LOG_UNIMP,
"%08x: unimplemented access size: %d\n", addr,
size);
}
break;
case 0x01c00018: /* MXCC stream data register 3 */
if (size == 8) {
env->mxccdata[3] = val;
} else {
qemu_log_mask(LOG_UNIMP,
"%08x: unimplemented access size: %d\n", addr,
size);
}
break;
case 0x01c00100: /* MXCC stream source */
if (size == 8) {
env->mxccregs[0] = val;
} else {
qemu_log_mask(LOG_UNIMP,
"%08x: unimplemented access size: %d\n", addr,
size);
}
env->mxccdata[0] = ldq_phys(cs->as,
(env->mxccregs[0] & 0xffffffffULL) +
0);
env->mxccdata[1] = ldq_phys(cs->as,
(env->mxccregs[0] & 0xffffffffULL) +
8);
env->mxccdata[2] = ldq_phys(cs->as,
(env->mxccregs[0] & 0xffffffffULL) +
16);
env->mxccdata[3] = ldq_phys(cs->as,
(env->mxccregs[0] & 0xffffffffULL) +
24);
break;
case 0x01c00200: /* MXCC stream destination */
if (size == 8) {
env->mxccregs[1] = val;
} else {
qemu_log_mask(LOG_UNIMP,
"%08x: unimplemented access size: %d\n", addr,
size);
}
stq_phys(cs->as, (env->mxccregs[1] & 0xffffffffULL) + 0,
env->mxccdata[0]);
stq_phys(cs->as, (env->mxccregs[1] & 0xffffffffULL) + 8,
env->mxccdata[1]);
stq_phys(cs->as, (env->mxccregs[1] & 0xffffffffULL) + 16,
env->mxccdata[2]);
stq_phys(cs->as, (env->mxccregs[1] & 0xffffffffULL) + 24,
env->mxccdata[3]);
break;
case 0x01c00a00: /* MXCC control register */
if (size == 8) {
env->mxccregs[3] = val;
} else {
qemu_log_mask(LOG_UNIMP,
"%08x: unimplemented access size: %d\n", addr,
size);
}
break;
case 0x01c00a04: /* MXCC control register */
if (size == 4) {
env->mxccregs[3] = (env->mxccregs[3] & 0xffffffff00000000ULL)
| val;
} else {
qemu_log_mask(LOG_UNIMP,
"%08x: unimplemented access size: %d\n", addr,
size);
}
break;
case 0x01c00e00: /* MXCC error register */
/* writing a 1 bit clears the error */
if (size == 8) {
env->mxccregs[6] &= ~val;
} else {
qemu_log_mask(LOG_UNIMP,
"%08x: unimplemented access size: %d\n", addr,
size);
}
break;
case 0x01c00f00: /* MBus port address register */
if (size == 8) {
env->mxccregs[7] = val;
} else {
qemu_log_mask(LOG_UNIMP,
"%08x: unimplemented access size: %d\n", addr,
size);
}
break;
default:
qemu_log_mask(LOG_UNIMP,
"%08x: unimplemented address, size: %d\n", addr,
size);
break;
}
DPRINTF_MXCC("asi = %d, size = %d, addr = %08x, val = %" PRIx64 "\n",
asi, size, addr, val);
#ifdef DEBUG_MXCC
dump_mxcc(env);
#endif
break;
case 3: /* MMU flush */
case 0x18: /* LEON3 MMU flush */
{
int mmulev;
mmulev = (addr >> 8) & 15;
DPRINTF_MMU("mmu flush level %d\n", mmulev);
switch (mmulev) {
case 0: /* flush page */
tlb_flush_page(CPU(cpu), addr & 0xfffff000);
break;
case 1: /* flush segment (256k) */
case 2: /* flush region (16M) */
case 3: /* flush context (4G) */
case 4: /* flush entire */
tlb_flush(CPU(cpu), 1);
break;
default:
break;
}
#ifdef DEBUG_MMU
dump_mmu(stdout, fprintf, env);
#endif
}
break;
case 4: /* write MMU regs */
case 0x19: /* LEON3 write MMU regs */
{
int reg = (addr >> 8) & 0x1f;
uint32_t oldreg;
oldreg = env->mmuregs[reg];
switch (reg) {
case 0: /* Control Register */
env->mmuregs[reg] = (env->mmuregs[reg] & 0xff000000) |
(val & 0x00ffffff);
/* Mappings generated during no-fault mode or MMU
disabled mode are invalid in normal mode */
if ((oldreg & (MMU_E | MMU_NF | env->def->mmu_bm)) !=
(env->mmuregs[reg] & (MMU_E | MMU_NF | env->def->mmu_bm))) {
tlb_flush(CPU(cpu), 1);
}
break;
case 1: /* Context Table Pointer Register */
env->mmuregs[reg] = val & env->def->mmu_ctpr_mask;
break;
case 2: /* Context Register */
env->mmuregs[reg] = val & env->def->mmu_cxr_mask;
if (oldreg != env->mmuregs[reg]) {
/* we flush when the MMU context changes because
QEMU has no MMU context support */
tlb_flush(CPU(cpu), 1);
}
break;
case 3: /* Synchronous Fault Status Register with Clear */
case 4: /* Synchronous Fault Address Register */
break;
case 0x10: /* TLB Replacement Control Register */
env->mmuregs[reg] = val & env->def->mmu_trcr_mask;
break;
case 0x13: /* Synchronous Fault Status Register with Read
and Clear */
env->mmuregs[3] = val & env->def->mmu_sfsr_mask;
break;
case 0x14: /* Synchronous Fault Address Register */
env->mmuregs[4] = val;
break;
default:
env->mmuregs[reg] = val;
break;
}
if (oldreg != env->mmuregs[reg]) {
DPRINTF_MMU("mmu change reg[%d]: 0x%08x -> 0x%08x\n",
reg, oldreg, env->mmuregs[reg]);
}
#ifdef DEBUG_MMU
dump_mmu(stdout, fprintf, env);
#endif
}
break;
case 5: /* Turbosparc ITLB Diagnostic */
case 6: /* Turbosparc DTLB Diagnostic */
case 7: /* Turbosparc IOTLB Diagnostic */
break;
case 0xa: /* User data access */
switch (size) {
case 1:
cpu_stb_user(env, addr, val);
break;
case 2:
cpu_stw_user(env, addr, val);
break;
default:
case 4:
cpu_stl_user(env, addr, val);
break;
case 8:
cpu_stq_user(env, addr, val);
break;
}
break;
case 0xb: /* Supervisor data access */
case 0x80:
switch (size) {
case 1:
cpu_stb_kernel(env, addr, val);
break;
case 2:
cpu_stw_kernel(env, addr, val);
break;
default:
case 4:
cpu_stl_kernel(env, addr, val);
break;
case 8:
cpu_stq_kernel(env, addr, val);
break;
}
break;
case 0xc: /* I-cache tag */
case 0xd: /* I-cache data */
case 0xe: /* D-cache tag */
case 0xf: /* D-cache data */
case 0x10: /* I/D-cache flush page */
case 0x11: /* I/D-cache flush segment */
case 0x12: /* I/D-cache flush region */
case 0x13: /* I/D-cache flush context */
case 0x14: /* I/D-cache flush user */
break;
case 0x17: /* Block copy, sta access */
{
/* val = src
addr = dst
copy 32 bytes */
unsigned int i;
uint32_t src = val & ~3, dst = addr & ~3, temp;
for (i = 0; i < 32; i += 4, src += 4, dst += 4) {
temp = cpu_ldl_kernel(env, src);
cpu_stl_kernel(env, dst, temp);
}
}
break;
case 0x1f: /* Block fill, stda access */
{
/* addr = dst
fill 32 bytes with val */
unsigned int i;
uint32_t dst = addr & 7;
for (i = 0; i < 32; i += 8, dst += 8) {
cpu_stq_kernel(env, dst, val);
}
}
break;
case 0x20: /* MMU passthrough */
case 0x1c: /* LEON MMU passthrough */
{
switch (size) {
case 1:
stb_phys(cs->as, addr, val);
break;
case 2:
stw_phys(cs->as, addr, val);
break;
case 4:
default:
stl_phys(cs->as, addr, val);
break;
case 8:
stq_phys(cs->as, addr, val);
break;
}
}
break;
case 0x21 ... 0x2f: /* MMU passthrough, 0x100000000 to 0xfffffffff */
{
switch (size) {
case 1:
stb_phys(cs->as, (hwaddr)addr
| ((hwaddr)(asi & 0xf) << 32), val);
break;
case 2:
stw_phys(cs->as, (hwaddr)addr
| ((hwaddr)(asi & 0xf) << 32), val);
break;
case 4:
default:
stl_phys(cs->as, (hwaddr)addr
| ((hwaddr)(asi & 0xf) << 32), val);
break;
case 8:
stq_phys(cs->as, (hwaddr)addr
| ((hwaddr)(asi & 0xf) << 32), val);
break;
}
}
break;
case 0x30: /* store buffer tags or Turbosparc secondary cache diagnostic */
case 0x31: /* store buffer data, Ross RT620 I-cache flush or
Turbosparc snoop RAM */
case 0x32: /* store buffer control or Turbosparc page table
descriptor diagnostic */
case 0x36: /* I-cache flash clear */
case 0x37: /* D-cache flash clear */
break;
case 0x38: /* SuperSPARC MMU Breakpoint Control Registers*/
{
int reg = (addr >> 8) & 3;
switch (reg) {
case 0: /* Breakpoint Value (Addr) */
env->mmubpregs[reg] = (val & 0xfffffffffULL);
break;
case 1: /* Breakpoint Mask */
env->mmubpregs[reg] = (val & 0xfffffffffULL);
break;
case 2: /* Breakpoint Control */
env->mmubpregs[reg] = (val & 0x7fULL);
break;
case 3: /* Breakpoint Status */
env->mmubpregs[reg] = (val & 0xfULL);
break;
}
DPRINTF_MMU("write breakpoint reg[%d] 0x%016x\n", reg,
env->mmuregs[reg]);
}
break;
case 0x49: /* SuperSPARC MMU Counter Breakpoint Value */
env->mmubpctrv = val & 0xffffffff;
break;
case 0x4a: /* SuperSPARC MMU Counter Breakpoint Control */
env->mmubpctrc = val & 0x3;
break;
case 0x4b: /* SuperSPARC MMU Counter Breakpoint Status */
env->mmubpctrs = val & 0x3;
break;
case 0x4c: /* SuperSPARC MMU Breakpoint Action */
env->mmubpaction = val & 0x1fff;
break;
case 8: /* User code access, XXX */
case 9: /* Supervisor code access, XXX */
default:
cpu_unassigned_access(CPU(sparc_env_get_cpu(env)),
addr, true, false, asi, size);
break;
}
#ifdef DEBUG_ASI
dump_asi("write", addr, asi, size, val);
#endif
}
#endif /* CONFIG_USER_ONLY */
#else /* TARGET_SPARC64 */
#ifdef CONFIG_USER_ONLY
uint64_t helper_ld_asi(CPUSPARCState *env, target_ulong addr, int asi, int size,
int sign)
{
uint64_t ret = 0;
#if defined(DEBUG_ASI)
target_ulong last_addr = addr;
#endif
if (asi < 0x80) {
helper_raise_exception(env, TT_PRIV_ACT);
}
helper_check_align(env, addr, size - 1);
addr = asi_address_mask(env, asi, addr);
switch (asi) {
case 0x82: /* Primary no-fault */
case 0x8a: /* Primary no-fault LE */
if (page_check_range(addr, size, PAGE_READ) == -1) {
#ifdef DEBUG_ASI
dump_asi("read ", last_addr, asi, size, ret);
#endif
return 0;
}
/* Fall through */
case 0x80: /* Primary */
case 0x88: /* Primary LE */
{
switch (size) {
case 1:
ret = cpu_ldub_data(env, addr);
break;
case 2:
ret = cpu_lduw_data(env, addr);
break;
case 4:
ret = cpu_ldl_data(env, addr);
break;
default:
case 8:
ret = cpu_ldq_data(env, addr);
break;
}
}
break;
case 0x83: /* Secondary no-fault */
case 0x8b: /* Secondary no-fault LE */
if (page_check_range(addr, size, PAGE_READ) == -1) {
#ifdef DEBUG_ASI
dump_asi("read ", last_addr, asi, size, ret);
#endif
return 0;
}
/* Fall through */
case 0x81: /* Secondary */
case 0x89: /* Secondary LE */
/* XXX */
break;
default:
break;
}
/* Convert from little endian */
switch (asi) {
case 0x88: /* Primary LE */
case 0x89: /* Secondary LE */
case 0x8a: /* Primary no-fault LE */
case 0x8b: /* Secondary no-fault LE */
switch (size) {
case 2:
ret = bswap16(ret);
break;
case 4:
ret = bswap32(ret);
break;
case 8:
ret = bswap64(ret);
break;
default:
break;
}
default:
break;
}
/* Convert to signed number */
if (sign) {
switch (size) {
case 1:
ret = (int8_t) ret;
break;
case 2:
ret = (int16_t) ret;
break;
case 4:
ret = (int32_t) ret;
break;
default:
break;
}
}
#ifdef DEBUG_ASI
dump_asi("read ", last_addr, asi, size, ret);
#endif
return ret;
}
void helper_st_asi(CPUSPARCState *env, target_ulong addr, target_ulong val,
int asi, int size)
{
#ifdef DEBUG_ASI
dump_asi("write", addr, asi, size, val);
#endif
if (asi < 0x80) {
helper_raise_exception(env, TT_PRIV_ACT);
}
helper_check_align(env, addr, size - 1);
addr = asi_address_mask(env, asi, addr);
/* Convert to little endian */
switch (asi) {
case 0x88: /* Primary LE */
case 0x89: /* Secondary LE */
switch (size) {
case 2:
val = bswap16(val);
break;
case 4:
val = bswap32(val);
break;
case 8:
val = bswap64(val);
break;
default:
break;
}
default:
break;
}
switch (asi) {
case 0x80: /* Primary */
case 0x88: /* Primary LE */
{
switch (size) {
case 1:
cpu_stb_data(env, addr, val);
break;
case 2:
cpu_stw_data(env, addr, val);
break;
case 4:
cpu_stl_data(env, addr, val);
break;
case 8:
default:
cpu_stq_data(env, addr, val);
break;
}
}
break;
case 0x81: /* Secondary */
case 0x89: /* Secondary LE */
/* XXX */
return;
case 0x82: /* Primary no-fault, RO */
case 0x83: /* Secondary no-fault, RO */
case 0x8a: /* Primary no-fault LE, RO */
case 0x8b: /* Secondary no-fault LE, RO */
default:
helper_raise_exception(env, TT_DATA_ACCESS);
return;
}
}
#else /* CONFIG_USER_ONLY */
uint64_t helper_ld_asi(CPUSPARCState *env, target_ulong addr, int asi, int size,
int sign)
{
CPUState *cs = CPU(sparc_env_get_cpu(env));
uint64_t ret = 0;
#if defined(DEBUG_ASI)
target_ulong last_addr = addr;
#endif
asi &= 0xff;
if ((asi < 0x80 && (env->pstate & PS_PRIV) == 0)
|| (cpu_has_hypervisor(env)
&& asi >= 0x30 && asi < 0x80
&& !(env->hpstate & HS_PRIV))) {
helper_raise_exception(env, TT_PRIV_ACT);
}
helper_check_align(env, addr, size - 1);
addr = asi_address_mask(env, asi, addr);
/* process nonfaulting loads first */
if ((asi & 0xf6) == 0x82) {
int mmu_idx;
/* secondary space access has lowest asi bit equal to 1 */
if (env->pstate & PS_PRIV) {
mmu_idx = (asi & 1) ? MMU_KERNEL_SECONDARY_IDX : MMU_KERNEL_IDX;
} else {
mmu_idx = (asi & 1) ? MMU_USER_SECONDARY_IDX : MMU_USER_IDX;
}
if (cpu_get_phys_page_nofault(env, addr, mmu_idx) == -1ULL) {
#ifdef DEBUG_ASI
dump_asi("read ", last_addr, asi, size, ret);
#endif
/* env->exception_index is set in get_physical_address_data(). */
helper_raise_exception(env, cs->exception_index);
}
/* convert nonfaulting load ASIs to normal load ASIs */
asi &= ~0x02;
}
switch (asi) {
case 0x10: /* As if user primary */
case 0x11: /* As if user secondary */
case 0x18: /* As if user primary LE */
case 0x19: /* As if user secondary LE */
case 0x80: /* Primary */
case 0x81: /* Secondary */
case 0x88: /* Primary LE */
case 0x89: /* Secondary LE */
case 0xe2: /* UA2007 Primary block init */
case 0xe3: /* UA2007 Secondary block init */
if ((asi & 0x80) && (env->pstate & PS_PRIV)) {
if (cpu_hypervisor_mode(env)) {
switch (size) {
case 1:
ret = cpu_ldub_hypv(env, addr);
break;
case 2:
ret = cpu_lduw_hypv(env, addr);
break;
case 4:
ret = cpu_ldl_hypv(env, addr);
break;
default:
case 8:
ret = cpu_ldq_hypv(env, addr);
break;
}
} else {
/* secondary space access has lowest asi bit equal to 1 */
if (asi & 1) {
switch (size) {
case 1:
ret = cpu_ldub_kernel_secondary(env, addr);
break;
case 2:
ret = cpu_lduw_kernel_secondary(env, addr);
break;
case 4:
ret = cpu_ldl_kernel_secondary(env, addr);
break;
default:
case 8:
ret = cpu_ldq_kernel_secondary(env, addr);
break;
}
} else {
switch (size) {
case 1:
ret = cpu_ldub_kernel(env, addr);
break;
case 2:
ret = cpu_lduw_kernel(env, addr);
break;
case 4:
ret = cpu_ldl_kernel(env, addr);
break;
default:
case 8:
ret = cpu_ldq_kernel(env, addr);
break;
}
}
}
} else {
/* secondary space access has lowest asi bit equal to 1 */
if (asi & 1) {
switch (size) {
case 1:
ret = cpu_ldub_user_secondary(env, addr);
break;
case 2:
ret = cpu_lduw_user_secondary(env, addr);
break;
case 4:
ret = cpu_ldl_user_secondary(env, addr);
break;
default:
case 8:
ret = cpu_ldq_user_secondary(env, addr);
break;
}
} else {
switch (size) {
case 1:
ret = cpu_ldub_user(env, addr);
break;
case 2:
ret = cpu_lduw_user(env, addr);
break;
case 4:
ret = cpu_ldl_user(env, addr);
break;
default:
case 8:
ret = cpu_ldq_user(env, addr);
break;
}
}
}
break;
case 0x14: /* Bypass */
case 0x15: /* Bypass, non-cacheable */
case 0x1c: /* Bypass LE */
case 0x1d: /* Bypass, non-cacheable LE */
{
switch (size) {
case 1:
ret = ldub_phys(cs->as, addr);
break;
case 2:
ret = lduw_phys(cs->as, addr);
break;
case 4:
ret = ldl_phys(cs->as, addr);
break;
default:
case 8:
ret = ldq_phys(cs->as, addr);
break;
}
break;
}
case 0x24: /* Nucleus quad LDD 128 bit atomic */
case 0x2c: /* Nucleus quad LDD 128 bit atomic LE
Only ldda allowed */
helper_raise_exception(env, TT_ILL_INSN);
return 0;
case 0x04: /* Nucleus */
case 0x0c: /* Nucleus Little Endian (LE) */
{
switch (size) {
case 1:
ret = cpu_ldub_nucleus(env, addr);
break;
case 2:
ret = cpu_lduw_nucleus(env, addr);
break;
case 4:
ret = cpu_ldl_nucleus(env, addr);
break;
default:
case 8:
ret = cpu_ldq_nucleus(env, addr);
break;
}
break;
}
case 0x4a: /* UPA config */
/* XXX */
break;
case 0x45: /* LSU */
ret = env->lsu;
break;
case 0x50: /* I-MMU regs */
{
int reg = (addr >> 3) & 0xf;
if (reg == 0) {
/* I-TSB Tag Target register */
ret = ultrasparc_tag_target(env->immu.tag_access);
} else {
ret = env->immuregs[reg];
}
break;
}
case 0x51: /* I-MMU 8k TSB pointer */
{
/* env->immuregs[5] holds I-MMU TSB register value
env->immuregs[6] holds I-MMU Tag Access register value */
ret = ultrasparc_tsb_pointer(env->immu.tsb, env->immu.tag_access,
8*1024);
break;
}
case 0x52: /* I-MMU 64k TSB pointer */
{
/* env->immuregs[5] holds I-MMU TSB register value
env->immuregs[6] holds I-MMU Tag Access register value */
ret = ultrasparc_tsb_pointer(env->immu.tsb, env->immu.tag_access,
64*1024);
break;
}
case 0x55: /* I-MMU data access */
{
int reg = (addr >> 3) & 0x3f;
ret = env->itlb[reg].tte;
break;
}
case 0x56: /* I-MMU tag read */
{
int reg = (addr >> 3) & 0x3f;
ret = env->itlb[reg].tag;
break;
}
case 0x58: /* D-MMU regs */
{
int reg = (addr >> 3) & 0xf;
if (reg == 0) {
/* D-TSB Tag Target register */
ret = ultrasparc_tag_target(env->dmmu.tag_access);
} else {
ret = env->dmmuregs[reg];
}
break;
}
case 0x59: /* D-MMU 8k TSB pointer */
{
/* env->dmmuregs[5] holds D-MMU TSB register value
env->dmmuregs[6] holds D-MMU Tag Access register value */
ret = ultrasparc_tsb_pointer(env->dmmu.tsb, env->dmmu.tag_access,
8*1024);
break;
}
case 0x5a: /* D-MMU 64k TSB pointer */
{
/* env->dmmuregs[5] holds D-MMU TSB register value
env->dmmuregs[6] holds D-MMU Tag Access register value */
ret = ultrasparc_tsb_pointer(env->dmmu.tsb, env->dmmu.tag_access,
64*1024);
break;
}
case 0x5d: /* D-MMU data access */
{
int reg = (addr >> 3) & 0x3f;
ret = env->dtlb[reg].tte;
break;
}
case 0x5e: /* D-MMU tag read */
{
int reg = (addr >> 3) & 0x3f;
ret = env->dtlb[reg].tag;
break;
}
case 0x48: /* Interrupt dispatch, RO */
break;
case 0x49: /* Interrupt data receive */
ret = env->ivec_status;
break;
case 0x7f: /* Incoming interrupt vector, RO */
{
int reg = (addr >> 4) & 0x3;
if (reg < 3) {
ret = env->ivec_data[reg];
}
break;
}
case 0x46: /* D-cache data */
case 0x47: /* D-cache tag access */
case 0x4b: /* E-cache error enable */
case 0x4c: /* E-cache asynchronous fault status */
case 0x4d: /* E-cache asynchronous fault address */
case 0x4e: /* E-cache tag data */
case 0x66: /* I-cache instruction access */
case 0x67: /* I-cache tag access */
case 0x6e: /* I-cache predecode */
case 0x6f: /* I-cache LRU etc. */
case 0x76: /* E-cache tag */
case 0x7e: /* E-cache tag */
break;
case 0x5b: /* D-MMU data pointer */
case 0x54: /* I-MMU data in, WO */
case 0x57: /* I-MMU demap, WO */
case 0x5c: /* D-MMU data in, WO */
case 0x5f: /* D-MMU demap, WO */
case 0x77: /* Interrupt vector, WO */
default:
cpu_unassigned_access(cs, addr, false, false, 1, size);
ret = 0;
break;
}
/* Convert from little endian */
switch (asi) {
case 0x0c: /* Nucleus Little Endian (LE) */
case 0x18: /* As if user primary LE */
case 0x19: /* As if user secondary LE */
case 0x1c: /* Bypass LE */
case 0x1d: /* Bypass, non-cacheable LE */
case 0x88: /* Primary LE */
case 0x89: /* Secondary LE */
switch(size) {
case 2:
ret = bswap16(ret);
break;
case 4:
ret = bswap32(ret);
break;
case 8:
ret = bswap64(ret);
break;
default:
break;
}
default:
break;
}
/* Convert to signed number */
if (sign) {
switch (size) {
case 1:
ret = (int8_t) ret;
break;
case 2:
ret = (int16_t) ret;
break;
case 4:
ret = (int32_t) ret;
break;
default:
break;
}
}
#ifdef DEBUG_ASI
dump_asi("read ", last_addr, asi, size, ret);
#endif
return ret;
}
void helper_st_asi(CPUSPARCState *env, target_ulong addr, target_ulong val,
int asi, int size)
{
SPARCCPU *cpu = sparc_env_get_cpu(env);
CPUState *cs = CPU(cpu);
#ifdef DEBUG_ASI
dump_asi("write", addr, asi, size, val);
#endif
asi &= 0xff;
if ((asi < 0x80 && (env->pstate & PS_PRIV) == 0)
|| (cpu_has_hypervisor(env)
&& asi >= 0x30 && asi < 0x80
&& !(env->hpstate & HS_PRIV))) {
helper_raise_exception(env, TT_PRIV_ACT);
}
helper_check_align(env, addr, size - 1);
addr = asi_address_mask(env, asi, addr);
/* Convert to little endian */
switch (asi) {
case 0x0c: /* Nucleus Little Endian (LE) */
case 0x18: /* As if user primary LE */
case 0x19: /* As if user secondary LE */
case 0x1c: /* Bypass LE */
case 0x1d: /* Bypass, non-cacheable LE */
case 0x88: /* Primary LE */
case 0x89: /* Secondary LE */
switch (size) {
case 2:
val = bswap16(val);
break;
case 4:
val = bswap32(val);
break;
case 8:
val = bswap64(val);
break;
default:
break;
}
default:
break;
}
switch (asi) {
case 0x10: /* As if user primary */
case 0x11: /* As if user secondary */
case 0x18: /* As if user primary LE */
case 0x19: /* As if user secondary LE */
case 0x80: /* Primary */
case 0x81: /* Secondary */
case 0x88: /* Primary LE */
case 0x89: /* Secondary LE */
case 0xe2: /* UA2007 Primary block init */
case 0xe3: /* UA2007 Secondary block init */
if ((asi & 0x80) && (env->pstate & PS_PRIV)) {
if (cpu_hypervisor_mode(env)) {
switch (size) {
case 1:
cpu_stb_hypv(env, addr, val);
break;
case 2:
cpu_stw_hypv(env, addr, val);
break;
case 4:
cpu_stl_hypv(env, addr, val);
break;
case 8:
default:
cpu_stq_hypv(env, addr, val);
break;
}
} else {
/* secondary space access has lowest asi bit equal to 1 */
if (asi & 1) {
switch (size) {
case 1:
cpu_stb_kernel_secondary(env, addr, val);
break;
case 2:
cpu_stw_kernel_secondary(env, addr, val);
break;
case 4:
cpu_stl_kernel_secondary(env, addr, val);
break;
case 8:
default:
cpu_stq_kernel_secondary(env, addr, val);
break;
}
} else {
switch (size) {
case 1:
cpu_stb_kernel(env, addr, val);
break;
case 2:
cpu_stw_kernel(env, addr, val);
break;
case 4:
cpu_stl_kernel(env, addr, val);
break;
case 8:
default:
cpu_stq_kernel(env, addr, val);
break;
}
}
}
} else {
/* secondary space access has lowest asi bit equal to 1 */
if (asi & 1) {
switch (size) {
case 1:
cpu_stb_user_secondary(env, addr, val);
break;
case 2:
cpu_stw_user_secondary(env, addr, val);
break;
case 4:
cpu_stl_user_secondary(env, addr, val);
break;
case 8:
default:
cpu_stq_user_secondary(env, addr, val);
break;
}
} else {
switch (size) {
case 1:
cpu_stb_user(env, addr, val);
break;
case 2:
cpu_stw_user(env, addr, val);
break;
case 4:
cpu_stl_user(env, addr, val);
break;
case 8:
default:
cpu_stq_user(env, addr, val);
break;
}
}
}
break;
case 0x14: /* Bypass */
case 0x15: /* Bypass, non-cacheable */
case 0x1c: /* Bypass LE */
case 0x1d: /* Bypass, non-cacheable LE */
{
switch (size) {
case 1:
stb_phys(cs->as, addr, val);
break;
case 2:
stw_phys(cs->as, addr, val);
break;
case 4:
stl_phys(cs->as, addr, val);
break;
case 8:
default:
stq_phys(cs->as, addr, val);
break;
}
}
return;
case 0x24: /* Nucleus quad LDD 128 bit atomic */
case 0x2c: /* Nucleus quad LDD 128 bit atomic LE
Only ldda allowed */
helper_raise_exception(env, TT_ILL_INSN);
return;
case 0x04: /* Nucleus */
case 0x0c: /* Nucleus Little Endian (LE) */
{
switch (size) {
case 1:
cpu_stb_nucleus(env, addr, val);
break;
case 2:
cpu_stw_nucleus(env, addr, val);
break;
case 4:
cpu_stl_nucleus(env, addr, val);
break;
default:
case 8:
cpu_stq_nucleus(env, addr, val);
break;
}
break;
}
case 0x4a: /* UPA config */
/* XXX */
return;
case 0x45: /* LSU */
{
uint64_t oldreg;
oldreg = env->lsu;
env->lsu = val & (DMMU_E | IMMU_E);
/* Mappings generated during D/I MMU disabled mode are
invalid in normal mode */
if (oldreg != env->lsu) {
DPRINTF_MMU("LSU change: 0x%" PRIx64 " -> 0x%" PRIx64 "\n",
oldreg, env->lsu);
#ifdef DEBUG_MMU
dump_mmu(stdout, fprintf, env);
#endif
tlb_flush(CPU(cpu), 1);
}
return;
}
case 0x50: /* I-MMU regs */
{
int reg = (addr >> 3) & 0xf;
uint64_t oldreg;
oldreg = env->immuregs[reg];
switch (reg) {
case 0: /* RO */
return;
case 1: /* Not in I-MMU */
case 2:
return;
case 3: /* SFSR */
if ((val & 1) == 0) {
val = 0; /* Clear SFSR */
}
env->immu.sfsr = val;
break;
case 4: /* RO */
return;
case 5: /* TSB access */
DPRINTF_MMU("immu TSB write: 0x%016" PRIx64 " -> 0x%016"
PRIx64 "\n", env->immu.tsb, val);
env->immu.tsb = val;
break;
case 6: /* Tag access */
env->immu.tag_access = val;
break;
case 7:
case 8:
return;
default:
break;
}
if (oldreg != env->immuregs[reg]) {
DPRINTF_MMU("immu change reg[%d]: 0x%016" PRIx64 " -> 0x%016"
PRIx64 "\n", reg, oldreg, env->immuregs[reg]);
}
#ifdef DEBUG_MMU
dump_mmu(stdout, fprintf, env);
#endif
return;
}
case 0x54: /* I-MMU data in */
replace_tlb_1bit_lru(env->itlb, env->immu.tag_access, val, "immu", env);
return;
case 0x55: /* I-MMU data access */
{
/* TODO: auto demap */
unsigned int i = (addr >> 3) & 0x3f;
replace_tlb_entry(&env->itlb[i], env->immu.tag_access, val, env);
#ifdef DEBUG_MMU
DPRINTF_MMU("immu data access replaced entry [%i]\n", i);
dump_mmu(stdout, fprintf, env);
#endif
return;
}
case 0x57: /* I-MMU demap */
demap_tlb(env->itlb, addr, "immu", env);
return;
case 0x58: /* D-MMU regs */
{
int reg = (addr >> 3) & 0xf;
uint64_t oldreg;
oldreg = env->dmmuregs[reg];
switch (reg) {
case 0: /* RO */
case 4:
return;
case 3: /* SFSR */
if ((val & 1) == 0) {
val = 0; /* Clear SFSR, Fault address */
env->dmmu.sfar = 0;
}
env->dmmu.sfsr = val;
break;
case 1: /* Primary context */
env->dmmu.mmu_primary_context = val;
/* can be optimized to only flush MMU_USER_IDX
and MMU_KERNEL_IDX entries */
tlb_flush(CPU(cpu), 1);
break;
case 2: /* Secondary context */
env->dmmu.mmu_secondary_context = val;
/* can be optimized to only flush MMU_USER_SECONDARY_IDX
and MMU_KERNEL_SECONDARY_IDX entries */
tlb_flush(CPU(cpu), 1);
break;
case 5: /* TSB access */
DPRINTF_MMU("dmmu TSB write: 0x%016" PRIx64 " -> 0x%016"
PRIx64 "\n", env->dmmu.tsb, val);
env->dmmu.tsb = val;
break;
case 6: /* Tag access */
env->dmmu.tag_access = val;
break;
case 7: /* Virtual Watchpoint */
case 8: /* Physical Watchpoint */
default:
env->dmmuregs[reg] = val;
break;
}
if (oldreg != env->dmmuregs[reg]) {
DPRINTF_MMU("dmmu change reg[%d]: 0x%016" PRIx64 " -> 0x%016"
PRIx64 "\n", reg, oldreg, env->dmmuregs[reg]);
}
#ifdef DEBUG_MMU
dump_mmu(stdout, fprintf, env);
#endif
return;
}
case 0x5c: /* D-MMU data in */
replace_tlb_1bit_lru(env->dtlb, env->dmmu.tag_access, val, "dmmu", env);
return;
case 0x5d: /* D-MMU data access */
{
unsigned int i = (addr >> 3) & 0x3f;
replace_tlb_entry(&env->dtlb[i], env->dmmu.tag_access, val, env);
#ifdef DEBUG_MMU
DPRINTF_MMU("dmmu data access replaced entry [%i]\n", i);
dump_mmu(stdout, fprintf, env);
#endif
return;
}
case 0x5f: /* D-MMU demap */
demap_tlb(env->dtlb, addr, "dmmu", env);
return;
case 0x49: /* Interrupt data receive */
env->ivec_status = val & 0x20;
return;
case 0x46: /* D-cache data */
case 0x47: /* D-cache tag access */
case 0x4b: /* E-cache error enable */
case 0x4c: /* E-cache asynchronous fault status */
case 0x4d: /* E-cache asynchronous fault address */
case 0x4e: /* E-cache tag data */
case 0x66: /* I-cache instruction access */
case 0x67: /* I-cache tag access */
case 0x6e: /* I-cache predecode */
case 0x6f: /* I-cache LRU etc. */
case 0x76: /* E-cache tag */
case 0x7e: /* E-cache tag */
return;
case 0x51: /* I-MMU 8k TSB pointer, RO */
case 0x52: /* I-MMU 64k TSB pointer, RO */
case 0x56: /* I-MMU tag read, RO */
case 0x59: /* D-MMU 8k TSB pointer, RO */
case 0x5a: /* D-MMU 64k TSB pointer, RO */
case 0x5b: /* D-MMU data pointer, RO */
case 0x5e: /* D-MMU tag read, RO */
case 0x48: /* Interrupt dispatch, RO */
case 0x7f: /* Incoming interrupt vector, RO */
case 0x82: /* Primary no-fault, RO */
case 0x83: /* Secondary no-fault, RO */
case 0x8a: /* Primary no-fault LE, RO */
case 0x8b: /* Secondary no-fault LE, RO */
default:
cpu_unassigned_access(cs, addr, true, false, 1, size);
return;
}
}
#endif /* CONFIG_USER_ONLY */
void helper_ldda_asi(CPUSPARCState *env, target_ulong addr, int asi, int rd)
{
if ((asi < 0x80 && (env->pstate & PS_PRIV) == 0)
|| (cpu_has_hypervisor(env)
&& asi >= 0x30 && asi < 0x80
&& !(env->hpstate & HS_PRIV))) {
helper_raise_exception(env, TT_PRIV_ACT);
}
addr = asi_address_mask(env, asi, addr);
switch (asi) {
#if !defined(CONFIG_USER_ONLY)
case 0x24: /* Nucleus quad LDD 128 bit atomic */
case 0x2c: /* Nucleus quad LDD 128 bit atomic LE */
helper_check_align(env, addr, 0xf);
if (rd == 0) {
env->gregs[1] = cpu_ldq_nucleus(env, addr + 8);
if (asi == 0x2c) {
bswap64s(&env->gregs[1]);
}
} else if (rd < 8) {
env->gregs[rd] = cpu_ldq_nucleus(env, addr);
env->gregs[rd + 1] = cpu_ldq_nucleus(env, addr + 8);
if (asi == 0x2c) {
bswap64s(&env->gregs[rd]);
bswap64s(&env->gregs[rd + 1]);
}
} else {
env->regwptr[rd] = cpu_ldq_nucleus(env, addr);
env->regwptr[rd + 1] = cpu_ldq_nucleus(env, addr + 8);
if (asi == 0x2c) {
bswap64s(&env->regwptr[rd]);
bswap64s(&env->regwptr[rd + 1]);
}
}
break;
#endif
default:
helper_check_align(env, addr, 0x3);
if (rd == 0) {
env->gregs[1] = helper_ld_asi(env, addr + 4, asi, 4, 0);
} else if (rd < 8) {
env->gregs[rd] = helper_ld_asi(env, addr, asi, 4, 0);
env->gregs[rd + 1] = helper_ld_asi(env, addr + 4, asi, 4, 0);
} else {
env->regwptr[rd] = helper_ld_asi(env, addr, asi, 4, 0);
env->regwptr[rd + 1] = helper_ld_asi(env, addr + 4, asi, 4, 0);
}
break;
}
}
void helper_ldf_asi(CPUSPARCState *env, target_ulong addr, int asi, int size,
int rd)
{
unsigned int i;
target_ulong val;
helper_check_align(env, addr, 3);
addr = asi_address_mask(env, asi, addr);
switch (asi) {
case 0xf0: /* UA2007/JPS1 Block load primary */
case 0xf1: /* UA2007/JPS1 Block load secondary */
case 0xf8: /* UA2007/JPS1 Block load primary LE */
case 0xf9: /* UA2007/JPS1 Block load secondary LE */
if (rd & 7) {
helper_raise_exception(env, TT_ILL_INSN);
return;
}
helper_check_align(env, addr, 0x3f);
for (i = 0; i < 8; i++, rd += 2, addr += 8) {
env->fpr[rd / 2].ll = helper_ld_asi(env, addr, asi & 0x8f, 8, 0);
}
return;
case 0x16: /* UA2007 Block load primary, user privilege */
case 0x17: /* UA2007 Block load secondary, user privilege */
case 0x1e: /* UA2007 Block load primary LE, user privilege */
case 0x1f: /* UA2007 Block load secondary LE, user privilege */
case 0x70: /* JPS1 Block load primary, user privilege */
case 0x71: /* JPS1 Block load secondary, user privilege */
case 0x78: /* JPS1 Block load primary LE, user privilege */
case 0x79: /* JPS1 Block load secondary LE, user privilege */
if (rd & 7) {
helper_raise_exception(env, TT_ILL_INSN);
return;
}
helper_check_align(env, addr, 0x3f);
for (i = 0; i < 8; i++, rd += 2, addr += 8) {
env->fpr[rd / 2].ll = helper_ld_asi(env, addr, asi & 0x19, 8, 0);
}
return;
default:
break;
}
switch (size) {
default:
case 4:
val = helper_ld_asi(env, addr, asi, size, 0);
if (rd & 1) {
env->fpr[rd / 2].l.lower = val;
} else {
env->fpr[rd / 2].l.upper = val;
}
break;
case 8:
env->fpr[rd / 2].ll = helper_ld_asi(env, addr, asi, size, 0);
break;
case 16:
env->fpr[rd / 2].ll = helper_ld_asi(env, addr, asi, 8, 0);
env->fpr[rd / 2 + 1].ll = helper_ld_asi(env, addr + 8, asi, 8, 0);
break;
}
}
void helper_stf_asi(CPUSPARCState *env, target_ulong addr, int asi, int size,
int rd)
{
unsigned int i;
target_ulong val;
addr = asi_address_mask(env, asi, addr);
switch (asi) {
case 0xe0: /* UA2007/JPS1 Block commit store primary (cache flush) */
case 0xe1: /* UA2007/JPS1 Block commit store secondary (cache flush) */
case 0xf0: /* UA2007/JPS1 Block store primary */
case 0xf1: /* UA2007/JPS1 Block store secondary */
case 0xf8: /* UA2007/JPS1 Block store primary LE */
case 0xf9: /* UA2007/JPS1 Block store secondary LE */
if (rd & 7) {
helper_raise_exception(env, TT_ILL_INSN);
return;
}
helper_check_align(env, addr, 0x3f);
for (i = 0; i < 8; i++, rd += 2, addr += 8) {
helper_st_asi(env, addr, env->fpr[rd / 2].ll, asi & 0x8f, 8);
}
return;
case 0x16: /* UA2007 Block load primary, user privilege */
case 0x17: /* UA2007 Block load secondary, user privilege */
case 0x1e: /* UA2007 Block load primary LE, user privilege */
case 0x1f: /* UA2007 Block load secondary LE, user privilege */
case 0x70: /* JPS1 Block store primary, user privilege */
case 0x71: /* JPS1 Block store secondary, user privilege */
case 0x78: /* JPS1 Block load primary LE, user privilege */
case 0x79: /* JPS1 Block load secondary LE, user privilege */
if (rd & 7) {
helper_raise_exception(env, TT_ILL_INSN);
return;
}
helper_check_align(env, addr, 0x3f);
for (i = 0; i < 8; i++, rd += 2, addr += 8) {
helper_st_asi(env, addr, env->fpr[rd / 2].ll, asi & 0x19, 8);
}
return;
case 0xd2: /* 16-bit floating point load primary */
case 0xd3: /* 16-bit floating point load secondary */
case 0xda: /* 16-bit floating point load primary, LE */
case 0xdb: /* 16-bit floating point load secondary, LE */
helper_check_align(env, addr, 1);
/* Fall through */
case 0xd0: /* 8-bit floating point load primary */
case 0xd1: /* 8-bit floating point load secondary */
case 0xd8: /* 8-bit floating point load primary, LE */
case 0xd9: /* 8-bit floating point load secondary, LE */
val = env->fpr[rd / 2].l.lower;
helper_st_asi(env, addr, val, asi & 0x8d, ((asi & 2) >> 1) + 1);
return;
default:
helper_check_align(env, addr, 3);
break;
}
switch (size) {
default:
case 4:
if (rd & 1) {
val = env->fpr[rd / 2].l.lower;
} else {
val = env->fpr[rd / 2].l.upper;
}
helper_st_asi(env, addr, val, asi, size);
break;
case 8:
helper_st_asi(env, addr, env->fpr[rd / 2].ll, asi, size);
break;
case 16:
helper_st_asi(env, addr, env->fpr[rd / 2].ll, asi, 8);
helper_st_asi(env, addr + 8, env->fpr[rd / 2 + 1].ll, asi, 8);
break;
}
}
target_ulong helper_casx_asi(CPUSPARCState *env, target_ulong addr,
target_ulong val1, target_ulong val2,
uint32_t asi)
{
target_ulong ret;
ret = helper_ld_asi(env, addr, asi, 8, 0);
if (val2 == ret) {
helper_st_asi(env, addr, val1, asi, 8);
}
return ret;
}
#endif /* TARGET_SPARC64 */
#if !defined(CONFIG_USER_ONLY) || defined(TARGET_SPARC64)
target_ulong helper_cas_asi(CPUSPARCState *env, target_ulong addr,
target_ulong val1, target_ulong val2, uint32_t asi)
{
target_ulong ret;
val2 &= 0xffffffffUL;
ret = helper_ld_asi(env, addr, asi, 4, 0);
ret &= 0xffffffffUL;
if (val2 == ret) {
helper_st_asi(env, addr, val1 & 0xffffffffUL, asi, 4);
}
return ret;
}
#endif /* !defined(CONFIG_USER_ONLY) || defined(TARGET_SPARC64) */
void helper_ldqf(CPUSPARCState *env, target_ulong addr, int mem_idx)
{
/* XXX add 128 bit load */
CPU_QuadU u;
helper_check_align(env, addr, 7);
#if !defined(CONFIG_USER_ONLY)
switch (mem_idx) {
case MMU_USER_IDX:
u.ll.upper = cpu_ldq_user(env, addr);
u.ll.lower = cpu_ldq_user(env, addr + 8);
QT0 = u.q;
break;
case MMU_KERNEL_IDX:
u.ll.upper = cpu_ldq_kernel(env, addr);
u.ll.lower = cpu_ldq_kernel(env, addr + 8);
QT0 = u.q;
break;
#ifdef TARGET_SPARC64
case MMU_HYPV_IDX:
u.ll.upper = cpu_ldq_hypv(env, addr);
u.ll.lower = cpu_ldq_hypv(env, addr + 8);
QT0 = u.q;
break;
#endif
default:
DPRINTF_MMU("helper_ldqf: need to check MMU idx %d\n", mem_idx);
break;
}
#else
u.ll.upper = cpu_ldq_data(env, address_mask(env, addr));
u.ll.lower = cpu_ldq_data(env, address_mask(env, addr + 8));
QT0 = u.q;
#endif
}
void helper_stqf(CPUSPARCState *env, target_ulong addr, int mem_idx)
{
/* XXX add 128 bit store */
CPU_QuadU u;
helper_check_align(env, addr, 7);
#if !defined(CONFIG_USER_ONLY)
switch (mem_idx) {
case MMU_USER_IDX:
u.q = QT0;
cpu_stq_user(env, addr, u.ll.upper);
cpu_stq_user(env, addr + 8, u.ll.lower);
break;
case MMU_KERNEL_IDX:
u.q = QT0;
cpu_stq_kernel(env, addr, u.ll.upper);
cpu_stq_kernel(env, addr + 8, u.ll.lower);
break;
#ifdef TARGET_SPARC64
case MMU_HYPV_IDX:
u.q = QT0;
cpu_stq_hypv(env, addr, u.ll.upper);
cpu_stq_hypv(env, addr + 8, u.ll.lower);
break;
#endif
default:
DPRINTF_MMU("helper_stqf: need to check MMU idx %d\n", mem_idx);
break;
}
#else
u.q = QT0;
cpu_stq_data(env, address_mask(env, addr), u.ll.upper);
cpu_stq_data(env, address_mask(env, addr + 8), u.ll.lower);
#endif
}
#if !defined(CONFIG_USER_ONLY)
#ifndef TARGET_SPARC64
void sparc_cpu_unassigned_access(CPUState *cs, hwaddr addr,
bool is_write, bool is_exec, int is_asi,
unsigned size)
{
SPARCCPU *cpu = SPARC_CPU(cs);
CPUSPARCState *env = &cpu->env;
int fault_type;
#ifdef DEBUG_UNASSIGNED
if (is_asi) {
printf("Unassigned mem %s access of %d byte%s to " TARGET_FMT_plx
" asi 0x%02x from " TARGET_FMT_lx "\n",
is_exec ? "exec" : is_write ? "write" : "read", size,
size == 1 ? "" : "s", addr, is_asi, env->pc);
} else {
printf("Unassigned mem %s access of %d byte%s to " TARGET_FMT_plx
" from " TARGET_FMT_lx "\n",
is_exec ? "exec" : is_write ? "write" : "read", size,
size == 1 ? "" : "s", addr, env->pc);
}
#endif
/* Don't overwrite translation and access faults */
fault_type = (env->mmuregs[3] & 0x1c) >> 2;
if ((fault_type > 4) || (fault_type == 0)) {
env->mmuregs[3] = 0; /* Fault status register */
if (is_asi) {
env->mmuregs[3] |= 1 << 16;
}
if (env->psrs) {
env->mmuregs[3] |= 1 << 5;
}
if (is_exec) {
env->mmuregs[3] |= 1 << 6;
}
if (is_write) {
env->mmuregs[3] |= 1 << 7;
}
env->mmuregs[3] |= (5 << 2) | 2;
/* SuperSPARC will never place instruction fault addresses in the FAR */
if (!is_exec) {
env->mmuregs[4] = addr; /* Fault address register */
}
}
/* overflow (same type fault was not read before another fault) */
if (fault_type == ((env->mmuregs[3] & 0x1c)) >> 2) {
env->mmuregs[3] |= 1;
}
if ((env->mmuregs[0] & MMU_E) && !(env->mmuregs[0] & MMU_NF)) {
if (is_exec) {
helper_raise_exception(env, TT_CODE_ACCESS);
} else {
helper_raise_exception(env, TT_DATA_ACCESS);
}
}
/* flush neverland mappings created during no-fault mode,
so the sequential MMU faults report proper fault types */
if (env->mmuregs[0] & MMU_NF) {
tlb_flush(cs, 1);
}
}
#else
void sparc_cpu_unassigned_access(CPUState *cs, hwaddr addr,
bool is_write, bool is_exec, int is_asi,
unsigned size)
{
SPARCCPU *cpu = SPARC_CPU(cs);
CPUSPARCState *env = &cpu->env;
#ifdef DEBUG_UNASSIGNED
printf("Unassigned mem access to " TARGET_FMT_plx " from " TARGET_FMT_lx
"\n", addr, env->pc);
#endif
if (is_exec) {
helper_raise_exception(env, TT_CODE_ACCESS);
} else {
helper_raise_exception(env, TT_DATA_ACCESS);
}
}
#endif
#endif
#if !defined(CONFIG_USER_ONLY)
void QEMU_NORETURN sparc_cpu_do_unaligned_access(CPUState *cs,
vaddr addr, int is_write,
int is_user, uintptr_t retaddr)
{
SPARCCPU *cpu = SPARC_CPU(cs);
CPUSPARCState *env = &cpu->env;
#ifdef DEBUG_UNALIGNED
printf("Unaligned access to 0x" TARGET_FMT_lx " from 0x" TARGET_FMT_lx
"\n", addr, env->pc);
#endif
if (retaddr) {
cpu_restore_state(CPU(cpu), retaddr);
}
helper_raise_exception(env, TT_UNALIGNED);
}
/* try to fill the TLB and return an exception if error. If retaddr is
NULL, it means that the function was called in C code (i.e. not
from generated code or from helper.c) */
/* XXX: fix it to restore all registers */
void tlb_fill(CPUState *cs, target_ulong addr, int is_write, int mmu_idx,
uintptr_t retaddr)
{
int ret;
ret = sparc_cpu_handle_mmu_fault(cs, addr, is_write, mmu_idx);
if (ret) {
if (retaddr) {
cpu_restore_state(cs, retaddr);
}
cpu_loop_exit(cs);
}
}
#endif