#include "exec.h"
#include "host-utils.h"
#include "helper.h"
#if !defined(CONFIG_USER_ONLY)
#include "softmmu_exec.h"
#endif /* !defined(CONFIG_USER_ONLY) */
//#define DEBUG_MMU
//#define DEBUG_MXCC
//#define DEBUG_UNALIGNED
//#define DEBUG_UNASSIGNED
//#define DEBUG_ASI
//#define DEBUG_PCALL
#ifdef DEBUG_MMU
#define DPRINTF_MMU(fmt, ...) \
do { printf("MMU: " fmt , ## __VA_ARGS__); } while (0)
#else
#define DPRINTF_MMU(fmt, ...) do {} while (0)
#endif
#ifdef DEBUG_MXCC
#define DPRINTF_MXCC(fmt, ...) \
do { printf("MXCC: " fmt , ## __VA_ARGS__); } while (0)
#else
#define DPRINTF_MXCC(fmt, ...) do {} while (0)
#endif
#ifdef DEBUG_ASI
#define DPRINTF_ASI(fmt, ...) \
do { printf("ASI: " fmt , ## __VA_ARGS__); } while (0)
#endif
#ifdef TARGET_SPARC64
#ifndef TARGET_ABI32
#define AM_CHECK(env1) ((env1)->pstate & PS_AM)
#else
#define AM_CHECK(env1) (1)
#endif
#endif
#if defined(TARGET_SPARC64) && !defined(CONFIG_USER_ONLY)
// Calculates TSB pointer value for fault page size 8k or 64k
static uint64_t ultrasparc_tsb_pointer(uint64_t tsb_register,
uint64_t tag_access_register,
int page_size)
{
uint64_t tsb_base = tsb_register & ~0x1fffULL;
int tsb_split = (tsb_register & 0x1000ULL) ? 1 : 0;
int tsb_size = tsb_register & 0xf;
// discard lower 13 bits which hold tag access context
uint64_t tag_access_va = tag_access_register & ~0x1fffULL;
// now reorder bits
uint64_t tsb_base_mask = ~0x1fffULL;
uint64_t va = tag_access_va;
// move va bits to correct position
if (page_size == 8*1024) {
va >>= 9;
} else if (page_size == 64*1024) {
va >>= 12;
}
if (tsb_size) {
tsb_base_mask <<= tsb_size;
}
// calculate tsb_base mask and adjust va if split is in use
if (tsb_split) {
if (page_size == 8*1024) {
va &= ~(1ULL << (13 + tsb_size));
} else if (page_size == 64*1024) {
va |= (1ULL << (13 + tsb_size));
}
tsb_base_mask <<= 1;
}
return ((tsb_base & tsb_base_mask) | (va & ~tsb_base_mask)) & ~0xfULL;
}
// Calculates tag target register value by reordering bits
// in tag access register
static uint64_t ultrasparc_tag_target(uint64_t tag_access_register)
{
return ((tag_access_register & 0x1fff) << 48) | (tag_access_register >> 22);
}
static void replace_tlb_entry(SparcTLBEntry *tlb,
uint64_t tlb_tag, uint64_t tlb_tte,
CPUState *env1)
{
target_ulong mask, size, va, offset;
// flush page range if translation is valid
if (TTE_IS_VALID(tlb->tte)) {
mask = 0xffffffffffffe000ULL;
mask <<= 3 * ((tlb->tte >> 61) & 3);
size = ~mask + 1;
va = tlb->tag & mask;
for (offset = 0; offset < size; offset += TARGET_PAGE_SIZE) {
tlb_flush_page(env1, va + offset);
}
}
tlb->tag = tlb_tag;
tlb->tte = tlb_tte;
}
static void demap_tlb(SparcTLBEntry *tlb, target_ulong demap_addr,
const char* strmmu, CPUState *env1)
{
unsigned int i;
target_ulong mask;
for (i = 0; i < 64; i++) {
if (TTE_IS_VALID(tlb[i].tte)) {
mask = 0xffffffffffffe000ULL;
mask <<= 3 * ((tlb[i].tte >> 61) & 3);
if ((demap_addr & mask) == (tlb[i].tag & mask)) {
replace_tlb_entry(&tlb[i], 0, 0, env1);
#ifdef DEBUG_MMU
DPRINTF_MMU("%s demap invalidated entry [%02u]\n", strmmu, i);
dump_mmu(env1);
#endif
}
//return;
}
}
}
static void replace_tlb_1bit_lru(SparcTLBEntry *tlb,
uint64_t tlb_tag, uint64_t tlb_tte,
const char* strmmu, CPUState *env1)
{
unsigned int i, replace_used;
// Try replacing invalid entry
for (i = 0; i < 64; i++) {
if (!TTE_IS_VALID(tlb[i].tte)) {
replace_tlb_entry(&tlb[i], tlb_tag, tlb_tte, env1);
#ifdef DEBUG_MMU
DPRINTF_MMU("%s lru replaced invalid entry [%i]\n", strmmu, i);
dump_mmu(env1);
#endif
return;
}
}
// All entries are valid, try replacing unlocked entry
for (replace_used = 0; replace_used < 2; ++replace_used) {
// Used entries are not replaced on first pass
for (i = 0; i < 64; i++) {
if (!TTE_IS_LOCKED(tlb[i].tte) && !TTE_IS_USED(tlb[i].tte)) {
replace_tlb_entry(&tlb[i], tlb_tag, tlb_tte, env1);
#ifdef DEBUG_MMU
DPRINTF_MMU("%s lru replaced unlocked %s entry [%i]\n",
strmmu, (replace_used?"used":"unused"), i);
dump_mmu(env1);
#endif
return;
}
}
// Now reset used bit and search for unused entries again
for (i = 0; i < 64; i++) {
TTE_SET_UNUSED(tlb[i].tte);
}
}
#ifdef DEBUG_MMU
DPRINTF_MMU("%s lru replacement failed: no entries available\n", strmmu);
#endif
// error state?
}
#endif
static inline void address_mask(CPUState *env1, target_ulong *addr)
{
#ifdef TARGET_SPARC64
if (AM_CHECK(env1))
*addr &= 0xffffffffULL;
#endif
}
static void raise_exception(int tt)
{
env->exception_index = tt;
cpu_loop_exit();
}
void HELPER(raise_exception)(int tt)
{
raise_exception(tt);
}
static inline void set_cwp(int new_cwp)
{
cpu_set_cwp(env, new_cwp);
}
void helper_check_align(target_ulong addr, uint32_t align)
{
if (addr & align) {
#ifdef DEBUG_UNALIGNED
printf("Unaligned access to 0x" TARGET_FMT_lx " from 0x" TARGET_FMT_lx
"\n", addr, env->pc);
#endif
raise_exception(TT_UNALIGNED);
}
}
#define F_HELPER(name, p) void helper_f##name##p(void)
#define F_BINOP(name) \
float32 helper_f ## name ## s (float32 src1, float32 src2) \
{ \
return float32_ ## name (src1, src2, &env->fp_status); \
} \
F_HELPER(name, d) \
{ \
DT0 = float64_ ## name (DT0, DT1, &env->fp_status); \
} \
F_HELPER(name, q) \
{ \
QT0 = float128_ ## name (QT0, QT1, &env->fp_status); \
}
F_BINOP(add);
F_BINOP(sub);
F_BINOP(mul);
F_BINOP(div);
#undef F_BINOP
void helper_fsmuld(float32 src1, float32 src2)
{
DT0 = float64_mul(float32_to_float64(src1, &env->fp_status),
float32_to_float64(src2, &env->fp_status),
&env->fp_status);
}
void helper_fdmulq(void)
{
QT0 = float128_mul(float64_to_float128(DT0, &env->fp_status),
float64_to_float128(DT1, &env->fp_status),
&env->fp_status);
}
float32 helper_fnegs(float32 src)
{
return float32_chs(src);
}
#ifdef TARGET_SPARC64
F_HELPER(neg, d)
{
DT0 = float64_chs(DT1);
}
F_HELPER(neg, q)
{
QT0 = float128_chs(QT1);
}
#endif
/* Integer to float conversion. */
float32 helper_fitos(int32_t src)
{
return int32_to_float32(src, &env->fp_status);
}
void helper_fitod(int32_t src)
{
DT0 = int32_to_float64(src, &env->fp_status);
}
void helper_fitoq(int32_t src)
{
QT0 = int32_to_float128(src, &env->fp_status);
}
#ifdef TARGET_SPARC64
float32 helper_fxtos(void)
{
return int64_to_float32(*((int64_t *)&DT1), &env->fp_status);
}
F_HELPER(xto, d)
{
DT0 = int64_to_float64(*((int64_t *)&DT1), &env->fp_status);
}
F_HELPER(xto, q)
{
QT0 = int64_to_float128(*((int64_t *)&DT1), &env->fp_status);
}
#endif
#undef F_HELPER
/* floating point conversion */
float32 helper_fdtos(void)
{
return float64_to_float32(DT1, &env->fp_status);
}
void helper_fstod(float32 src)
{
DT0 = float32_to_float64(src, &env->fp_status);
}
float32 helper_fqtos(void)
{
return float128_to_float32(QT1, &env->fp_status);
}
void helper_fstoq(float32 src)
{
QT0 = float32_to_float128(src, &env->fp_status);
}
void helper_fqtod(void)
{
DT0 = float128_to_float64(QT1, &env->fp_status);
}
void helper_fdtoq(void)
{
QT0 = float64_to_float128(DT1, &env->fp_status);
}
/* Float to integer conversion. */
int32_t helper_fstoi(float32 src)
{
return float32_to_int32_round_to_zero(src, &env->fp_status);
}
int32_t helper_fdtoi(void)
{
return float64_to_int32_round_to_zero(DT1, &env->fp_status);
}
int32_t helper_fqtoi(void)
{
return float128_to_int32_round_to_zero(QT1, &env->fp_status);
}
#ifdef TARGET_SPARC64
void helper_fstox(float32 src)
{
*((int64_t *)&DT0) = float32_to_int64_round_to_zero(src, &env->fp_status);
}
void helper_fdtox(void)
{
*((int64_t *)&DT0) = float64_to_int64_round_to_zero(DT1, &env->fp_status);
}
void helper_fqtox(void)
{
*((int64_t *)&DT0) = float128_to_int64_round_to_zero(QT1, &env->fp_status);
}
void helper_faligndata(void)
{
uint64_t tmp;
tmp = (*((uint64_t *)&DT0)) << ((env->gsr & 7) * 8);
/* on many architectures a shift of 64 does nothing */
if ((env->gsr & 7) != 0) {
tmp |= (*((uint64_t *)&DT1)) >> (64 - (env->gsr & 7) * 8);
}
*((uint64_t *)&DT0) = tmp;
}
#ifdef HOST_WORDS_BIGENDIAN
#define VIS_B64(n) b[7 - (n)]
#define VIS_W64(n) w[3 - (n)]
#define VIS_SW64(n) sw[3 - (n)]
#define VIS_L64(n) l[1 - (n)]
#define VIS_B32(n) b[3 - (n)]
#define VIS_W32(n) w[1 - (n)]
#else
#define VIS_B64(n) b[n]
#define VIS_W64(n) w[n]
#define VIS_SW64(n) sw[n]
#define VIS_L64(n) l[n]
#define VIS_B32(n) b[n]
#define VIS_W32(n) w[n]
#endif
typedef union {
uint8_t b[8];
uint16_t w[4];
int16_t sw[4];
uint32_t l[2];
float64 d;
} vis64;
typedef union {
uint8_t b[4];
uint16_t w[2];
uint32_t l;
float32 f;
} vis32;
void helper_fpmerge(void)
{
vis64 s, d;
s.d = DT0;
d.d = DT1;
// Reverse calculation order to handle overlap
d.VIS_B64(7) = s.VIS_B64(3);
d.VIS_B64(6) = d.VIS_B64(3);
d.VIS_B64(5) = s.VIS_B64(2);
d.VIS_B64(4) = d.VIS_B64(2);
d.VIS_B64(3) = s.VIS_B64(1);
d.VIS_B64(2) = d.VIS_B64(1);
d.VIS_B64(1) = s.VIS_B64(0);
//d.VIS_B64(0) = d.VIS_B64(0);
DT0 = d.d;
}
void helper_fmul8x16(void)
{
vis64 s, d;
uint32_t tmp;
s.d = DT0;
d.d = DT1;
#define PMUL(r) \
tmp = (int32_t)d.VIS_SW64(r) * (int32_t)s.VIS_B64(r); \
if ((tmp & 0xff) > 0x7f) \
tmp += 0x100; \
d.VIS_W64(r) = tmp >> 8;
PMUL(0);
PMUL(1);
PMUL(2);
PMUL(3);
#undef PMUL
DT0 = d.d;
}
void helper_fmul8x16al(void)
{
vis64 s, d;
uint32_t tmp;
s.d = DT0;
d.d = DT1;
#define PMUL(r) \
tmp = (int32_t)d.VIS_SW64(1) * (int32_t)s.VIS_B64(r); \
if ((tmp & 0xff) > 0x7f) \
tmp += 0x100; \
d.VIS_W64(r) = tmp >> 8;
PMUL(0);
PMUL(1);
PMUL(2);
PMUL(3);
#undef PMUL
DT0 = d.d;
}
void helper_fmul8x16au(void)
{
vis64 s, d;
uint32_t tmp;
s.d = DT0;
d.d = DT1;
#define PMUL(r) \
tmp = (int32_t)d.VIS_SW64(0) * (int32_t)s.VIS_B64(r); \
if ((tmp & 0xff) > 0x7f) \
tmp += 0x100; \
d.VIS_W64(r) = tmp >> 8;
PMUL(0);
PMUL(1);
PMUL(2);
PMUL(3);
#undef PMUL
DT0 = d.d;
}
void helper_fmul8sux16(void)
{
vis64 s, d;
uint32_t tmp;
s.d = DT0;
d.d = DT1;
#define PMUL(r) \
tmp = (int32_t)d.VIS_SW64(r) * ((int32_t)s.VIS_SW64(r) >> 8); \
if ((tmp & 0xff) > 0x7f) \
tmp += 0x100; \
d.VIS_W64(r) = tmp >> 8;
PMUL(0);
PMUL(1);
PMUL(2);
PMUL(3);
#undef PMUL
DT0 = d.d;
}
void helper_fmul8ulx16(void)
{
vis64 s, d;
uint32_t tmp;
s.d = DT0;
d.d = DT1;
#define PMUL(r) \
tmp = (int32_t)d.VIS_SW64(r) * ((uint32_t)s.VIS_B64(r * 2)); \
if ((tmp & 0xff) > 0x7f) \
tmp += 0x100; \
d.VIS_W64(r) = tmp >> 8;
PMUL(0);
PMUL(1);
PMUL(2);
PMUL(3);
#undef PMUL
DT0 = d.d;
}
void helper_fmuld8sux16(void)
{
vis64 s, d;
uint32_t tmp;
s.d = DT0;
d.d = DT1;
#define PMUL(r) \
tmp = (int32_t)d.VIS_SW64(r) * ((int32_t)s.VIS_SW64(r) >> 8); \
if ((tmp & 0xff) > 0x7f) \
tmp += 0x100; \
d.VIS_L64(r) = tmp;
// Reverse calculation order to handle overlap
PMUL(1);
PMUL(0);
#undef PMUL
DT0 = d.d;
}
void helper_fmuld8ulx16(void)
{
vis64 s, d;
uint32_t tmp;
s.d = DT0;
d.d = DT1;
#define PMUL(r) \
tmp = (int32_t)d.VIS_SW64(r) * ((uint32_t)s.VIS_B64(r * 2)); \
if ((tmp & 0xff) > 0x7f) \
tmp += 0x100; \
d.VIS_L64(r) = tmp;
// Reverse calculation order to handle overlap
PMUL(1);
PMUL(0);
#undef PMUL
DT0 = d.d;
}
void helper_fexpand(void)
{
vis32 s;
vis64 d;
s.l = (uint32_t)(*(uint64_t *)&DT0 & 0xffffffff);
d.d = DT1;
d.VIS_W64(0) = s.VIS_B32(0) << 4;
d.VIS_W64(1) = s.VIS_B32(1) << 4;
d.VIS_W64(2) = s.VIS_B32(2) << 4;
d.VIS_W64(3) = s.VIS_B32(3) << 4;
DT0 = d.d;
}
#define VIS_HELPER(name, F) \
void name##16(void) \
{ \
vis64 s, d; \
\
s.d = DT0; \
d.d = DT1; \
\
d.VIS_W64(0) = F(d.VIS_W64(0), s.VIS_W64(0)); \
d.VIS_W64(1) = F(d.VIS_W64(1), s.VIS_W64(1)); \
d.VIS_W64(2) = F(d.VIS_W64(2), s.VIS_W64(2)); \
d.VIS_W64(3) = F(d.VIS_W64(3), s.VIS_W64(3)); \
\
DT0 = d.d; \
} \
\
uint32_t name##16s(uint32_t src1, uint32_t src2) \
{ \
vis32 s, d; \
\
s.l = src1; \
d.l = src2; \
\
d.VIS_W32(0) = F(d.VIS_W32(0), s.VIS_W32(0)); \
d.VIS_W32(1) = F(d.VIS_W32(1), s.VIS_W32(1)); \
\
return d.l; \
} \
\
void name##32(void) \
{ \
vis64 s, d; \
\
s.d = DT0; \
d.d = DT1; \
\
d.VIS_L64(0) = F(d.VIS_L64(0), s.VIS_L64(0)); \
d.VIS_L64(1) = F(d.VIS_L64(1), s.VIS_L64(1)); \
\
DT0 = d.d; \
} \
\
uint32_t name##32s(uint32_t src1, uint32_t src2) \
{ \
vis32 s, d; \
\
s.l = src1; \
d.l = src2; \
\
d.l = F(d.l, s.l); \
\
return d.l; \
}
#define FADD(a, b) ((a) + (b))
#define FSUB(a, b) ((a) - (b))
VIS_HELPER(helper_fpadd, FADD)
VIS_HELPER(helper_fpsub, FSUB)
#define VIS_CMPHELPER(name, F) \
void name##16(void) \
{ \
vis64 s, d; \
\
s.d = DT0; \
d.d = DT1; \
\
d.VIS_W64(0) = F(d.VIS_W64(0), s.VIS_W64(0))? 1: 0; \
d.VIS_W64(0) |= F(d.VIS_W64(1), s.VIS_W64(1))? 2: 0; \
d.VIS_W64(0) |= F(d.VIS_W64(2), s.VIS_W64(2))? 4: 0; \
d.VIS_W64(0) |= F(d.VIS_W64(3), s.VIS_W64(3))? 8: 0; \
\
DT0 = d.d; \
} \
\
void name##32(void) \
{ \
vis64 s, d; \
\
s.d = DT0; \
d.d = DT1; \
\
d.VIS_L64(0) = F(d.VIS_L64(0), s.VIS_L64(0))? 1: 0; \
d.VIS_L64(0) |= F(d.VIS_L64(1), s.VIS_L64(1))? 2: 0; \
\
DT0 = d.d; \
}
#define FCMPGT(a, b) ((a) > (b))
#define FCMPEQ(a, b) ((a) == (b))
#define FCMPLE(a, b) ((a) <= (b))
#define FCMPNE(a, b) ((a) != (b))
VIS_CMPHELPER(helper_fcmpgt, FCMPGT)
VIS_CMPHELPER(helper_fcmpeq, FCMPEQ)
VIS_CMPHELPER(helper_fcmple, FCMPLE)
VIS_CMPHELPER(helper_fcmpne, FCMPNE)
#endif
void helper_check_ieee_exceptions(void)
{
target_ulong status;
status = get_float_exception_flags(&env->fp_status);
if (status) {
/* Copy IEEE 754 flags into FSR */
if (status & float_flag_invalid)
env->fsr |= FSR_NVC;
if (status & float_flag_overflow)
env->fsr |= FSR_OFC;
if (status & float_flag_underflow)
env->fsr |= FSR_UFC;
if (status & float_flag_divbyzero)
env->fsr |= FSR_DZC;
if (status & float_flag_inexact)
env->fsr |= FSR_NXC;
if ((env->fsr & FSR_CEXC_MASK) & ((env->fsr & FSR_TEM_MASK) >> 23)) {
/* Unmasked exception, generate a trap */
env->fsr |= FSR_FTT_IEEE_EXCP;
raise_exception(TT_FP_EXCP);
} else {
/* Accumulate exceptions */
env->fsr |= (env->fsr & FSR_CEXC_MASK) << 5;
}
}
}
void helper_clear_float_exceptions(void)
{
set_float_exception_flags(0, &env->fp_status);
}
float32 helper_fabss(float32 src)
{
return float32_abs(src);
}
#ifdef TARGET_SPARC64
void helper_fabsd(void)
{
DT0 = float64_abs(DT1);
}
void helper_fabsq(void)
{
QT0 = float128_abs(QT1);
}
#endif
float32 helper_fsqrts(float32 src)
{
return float32_sqrt(src, &env->fp_status);
}
void helper_fsqrtd(void)
{
DT0 = float64_sqrt(DT1, &env->fp_status);
}
void helper_fsqrtq(void)
{
QT0 = float128_sqrt(QT1, &env->fp_status);
}
#define GEN_FCMP(name, size, reg1, reg2, FS, TRAP) \
void glue(helper_, name) (void) \
{ \
target_ulong new_fsr; \
\
env->fsr &= ~((FSR_FCC1 | FSR_FCC0) << FS); \
switch (glue(size, _compare) (reg1, reg2, &env->fp_status)) { \
case float_relation_unordered: \
new_fsr = (FSR_FCC1 | FSR_FCC0) << FS; \
if ((env->fsr & FSR_NVM) || TRAP) { \
env->fsr |= new_fsr; \
env->fsr |= FSR_NVC; \
env->fsr |= FSR_FTT_IEEE_EXCP; \
raise_exception(TT_FP_EXCP); \
} else { \
env->fsr |= FSR_NVA; \
} \
break; \
case float_relation_less: \
new_fsr = FSR_FCC0 << FS; \
break; \
case float_relation_greater: \
new_fsr = FSR_FCC1 << FS; \
break; \
default: \
new_fsr = 0; \
break; \
} \
env->fsr |= new_fsr; \
}
#define GEN_FCMPS(name, size, FS, TRAP) \
void glue(helper_, name)(float32 src1, float32 src2) \
{ \
target_ulong new_fsr; \
\
env->fsr &= ~((FSR_FCC1 | FSR_FCC0) << FS); \
switch (glue(size, _compare) (src1, src2, &env->fp_status)) { \
case float_relation_unordered: \
new_fsr = (FSR_FCC1 | FSR_FCC0) << FS; \
if ((env->fsr & FSR_NVM) || TRAP) { \
env->fsr |= new_fsr; \
env->fsr |= FSR_NVC; \
env->fsr |= FSR_FTT_IEEE_EXCP; \
raise_exception(TT_FP_EXCP); \
} else { \
env->fsr |= FSR_NVA; \
} \
break; \
case float_relation_less: \
new_fsr = FSR_FCC0 << FS; \
break; \
case float_relation_greater: \
new_fsr = FSR_FCC1 << FS; \
break; \
default: \
new_fsr = 0; \
break; \
} \
env->fsr |= new_fsr; \
}
GEN_FCMPS(fcmps, float32, 0, 0);
GEN_FCMP(fcmpd, float64, DT0, DT1, 0, 0);
GEN_FCMPS(fcmpes, float32, 0, 1);
GEN_FCMP(fcmped, float64, DT0, DT1, 0, 1);
GEN_FCMP(fcmpq, float128, QT0, QT1, 0, 0);
GEN_FCMP(fcmpeq, float128, QT0, QT1, 0, 1);
static uint32_t compute_all_flags(void)
{
return env->psr & PSR_ICC;
}
static uint32_t compute_C_flags(void)
{
return env->psr & PSR_CARRY;
}
static inline uint32_t get_NZ_icc(target_ulong dst)
{
uint32_t ret = 0;
if (!(dst & 0xffffffffULL))
ret |= PSR_ZERO;
if ((int32_t) (dst & 0xffffffffULL) < 0)
ret |= PSR_NEG;
return ret;
}
#ifdef TARGET_SPARC64
static uint32_t compute_all_flags_xcc(void)
{
return env->xcc & PSR_ICC;
}
static uint32_t compute_C_flags_xcc(void)
{
return env->xcc & PSR_CARRY;
}
static inline uint32_t get_NZ_xcc(target_ulong dst)
{
uint32_t ret = 0;
if (!dst)
ret |= PSR_ZERO;
if ((int64_t)dst < 0)
ret |= PSR_NEG;
return ret;
}
#endif
static inline uint32_t get_V_div_icc(target_ulong src2)
{
uint32_t ret = 0;
if (src2 != 0)
ret |= PSR_OVF;
return ret;
}
static uint32_t compute_all_div(void)
{
uint32_t ret;
ret = get_NZ_icc(CC_DST);
ret |= get_V_div_icc(CC_SRC2);
return ret;
}
static uint32_t compute_C_div(void)
{
return 0;
}
static inline uint32_t get_C_add_icc(target_ulong dst, target_ulong src1)
{
uint32_t ret = 0;
if ((dst & 0xffffffffULL) < (src1 & 0xffffffffULL))
ret |= PSR_CARRY;
return ret;
}
static inline uint32_t get_V_add_icc(target_ulong dst, target_ulong src1,
target_ulong src2)
{
uint32_t ret = 0;
if (((src1 ^ src2 ^ -1) & (src1 ^ dst)) & (1ULL << 31))
ret |= PSR_OVF;
return ret;
}
static uint32_t compute_all_add(void)
{
uint32_t ret;
ret = get_NZ_icc(CC_DST);
ret |= get_C_add_icc(CC_DST, CC_SRC);
ret |= get_V_add_icc(CC_DST, CC_SRC, CC_SRC2);
return ret;
}
static uint32_t compute_C_add(void)
{
return get_C_add_icc(CC_DST, CC_SRC);
}
#ifdef TARGET_SPARC64
static inline uint32_t get_C_add_xcc(target_ulong dst, target_ulong src1)
{
uint32_t ret = 0;
if (dst < src1)
ret |= PSR_CARRY;
return ret;
}
static inline uint32_t get_V_add_xcc(target_ulong dst, target_ulong src1,
target_ulong src2)
{
uint32_t ret = 0;
if (((src1 ^ src2 ^ -1) & (src1 ^ dst)) & (1ULL << 63))
ret |= PSR_OVF;
return ret;
}
static uint32_t compute_all_add_xcc(void)
{
uint32_t ret;
ret = get_NZ_xcc(CC_DST);
ret |= get_C_add_xcc(CC_DST, CC_SRC);
ret |= get_V_add_xcc(CC_DST, CC_SRC, CC_SRC2);
return ret;
}
static uint32_t compute_C_add_xcc(void)
{
return get_C_add_xcc(CC_DST, CC_SRC);
}
#endif
static uint32_t compute_all_addx(void)
{
uint32_t ret;
ret = get_NZ_icc(CC_DST);
ret |= get_C_add_icc(CC_DST - CC_SRC2, CC_SRC);
ret |= get_C_add_icc(CC_DST, CC_SRC);
ret |= get_V_add_icc(CC_DST, CC_SRC, CC_SRC2);
return ret;
}
static uint32_t compute_C_addx(void)
{
uint32_t ret;
ret = get_C_add_icc(CC_DST - CC_SRC2, CC_SRC);
ret |= get_C_add_icc(CC_DST, CC_SRC);
return ret;
}
#ifdef TARGET_SPARC64
static uint32_t compute_all_addx_xcc(void)
{
uint32_t ret;
ret = get_NZ_xcc(CC_DST);
ret |= get_C_add_xcc(CC_DST - CC_SRC2, CC_SRC);
ret |= get_C_add_xcc(CC_DST, CC_SRC);
ret |= get_V_add_xcc(CC_DST, CC_SRC, CC_SRC2);
return ret;
}
static uint32_t compute_C_addx_xcc(void)
{
uint32_t ret;
ret = get_C_add_xcc(CC_DST - CC_SRC2, CC_SRC);
ret |= get_C_add_xcc(CC_DST, CC_SRC);
return ret;
}
#endif
static inline uint32_t get_V_tag_icc(target_ulong src1, target_ulong src2)
{
uint32_t ret = 0;
if ((src1 | src2) & 0x3)
ret |= PSR_OVF;
return ret;
}
static uint32_t compute_all_tadd(void)
{
uint32_t ret;
ret = get_NZ_icc(CC_DST);
ret |= get_C_add_icc(CC_DST, CC_SRC);
ret |= get_V_add_icc(CC_DST, CC_SRC, CC_SRC2);
ret |= get_V_tag_icc(CC_SRC, CC_SRC2);
return ret;
}
static uint32_t compute_C_tadd(void)
{
return get_C_add_icc(CC_DST, CC_SRC);
}
static uint32_t compute_all_taddtv(void)
{
uint32_t ret;
ret = get_NZ_icc(CC_DST);
ret |= get_C_add_icc(CC_DST, CC_SRC);
return ret;
}
static uint32_t compute_C_taddtv(void)
{
return get_C_add_icc(CC_DST, CC_SRC);
}
static inline uint32_t get_C_sub_icc(target_ulong src1, target_ulong src2)
{
uint32_t ret = 0;
if ((src1 & 0xffffffffULL) < (src2 & 0xffffffffULL))
ret |= PSR_CARRY;
return ret;
}
static inline uint32_t get_V_sub_icc(target_ulong dst, target_ulong src1,
target_ulong src2)
{
uint32_t ret = 0;
if (((src1 ^ src2) & (src1 ^ dst)) & (1ULL << 31))
ret |= PSR_OVF;
return ret;
}
static uint32_t compute_all_sub(void)
{
uint32_t ret;
ret = get_NZ_icc(CC_DST);
ret |= get_C_sub_icc(CC_SRC, CC_SRC2);
ret |= get_V_sub_icc(CC_DST, CC_SRC, CC_SRC2);
return ret;
}
static uint32_t compute_C_sub(void)
{
return get_C_sub_icc(CC_SRC, CC_SRC2);
}
#ifdef TARGET_SPARC64
static inline uint32_t get_C_sub_xcc(target_ulong src1, target_ulong src2)
{
uint32_t ret = 0;
if (src1 < src2)
ret |= PSR_CARRY;
return ret;
}
static inline uint32_t get_V_sub_xcc(target_ulong dst, target_ulong src1,
target_ulong src2)
{
uint32_t ret = 0;
if (((src1 ^ src2) & (src1 ^ dst)) & (1ULL << 63))
ret |= PSR_OVF;
return ret;
}
static uint32_t compute_all_sub_xcc(void)
{
uint32_t ret;
ret = get_NZ_xcc(CC_DST);
ret |= get_C_sub_xcc(CC_SRC, CC_SRC2);
ret |= get_V_sub_xcc(CC_DST, CC_SRC, CC_SRC2);
return ret;
}
static uint32_t compute_C_sub_xcc(void)
{
return get_C_sub_xcc(CC_SRC, CC_SRC2);
}
#endif
static uint32_t compute_all_subx(void)
{
uint32_t ret;
ret = get_NZ_icc(CC_DST);
ret |= get_C_sub_icc(CC_DST - CC_SRC2, CC_SRC);
ret |= get_C_sub_icc(CC_DST, CC_SRC2);
ret |= get_V_sub_icc(CC_DST, CC_SRC, CC_SRC2);
return ret;
}
static uint32_t compute_C_subx(void)
{
uint32_t ret;
ret = get_C_sub_icc(CC_DST - CC_SRC2, CC_SRC);
ret |= get_C_sub_icc(CC_DST, CC_SRC2);
return ret;
}
#ifdef TARGET_SPARC64
static uint32_t compute_all_subx_xcc(void)
{
uint32_t ret;
ret = get_NZ_xcc(CC_DST);
ret |= get_C_sub_xcc(CC_DST - CC_SRC2, CC_SRC);
ret |= get_C_sub_xcc(CC_DST, CC_SRC2);
ret |= get_V_sub_xcc(CC_DST, CC_SRC, CC_SRC2);
return ret;
}
static uint32_t compute_C_subx_xcc(void)
{
uint32_t ret;
ret = get_C_sub_xcc(CC_DST - CC_SRC2, CC_SRC);
ret |= get_C_sub_xcc(CC_DST, CC_SRC2);
return ret;
}
#endif
static uint32_t compute_all_tsub(void)
{
uint32_t ret;
ret = get_NZ_icc(CC_DST);
ret |= get_C_sub_icc(CC_DST, CC_SRC);
ret |= get_V_sub_icc(CC_DST, CC_SRC, CC_SRC2);
ret |= get_V_tag_icc(CC_SRC, CC_SRC2);
return ret;
}
static uint32_t compute_C_tsub(void)
{
return get_C_sub_icc(CC_DST, CC_SRC);
}
static uint32_t compute_all_tsubtv(void)
{
uint32_t ret;
ret = get_NZ_icc(CC_DST);
ret |= get_C_sub_icc(CC_DST, CC_SRC);
return ret;
}
static uint32_t compute_C_tsubtv(void)
{
return get_C_sub_icc(CC_DST, CC_SRC);
}
static uint32_t compute_all_logic(void)
{
return get_NZ_icc(CC_DST);
}
static uint32_t compute_C_logic(void)
{
return 0;
}
#ifdef TARGET_SPARC64
static uint32_t compute_all_logic_xcc(void)
{
return get_NZ_xcc(CC_DST);
}
#endif
typedef struct CCTable {
uint32_t (*compute_all)(void); /* return all the flags */
uint32_t (*compute_c)(void); /* return the C flag */
} CCTable;
static const CCTable icc_table[CC_OP_NB] = {
/* CC_OP_DYNAMIC should never happen */
[CC_OP_FLAGS] = { compute_all_flags, compute_C_flags },
[CC_OP_DIV] = { compute_all_div, compute_C_div },
[CC_OP_ADD] = { compute_all_add, compute_C_add },
[CC_OP_ADDX] = { compute_all_addx, compute_C_addx },
[CC_OP_TADD] = { compute_all_tadd, compute_C_tadd },
[CC_OP_TADDTV] = { compute_all_taddtv, compute_C_taddtv },
[CC_OP_SUB] = { compute_all_sub, compute_C_sub },
[CC_OP_SUBX] = { compute_all_subx, compute_C_subx },
[CC_OP_TSUB] = { compute_all_tsub, compute_C_tsub },
[CC_OP_TSUBTV] = { compute_all_tsubtv, compute_C_tsubtv },
[CC_OP_LOGIC] = { compute_all_logic, compute_C_logic },
};
#ifdef TARGET_SPARC64
static const CCTable xcc_table[CC_OP_NB] = {
/* CC_OP_DYNAMIC should never happen */
[CC_OP_FLAGS] = { compute_all_flags_xcc, compute_C_flags_xcc },
[CC_OP_DIV] = { compute_all_logic_xcc, compute_C_logic },
[CC_OP_ADD] = { compute_all_add_xcc, compute_C_add_xcc },
[CC_OP_ADDX] = { compute_all_addx_xcc, compute_C_addx_xcc },
[CC_OP_TADD] = { compute_all_add_xcc, compute_C_add_xcc },
[CC_OP_TADDTV] = { compute_all_add_xcc, compute_C_add_xcc },
[CC_OP_SUB] = { compute_all_sub_xcc, compute_C_sub_xcc },
[CC_OP_SUBX] = { compute_all_subx_xcc, compute_C_subx_xcc },
[CC_OP_TSUB] = { compute_all_sub_xcc, compute_C_sub_xcc },
[CC_OP_TSUBTV] = { compute_all_sub_xcc, compute_C_sub_xcc },
[CC_OP_LOGIC] = { compute_all_logic_xcc, compute_C_logic },
};
#endif
void helper_compute_psr(void)
{
uint32_t new_psr;
new_psr = icc_table[CC_OP].compute_all();
env->psr = new_psr;
#ifdef TARGET_SPARC64
new_psr = xcc_table[CC_OP].compute_all();
env->xcc = new_psr;
#endif
CC_OP = CC_OP_FLAGS;
}
uint32_t helper_compute_C_icc(void)
{
uint32_t ret;
ret = icc_table[CC_OP].compute_c() >> PSR_CARRY_SHIFT;
return ret;
}
#ifdef TARGET_SPARC64
GEN_FCMPS(fcmps_fcc1, float32, 22, 0);
GEN_FCMP(fcmpd_fcc1, float64, DT0, DT1, 22, 0);
GEN_FCMP(fcmpq_fcc1, float128, QT0, QT1, 22, 0);
GEN_FCMPS(fcmps_fcc2, float32, 24, 0);
GEN_FCMP(fcmpd_fcc2, float64, DT0, DT1, 24, 0);
GEN_FCMP(fcmpq_fcc2, float128, QT0, QT1, 24, 0);
GEN_FCMPS(fcmps_fcc3, float32, 26, 0);
GEN_FCMP(fcmpd_fcc3, float64, DT0, DT1, 26, 0);
GEN_FCMP(fcmpq_fcc3, float128, QT0, QT1, 26, 0);
GEN_FCMPS(fcmpes_fcc1, float32, 22, 1);
GEN_FCMP(fcmped_fcc1, float64, DT0, DT1, 22, 1);
GEN_FCMP(fcmpeq_fcc1, float128, QT0, QT1, 22, 1);
GEN_FCMPS(fcmpes_fcc2, float32, 24, 1);
GEN_FCMP(fcmped_fcc2, float64, DT0, DT1, 24, 1);
GEN_FCMP(fcmpeq_fcc2, float128, QT0, QT1, 24, 1);
GEN_FCMPS(fcmpes_fcc3, float32, 26, 1);
GEN_FCMP(fcmped_fcc3, float64, DT0, DT1, 26, 1);
GEN_FCMP(fcmpeq_fcc3, float128, QT0, QT1, 26, 1);
#endif
#undef GEN_FCMPS
#if !defined(TARGET_SPARC64) && !defined(CONFIG_USER_ONLY) && \
defined(DEBUG_MXCC)
static void dump_mxcc(CPUState *env)
{
printf("mxccdata: %016" PRIx64 " %016" PRIx64 " %016" PRIx64 " %016" PRIx64
"\n",
env->mxccdata[0], env->mxccdata[1],
env->mxccdata[2], env->mxccdata[3]);
printf("mxccregs: %016" PRIx64 " %016" PRIx64 " %016" PRIx64 " %016" PRIx64
"\n"
" %016" PRIx64 " %016" PRIx64 " %016" PRIx64 " %016" PRIx64
"\n",
env->mxccregs[0], env->mxccregs[1],
env->mxccregs[2], env->mxccregs[3],
env->mxccregs[4], env->mxccregs[5],
env->mxccregs[6], env->mxccregs[7]);
}
#endif
#if (defined(TARGET_SPARC64) || !defined(CONFIG_USER_ONLY)) \
&& defined(DEBUG_ASI)
static void dump_asi(const char *txt, target_ulong addr, int asi, int size,
uint64_t r1)
{
switch (size)
{
case 1:
DPRINTF_ASI("%s "TARGET_FMT_lx " asi 0x%02x = %02" PRIx64 "\n", txt,
addr, asi, r1 & 0xff);
break;
case 2:
DPRINTF_ASI("%s "TARGET_FMT_lx " asi 0x%02x = %04" PRIx64 "\n", txt,
addr, asi, r1 & 0xffff);
break;
case 4:
DPRINTF_ASI("%s "TARGET_FMT_lx " asi 0x%02x = %08" PRIx64 "\n", txt,
addr, asi, r1 & 0xffffffff);
break;
case 8:
DPRINTF_ASI("%s "TARGET_FMT_lx " asi 0x%02x = %016" PRIx64 "\n", txt,
addr, asi, r1);
break;
}
}
#endif
#ifndef TARGET_SPARC64
#ifndef CONFIG_USER_ONLY
uint64_t helper_ld_asi(target_ulong addr, int asi, int size, int sign)
{
uint64_t ret = 0;
#if defined(DEBUG_MXCC) || defined(DEBUG_ASI)
uint32_t last_addr = addr;
#endif
helper_check_align(addr, size - 1);
switch (asi) {
case 2: /* SuperSparc MXCC registers */
switch (addr) {
case 0x01c00a00: /* MXCC control register */
if (size == 8)
ret = env->mxccregs[3];
else
DPRINTF_MXCC("%08x: unimplemented access size: %d\n", addr,
size);
break;
case 0x01c00a04: /* MXCC control register */
if (size == 4)
ret = env->mxccregs[3];
else
DPRINTF_MXCC("%08x: unimplemented access size: %d\n", addr,
size);
break;
case 0x01c00c00: /* Module reset register */
if (size == 8) {
ret = env->mxccregs[5];
// should we do something here?
} else
DPRINTF_MXCC("%08x: unimplemented access size: %d\n", addr,
size);
break;
case 0x01c00f00: /* MBus port address register */
if (size == 8)
ret = env->mxccregs[7];
else
DPRINTF_MXCC("%08x: unimplemented access size: %d\n", addr,
size);
break;
default:
DPRINTF_MXCC("%08x: unimplemented address, size: %d\n", addr,
size);
break;
}
DPRINTF_MXCC("asi = %d, size = %d, sign = %d, "
"addr = %08x -> ret = %" PRIx64 ","
"addr = %08x\n", asi, size, sign, last_addr, ret, addr);
#ifdef DEBUG_MXCC
dump_mxcc(env);
#endif
break;
case 3: /* MMU probe */
{
int mmulev;
mmulev = (addr >> 8) & 15;
if (mmulev > 4)
ret = 0;
else
ret = mmu_probe(env, addr, mmulev);
DPRINTF_MMU("mmu_probe: 0x%08x (lev %d) -> 0x%08" PRIx64 "\n",
addr, mmulev, ret);
}
break;
case 4: /* read MMU regs */
{
int reg = (addr >> 8) & 0x1f;
ret = env->mmuregs[reg];
if (reg == 3) /* Fault status cleared on read */
env->mmuregs[3] = 0;
else if (reg == 0x13) /* Fault status read */
ret = env->mmuregs[3];
else if (reg == 0x14) /* Fault address read */
ret = env->mmuregs[4];
DPRINTF_MMU("mmu_read: reg[%d] = 0x%08" PRIx64 "\n", reg, ret);
}
break;
case 5: // Turbosparc ITLB Diagnostic
case 6: // Turbosparc DTLB Diagnostic
case 7: // Turbosparc IOTLB Diagnostic
break;
case 9: /* Supervisor code access */
switch(size) {
case 1:
ret = ldub_code(addr);
break;
case 2:
ret = lduw_code(addr);
break;
default:
case 4:
ret = ldl_code(addr);
break;
case 8:
ret = ldq_code(addr);
break;
}
break;
case 0xa: /* User data access */
switch(size) {
case 1:
ret = ldub_user(addr);
break;
case 2:
ret = lduw_user(addr);
break;
default:
case 4:
ret = ldl_user(addr);
break;
case 8:
ret = ldq_user(addr);
break;
}
break;
case 0xb: /* Supervisor data access */
switch(size) {
case 1:
ret = ldub_kernel(addr);
break;
case 2:
ret = lduw_kernel(addr);
break;
default:
case 4:
ret = ldl_kernel(addr);
break;
case 8:
ret = ldq_kernel(addr);
break;
}
break;
case 0xc: /* I-cache tag */
case 0xd: /* I-cache data */
case 0xe: /* D-cache tag */
case 0xf: /* D-cache data */
break;
case 0x20: /* MMU passthrough */
switch(size) {
case 1:
ret = ldub_phys(addr);
break;
case 2:
ret = lduw_phys(addr);
break;
default:
case 4:
ret = ldl_phys(addr);
break;
case 8:
ret = ldq_phys(addr);
break;
}
break;
case 0x21 ... 0x2f: /* MMU passthrough, 0x100000000 to 0xfffffffff */
switch(size) {
case 1:
ret = ldub_phys((target_phys_addr_t)addr
| ((target_phys_addr_t)(asi & 0xf) << 32));
break;
case 2:
ret = lduw_phys((target_phys_addr_t)addr
| ((target_phys_addr_t)(asi & 0xf) << 32));
break;
default:
case 4:
ret = ldl_phys((target_phys_addr_t)addr
| ((target_phys_addr_t)(asi & 0xf) << 32));
break;
case 8:
ret = ldq_phys((target_phys_addr_t)addr
| ((target_phys_addr_t)(asi & 0xf) << 32));
break;
}
break;
case 0x30: // Turbosparc secondary cache diagnostic
case 0x31: // Turbosparc RAM snoop
case 0x32: // Turbosparc page table descriptor diagnostic
case 0x39: /* data cache diagnostic register */
ret = 0;
break;
case 0x38: /* SuperSPARC MMU Breakpoint Control Registers */
{
int reg = (addr >> 8) & 3;
switch(reg) {
case 0: /* Breakpoint Value (Addr) */
ret = env->mmubpregs[reg];
break;
case 1: /* Breakpoint Mask */
ret = env->mmubpregs[reg];
break;
case 2: /* Breakpoint Control */
ret = env->mmubpregs[reg];
break;
case 3: /* Breakpoint Status */
ret = env->mmubpregs[reg];
env->mmubpregs[reg] = 0ULL;
break;
}
DPRINTF_MMU("read breakpoint reg[%d] 0x%016" PRIx64 "\n", reg,
ret);
}
break;
case 8: /* User code access, XXX */
default:
do_unassigned_access(addr, 0, 0, asi, size);
ret = 0;
break;
}
if (sign) {
switch(size) {
case 1:
ret = (int8_t) ret;
break;
case 2:
ret = (int16_t) ret;
break;
case 4:
ret = (int32_t) ret;
break;
default:
break;
}
}
#ifdef DEBUG_ASI
dump_asi("read ", last_addr, asi, size, ret);
#endif
return ret;
}
void helper_st_asi(target_ulong addr, uint64_t val, int asi, int size)
{
helper_check_align(addr, size - 1);
switch(asi) {
case 2: /* SuperSparc MXCC registers */
switch (addr) {
case 0x01c00000: /* MXCC stream data register 0 */
if (size == 8)
env->mxccdata[0] = val;
else
DPRINTF_MXCC("%08x: unimplemented access size: %d\n", addr,
size);
break;
case 0x01c00008: /* MXCC stream data register 1 */
if (size == 8)
env->mxccdata[1] = val;
else
DPRINTF_MXCC("%08x: unimplemented access size: %d\n", addr,
size);
break;
case 0x01c00010: /* MXCC stream data register 2 */
if (size == 8)
env->mxccdata[2] = val;
else
DPRINTF_MXCC("%08x: unimplemented access size: %d\n", addr,
size);
break;
case 0x01c00018: /* MXCC stream data register 3 */
if (size == 8)
env->mxccdata[3] = val;
else
DPRINTF_MXCC("%08x: unimplemented access size: %d\n", addr,
size);
break;
case 0x01c00100: /* MXCC stream source */
if (size == 8)
env->mxccregs[0] = val;
else
DPRINTF_MXCC("%08x: unimplemented access size: %d\n", addr,
size);
env->mxccdata[0] = ldq_phys((env->mxccregs[0] & 0xffffffffULL) +
0);
env->mxccdata[1] = ldq_phys((env->mxccregs[0] & 0xffffffffULL) +
8);
env->mxccdata[2] = ldq_phys((env->mxccregs[0] & 0xffffffffULL) +
16);
env->mxccdata[3] = ldq_phys((env->mxccregs[0] & 0xffffffffULL) +
24);
break;
case 0x01c00200: /* MXCC stream destination */
if (size == 8)
env->mxccregs[1] = val;
else
DPRINTF_MXCC("%08x: unimplemented access size: %d\n", addr,
size);
stq_phys((env->mxccregs[1] & 0xffffffffULL) + 0,
env->mxccdata[0]);
stq_phys((env->mxccregs[1] & 0xffffffffULL) + 8,
env->mxccdata[1]);
stq_phys((env->mxccregs[1] & 0xffffffffULL) + 16,
env->mxccdata[2]);
stq_phys((env->mxccregs[1] & 0xffffffffULL) + 24,
env->mxccdata[3]);
break;
case 0x01c00a00: /* MXCC control register */
if (size == 8)
env->mxccregs[3] = val;
else
DPRINTF_MXCC("%08x: unimplemented access size: %d\n", addr,
size);
break;
case 0x01c00a04: /* MXCC control register */
if (size == 4)
env->mxccregs[3] = (env->mxccregs[3] & 0xffffffff00000000ULL)
| val;
else
DPRINTF_MXCC("%08x: unimplemented access size: %d\n", addr,
size);
break;
case 0x01c00e00: /* MXCC error register */
// writing a 1 bit clears the error
if (size == 8)
env->mxccregs[6] &= ~val;
else
DPRINTF_MXCC("%08x: unimplemented access size: %d\n", addr,
size);
break;
case 0x01c00f00: /* MBus port address register */
if (size == 8)
env->mxccregs[7] = val;
else
DPRINTF_MXCC("%08x: unimplemented access size: %d\n", addr,
size);
break;
default:
DPRINTF_MXCC("%08x: unimplemented address, size: %d\n", addr,
size);
break;
}
DPRINTF_MXCC("asi = %d, size = %d, addr = %08x, val = %" PRIx64 "\n",
asi, size, addr, val);
#ifdef DEBUG_MXCC
dump_mxcc(env);
#endif
break;
case 3: /* MMU flush */
{
int mmulev;
mmulev = (addr >> 8) & 15;
DPRINTF_MMU("mmu flush level %d\n", mmulev);
switch (mmulev) {
case 0: // flush page
tlb_flush_page(env, addr & 0xfffff000);
break;
case 1: // flush segment (256k)
case 2: // flush region (16M)
case 3: // flush context (4G)
case 4: // flush entire
tlb_flush(env, 1);
break;
default:
break;
}
#ifdef DEBUG_MMU
dump_mmu(env);
#endif
}
break;
case 4: /* write MMU regs */
{
int reg = (addr >> 8) & 0x1f;
uint32_t oldreg;
oldreg = env->mmuregs[reg];
switch(reg) {
case 0: // Control Register
env->mmuregs[reg] = (env->mmuregs[reg] & 0xff000000) |
(val & 0x00ffffff);
// Mappings generated during no-fault mode or MMU
// disabled mode are invalid in normal mode
if ((oldreg & (MMU_E | MMU_NF | env->def->mmu_bm)) !=
(env->mmuregs[reg] & (MMU_E | MMU_NF | env->def->mmu_bm)))
tlb_flush(env, 1);
break;
case 1: // Context Table Pointer Register
env->mmuregs[reg] = val & env->def->mmu_ctpr_mask;
break;
case 2: // Context Register
env->mmuregs[reg] = val & env->def->mmu_cxr_mask;
if (oldreg != env->mmuregs[reg]) {
/* we flush when the MMU context changes because
QEMU has no MMU context support */
tlb_flush(env, 1);
}
break;
case 3: // Synchronous Fault Status Register with Clear
case 4: // Synchronous Fault Address Register
break;
case 0x10: // TLB Replacement Control Register
env->mmuregs[reg] = val & env->def->mmu_trcr_mask;
break;
case 0x13: // Synchronous Fault Status Register with Read and Clear
env->mmuregs[3] = val & env->def->mmu_sfsr_mask;
break;
case 0x14: // Synchronous Fault Address Register
env->mmuregs[4] = val;
break;
default:
env->mmuregs[reg] = val;
break;
}
if (oldreg != env->mmuregs[reg]) {
DPRINTF_MMU("mmu change reg[%d]: 0x%08x -> 0x%08x\n",
reg, oldreg, env->mmuregs[reg]);
}
#ifdef DEBUG_MMU
dump_mmu(env);
#endif
}
break;
case 5: // Turbosparc ITLB Diagnostic
case 6: // Turbosparc DTLB Diagnostic
case 7: // Turbosparc IOTLB Diagnostic
break;
case 0xa: /* User data access */
switch(size) {
case 1:
stb_user(addr, val);
break;
case 2:
stw_user(addr, val);
break;
default:
case 4:
stl_user(addr, val);
break;
case 8:
stq_user(addr, val);
break;
}
break;
case 0xb: /* Supervisor data access */
switch(size) {
case 1:
stb_kernel(addr, val);
break;
case 2:
stw_kernel(addr, val);
break;
default:
case 4:
stl_kernel(addr, val);
break;
case 8:
stq_kernel(addr, val);
break;
}
break;
case 0xc: /* I-cache tag */
case 0xd: /* I-cache data */
case 0xe: /* D-cache tag */
case 0xf: /* D-cache data */
case 0x10: /* I/D-cache flush page */
case 0x11: /* I/D-cache flush segment */
case 0x12: /* I/D-cache flush region */
case 0x13: /* I/D-cache flush context */
case 0x14: /* I/D-cache flush user */
break;
case 0x17: /* Block copy, sta access */
{
// val = src
// addr = dst
// copy 32 bytes
unsigned int i;
uint32_t src = val & ~3, dst = addr & ~3, temp;
for (i = 0; i < 32; i += 4, src += 4, dst += 4) {
temp = ldl_kernel(src);
stl_kernel(dst, temp);
}
}
break;
case 0x1f: /* Block fill, stda access */
{
// addr = dst
// fill 32 bytes with val
unsigned int i;
uint32_t dst = addr & 7;
for (i = 0; i < 32; i += 8, dst += 8)
stq_kernel(dst, val);
}
break;
case 0x20: /* MMU passthrough */
{
switch(size) {
case 1:
stb_phys(addr, val);
break;
case 2:
stw_phys(addr, val);
break;
case 4:
default:
stl_phys(addr, val);
break;
case 8:
stq_phys(addr, val);
break;
}
}
break;
case 0x21 ... 0x2f: /* MMU passthrough, 0x100000000 to 0xfffffffff */
{
switch(size) {
case 1:
stb_phys((target_phys_addr_t)addr
| ((target_phys_addr_t)(asi & 0xf) << 32), val);
break;
case 2:
stw_phys((target_phys_addr_t)addr
| ((target_phys_addr_t)(asi & 0xf) << 32), val);
break;
case 4:
default:
stl_phys((target_phys_addr_t)addr
| ((target_phys_addr_t)(asi & 0xf) << 32), val);
break;
case 8:
stq_phys((target_phys_addr_t)addr
| ((target_phys_addr_t)(asi & 0xf) << 32), val);
break;
}
}
break;
case 0x30: // store buffer tags or Turbosparc secondary cache diagnostic
case 0x31: // store buffer data, Ross RT620 I-cache flush or
// Turbosparc snoop RAM
case 0x32: // store buffer control or Turbosparc page table
// descriptor diagnostic
case 0x36: /* I-cache flash clear */
case 0x37: /* D-cache flash clear */
case 0x4c: /* breakpoint action */
break;
case 0x38: /* SuperSPARC MMU Breakpoint Control Registers*/
{
int reg = (addr >> 8) & 3;
switch(reg) {
case 0: /* Breakpoint Value (Addr) */
env->mmubpregs[reg] = (val & 0xfffffffffULL);
break;
case 1: /* Breakpoint Mask */
env->mmubpregs[reg] = (val & 0xfffffffffULL);
break;
case 2: /* Breakpoint Control */
env->mmubpregs[reg] = (val & 0x7fULL);
break;
case 3: /* Breakpoint Status */
env->mmubpregs[reg] = (val & 0xfULL);
break;
}
DPRINTF_MMU("write breakpoint reg[%d] 0x%016x\n", reg,
env->mmuregs[reg]);
}
break;
case 8: /* User code access, XXX */
case 9: /* Supervisor code access, XXX */
default:
do_unassigned_access(addr, 1, 0, asi, size);
break;
}
#ifdef DEBUG_ASI
dump_asi("write", addr, asi, size, val);
#endif
}
#endif /* CONFIG_USER_ONLY */
#else /* TARGET_SPARC64 */
#ifdef CONFIG_USER_ONLY
uint64_t helper_ld_asi(target_ulong addr, int asi, int size, int sign)
{
uint64_t ret = 0;
#if defined(DEBUG_ASI)
target_ulong last_addr = addr;
#endif
if (asi < 0x80)
raise_exception(TT_PRIV_ACT);
helper_check_align(addr, size - 1);
address_mask(env, &addr);
switch (asi) {
case 0x82: // Primary no-fault
case 0x8a: // Primary no-fault LE
if (page_check_range(addr, size, PAGE_READ) == -1) {
#ifdef DEBUG_ASI
dump_asi("read ", last_addr, asi, size, ret);
#endif
return 0;
}
// Fall through
case 0x80: // Primary
case 0x88: // Primary LE
{
switch(size) {
case 1:
ret = ldub_raw(addr);
break;
case 2:
ret = lduw_raw(addr);
break;
case 4:
ret = ldl_raw(addr);
break;
default:
case 8:
ret = ldq_raw(addr);
break;
}
}
break;
case 0x83: // Secondary no-fault
case 0x8b: // Secondary no-fault LE
if (page_check_range(addr, size, PAGE_READ) == -1) {
#ifdef DEBUG_ASI
dump_asi("read ", last_addr, asi, size, ret);
#endif
return 0;
}
// Fall through
case 0x81: // Secondary
case 0x89: // Secondary LE
// XXX
break;
default:
break;
}
/* Convert from little endian */
switch (asi) {
case 0x88: // Primary LE
case 0x89: // Secondary LE
case 0x8a: // Primary no-fault LE
case 0x8b: // Secondary no-fault LE
switch(size) {
case 2:
ret = bswap16(ret);
break;
case 4:
ret = bswap32(ret);
break;
case 8:
ret = bswap64(ret);
break;
default:
break;
}
default:
break;
}
/* Convert to signed number */
if (sign) {
switch(size) {
case 1:
ret = (int8_t) ret;
break;
case 2:
ret = (int16_t) ret;
break;
case 4:
ret = (int32_t) ret;
break;
default:
break;
}
}
#ifdef DEBUG_ASI
dump_asi("read ", last_addr, asi, size, ret);
#endif
return ret;
}
void helper_st_asi(target_ulong addr, target_ulong val, int asi, int size)
{
#ifdef DEBUG_ASI
dump_asi("write", addr, asi, size, val);
#endif
if (asi < 0x80)
raise_exception(TT_PRIV_ACT);
helper_check_align(addr, size - 1);
address_mask(env, &addr);
/* Convert to little endian */
switch (asi) {
case 0x88: // Primary LE
case 0x89: // Secondary LE
switch(size) {
case 2:
val = bswap16(val);
break;
case 4:
val = bswap32(val);
break;
case 8:
val = bswap64(val);
break;
default:
break;
}
default:
break;
}
switch(asi) {
case 0x80: // Primary
case 0x88: // Primary LE
{
switch(size) {
case 1:
stb_raw(addr, val);
break;
case 2:
stw_raw(addr, val);
break;
case 4:
stl_raw(addr, val);
break;
case 8:
default:
stq_raw(addr, val);
break;
}
}
break;
case 0x81: // Secondary
case 0x89: // Secondary LE
// XXX
return;
case 0x82: // Primary no-fault, RO
case 0x83: // Secondary no-fault, RO
case 0x8a: // Primary no-fault LE, RO
case 0x8b: // Secondary no-fault LE, RO
default:
do_unassigned_access(addr, 1, 0, 1, size);
return;
}
}
#else /* CONFIG_USER_ONLY */
uint64_t helper_ld_asi(target_ulong addr, int asi, int size, int sign)
{
uint64_t ret = 0;
#if defined(DEBUG_ASI)
target_ulong last_addr = addr;
#endif
if ((asi < 0x80 && (env->pstate & PS_PRIV) == 0)
|| ((env->def->features & CPU_FEATURE_HYPV)
&& asi >= 0x30 && asi < 0x80
&& !(env->hpstate & HS_PRIV)))
raise_exception(TT_PRIV_ACT);
helper_check_align(addr, size - 1);
switch (asi) {
case 0x82: // Primary no-fault
case 0x8a: // Primary no-fault LE
if (cpu_get_phys_page_debug(env, addr) == -1ULL) {
#ifdef DEBUG_ASI
dump_asi("read ", last_addr, asi, size, ret);
#endif
return 0;
}
// Fall through
case 0x10: // As if user primary
case 0x18: // As if user primary LE
case 0x80: // Primary
case 0x88: // Primary LE
case 0xe2: // UA2007 Primary block init
case 0xe3: // UA2007 Secondary block init
if ((asi & 0x80) && (env->pstate & PS_PRIV)) {
if ((env->def->features & CPU_FEATURE_HYPV)
&& env->hpstate & HS_PRIV) {
switch(size) {
case 1:
ret = ldub_hypv(addr);
break;
case 2:
ret = lduw_hypv(addr);
break;
case 4:
ret = ldl_hypv(addr);
break;
default:
case 8:
ret = ldq_hypv(addr);
break;
}
} else {
switch(size) {
case 1:
ret = ldub_kernel(addr);
break;
case 2:
ret = lduw_kernel(addr);
break;
case 4:
ret = ldl_kernel(addr);
break;
default:
case 8:
ret = ldq_kernel(addr);
break;
}
}
} else {
switch(size) {
case 1:
ret = ldub_user(addr);
break;
case 2:
ret = lduw_user(addr);
break;
case 4:
ret = ldl_user(addr);
break;
default:
case 8:
ret = ldq_user(addr);
break;
}
}
break;
case 0x14: // Bypass
case 0x15: // Bypass, non-cacheable
case 0x1c: // Bypass LE
case 0x1d: // Bypass, non-cacheable LE
{
switch(size) {
case 1:
ret = ldub_phys(addr);
break;
case 2:
ret = lduw_phys(addr);
break;
case 4:
ret = ldl_phys(addr);
break;
default:
case 8:
ret = ldq_phys(addr);
break;
}
break;
}
case 0x24: // Nucleus quad LDD 128 bit atomic
case 0x2c: // Nucleus quad LDD 128 bit atomic LE
// Only ldda allowed
raise_exception(TT_ILL_INSN);
return 0;
case 0x83: // Secondary no-fault
case 0x8b: // Secondary no-fault LE
if (cpu_get_phys_page_debug(env, addr) == -1ULL) {
#ifdef DEBUG_ASI
dump_asi("read ", last_addr, asi, size, ret);
#endif
return 0;
}
// Fall through
case 0x04: // Nucleus
case 0x0c: // Nucleus Little Endian (LE)
case 0x11: // As if user secondary
case 0x19: // As if user secondary LE
case 0x4a: // UPA config
case 0x81: // Secondary
case 0x89: // Secondary LE
// XXX
break;
case 0x45: // LSU
ret = env->lsu;
break;
case 0x50: // I-MMU regs
{
int reg = (addr >> 3) & 0xf;
if (reg == 0) {
// I-TSB Tag Target register
ret = ultrasparc_tag_target(env->immu.tag_access);
} else {
ret = env->immuregs[reg];
}
break;
}
case 0x51: // I-MMU 8k TSB pointer
{
// env->immuregs[5] holds I-MMU TSB register value
// env->immuregs[6] holds I-MMU Tag Access register value
ret = ultrasparc_tsb_pointer(env->immu.tsb, env->immu.tag_access,
8*1024);
break;
}
case 0x52: // I-MMU 64k TSB pointer
{
// env->immuregs[5] holds I-MMU TSB register value
// env->immuregs[6] holds I-MMU Tag Access register value
ret = ultrasparc_tsb_pointer(env->immu.tsb, env->immu.tag_access,
64*1024);
break;
}
case 0x55: // I-MMU data access
{
int reg = (addr >> 3) & 0x3f;
ret = env->itlb[reg].tte;
break;
}
case 0x56: // I-MMU tag read
{
int reg = (addr >> 3) & 0x3f;
ret = env->itlb[reg].tag;
break;
}
case 0x58: // D-MMU regs
{
int reg = (addr >> 3) & 0xf;
if (reg == 0) {
// D-TSB Tag Target register
ret = ultrasparc_tag_target(env->dmmu.tag_access);
} else {
ret = env->dmmuregs[reg];
}
break;
}
case 0x59: // D-MMU 8k TSB pointer
{
// env->dmmuregs[5] holds D-MMU TSB register value
// env->dmmuregs[6] holds D-MMU Tag Access register value
ret = ultrasparc_tsb_pointer(env->dmmu.tsb, env->dmmu.tag_access,
8*1024);
break;
}
case 0x5a: // D-MMU 64k TSB pointer
{
// env->dmmuregs[5] holds D-MMU TSB register value
// env->dmmuregs[6] holds D-MMU Tag Access register value
ret = ultrasparc_tsb_pointer(env->dmmu.tsb, env->dmmu.tag_access,
64*1024);
break;
}
case 0x5d: // D-MMU data access
{
int reg = (addr >> 3) & 0x3f;
ret = env->dtlb[reg].tte;
break;
}
case 0x5e: // D-MMU tag read
{
int reg = (addr >> 3) & 0x3f;
ret = env->dtlb[reg].tag;
break;
}
case 0x46: // D-cache data
case 0x47: // D-cache tag access
case 0x4b: // E-cache error enable
case 0x4c: // E-cache asynchronous fault status
case 0x4d: // E-cache asynchronous fault address
case 0x4e: // E-cache tag data
case 0x66: // I-cache instruction access
case 0x67: // I-cache tag access
case 0x6e: // I-cache predecode
case 0x6f: // I-cache LRU etc.
case 0x76: // E-cache tag
case 0x7e: // E-cache tag
break;
case 0x5b: // D-MMU data pointer
case 0x48: // Interrupt dispatch, RO
case 0x49: // Interrupt data receive
case 0x7f: // Incoming interrupt vector, RO
// XXX
break;
case 0x54: // I-MMU data in, WO
case 0x57: // I-MMU demap, WO
case 0x5c: // D-MMU data in, WO
case 0x5f: // D-MMU demap, WO
case 0x77: // Interrupt vector, WO
default:
do_unassigned_access(addr, 0, 0, 1, size);
ret = 0;
break;
}
/* Convert from little endian */
switch (asi) {
case 0x0c: // Nucleus Little Endian (LE)
case 0x18: // As if user primary LE
case 0x19: // As if user secondary LE
case 0x1c: // Bypass LE
case 0x1d: // Bypass, non-cacheable LE
case 0x88: // Primary LE
case 0x89: // Secondary LE
case 0x8a: // Primary no-fault LE
case 0x8b: // Secondary no-fault LE
switch(size) {
case 2:
ret = bswap16(ret);
break;
case 4:
ret = bswap32(ret);
break;
case 8:
ret = bswap64(ret);
break;
default:
break;
}
default:
break;
}
/* Convert to signed number */
if (sign) {
switch(size) {
case 1:
ret = (int8_t) ret;
break;
case 2:
ret = (int16_t) ret;
break;
case 4:
ret = (int32_t) ret;
break;
default:
break;
}
}
#ifdef DEBUG_ASI
dump_asi("read ", last_addr, asi, size, ret);
#endif
return ret;
}
void helper_st_asi(target_ulong addr, target_ulong val, int asi, int size)
{
#ifdef DEBUG_ASI
dump_asi("write", addr, asi, size, val);
#endif
if ((asi < 0x80 && (env->pstate & PS_PRIV) == 0)
|| ((env->def->features & CPU_FEATURE_HYPV)
&& asi >= 0x30 && asi < 0x80
&& !(env->hpstate & HS_PRIV)))
raise_exception(TT_PRIV_ACT);
helper_check_align(addr, size - 1);
/* Convert to little endian */
switch (asi) {
case 0x0c: // Nucleus Little Endian (LE)
case 0x18: // As if user primary LE
case 0x19: // As if user secondary LE
case 0x1c: // Bypass LE
case 0x1d: // Bypass, non-cacheable LE
case 0x88: // Primary LE
case 0x89: // Secondary LE
switch(size) {
case 2:
val = bswap16(val);
break;
case 4:
val = bswap32(val);
break;
case 8:
val = bswap64(val);
break;
default:
break;
}
default:
break;
}
switch(asi) {
case 0x10: // As if user primary
case 0x18: // As if user primary LE
case 0x80: // Primary
case 0x88: // Primary LE
case 0xe2: // UA2007 Primary block init
case 0xe3: // UA2007 Secondary block init
if ((asi & 0x80) && (env->pstate & PS_PRIV)) {
if ((env->def->features & CPU_FEATURE_HYPV)
&& env->hpstate & HS_PRIV) {
switch(size) {
case 1:
stb_hypv(addr, val);
break;
case 2:
stw_hypv(addr, val);
break;
case 4:
stl_hypv(addr, val);
break;
case 8:
default:
stq_hypv(addr, val);
break;
}
} else {
switch(size) {
case 1:
stb_kernel(addr, val);
break;
case 2:
stw_kernel(addr, val);
break;
case 4:
stl_kernel(addr, val);
break;
case 8:
default:
stq_kernel(addr, val);
break;
}
}
} else {
switch(size) {
case 1:
stb_user(addr, val);
break;
case 2:
stw_user(addr, val);
break;
case 4:
stl_user(addr, val);
break;
case 8:
default:
stq_user(addr, val);
break;
}
}
break;
case 0x14: // Bypass
case 0x15: // Bypass, non-cacheable
case 0x1c: // Bypass LE
case 0x1d: // Bypass, non-cacheable LE
{
switch(size) {
case 1:
stb_phys(addr, val);
break;
case 2:
stw_phys(addr, val);
break;
case 4:
stl_phys(addr, val);
break;
case 8:
default:
stq_phys(addr, val);
break;
}
}
return;
case 0x24: // Nucleus quad LDD 128 bit atomic
case 0x2c: // Nucleus quad LDD 128 bit atomic LE
// Only ldda allowed
raise_exception(TT_ILL_INSN);
return;
case 0x04: // Nucleus
case 0x0c: // Nucleus Little Endian (LE)
case 0x11: // As if user secondary
case 0x19: // As if user secondary LE
case 0x4a: // UPA config
case 0x81: // Secondary
case 0x89: // Secondary LE
// XXX
return;
case 0x45: // LSU
{
uint64_t oldreg;
oldreg = env->lsu;
env->lsu = val & (DMMU_E | IMMU_E);
// Mappings generated during D/I MMU disabled mode are
// invalid in normal mode
if (oldreg != env->lsu) {
DPRINTF_MMU("LSU change: 0x%" PRIx64 " -> 0x%" PRIx64 "\n",
oldreg, env->lsu);
#ifdef DEBUG_MMU
dump_mmu(env);
#endif
tlb_flush(env, 1);
}
return;
}
case 0x50: // I-MMU regs
{
int reg = (addr >> 3) & 0xf;
uint64_t oldreg;
oldreg = env->immuregs[reg];
switch(reg) {
case 0: // RO
return;
case 1: // Not in I-MMU
case 2:
return;
case 3: // SFSR
if ((val & 1) == 0)
val = 0; // Clear SFSR
env->immu.sfsr = val;
break;
case 4: // RO
return;
case 5: // TSB access
DPRINTF_MMU("immu TSB write: 0x%016" PRIx64 " -> 0x%016"
PRIx64 "\n", env->immu.tsb, val);
env->immu.tsb = val;
break;
case 6: // Tag access
env->immu.tag_access = val;
break;
case 7:
case 8:
return;
default:
break;
}
if (oldreg != env->immuregs[reg]) {
DPRINTF_MMU("immu change reg[%d]: 0x%016" PRIx64 " -> 0x%016"
PRIx64 "\n", reg, oldreg, env->immuregs[reg]);
}
#ifdef DEBUG_MMU
dump_mmu(env);
#endif
return;
}
case 0x54: // I-MMU data in
replace_tlb_1bit_lru(env->itlb, env->immu.tag_access, val, "immu", env);
return;
case 0x55: // I-MMU data access
{
// TODO: auto demap
unsigned int i = (addr >> 3) & 0x3f;
replace_tlb_entry(&env->itlb[i], env->immu.tag_access, val, env);
#ifdef DEBUG_MMU
DPRINTF_MMU("immu data access replaced entry [%i]\n", i);
dump_mmu(env);
#endif
return;
}
case 0x57: // I-MMU demap
demap_tlb(env->itlb, val, "immu", env);
return;
case 0x58: // D-MMU regs
{
int reg = (addr >> 3) & 0xf;
uint64_t oldreg;
oldreg = env->dmmuregs[reg];
switch(reg) {
case 0: // RO
case 4:
return;
case 3: // SFSR
if ((val & 1) == 0) {
val = 0; // Clear SFSR, Fault address
env->dmmu.sfar = 0;
}
env->dmmu.sfsr = val;
break;
case 1: // Primary context
env->dmmu.mmu_primary_context = val;
break;
case 2: // Secondary context
env->dmmu.mmu_secondary_context = val;
break;
case 5: // TSB access
DPRINTF_MMU("dmmu TSB write: 0x%016" PRIx64 " -> 0x%016"
PRIx64 "\n", env->dmmu.tsb, val);
env->dmmu.tsb = val;
break;
case 6: // Tag access
env->dmmu.tag_access = val;
break;
case 7: // Virtual Watchpoint
case 8: // Physical Watchpoint
default:
env->dmmuregs[reg] = val;
break;
}
if (oldreg != env->dmmuregs[reg]) {
DPRINTF_MMU("dmmu change reg[%d]: 0x%016" PRIx64 " -> 0x%016"
PRIx64 "\n", reg, oldreg, env->dmmuregs[reg]);
}
#ifdef DEBUG_MMU
dump_mmu(env);
#endif
return;
}
case 0x5c: // D-MMU data in
replace_tlb_1bit_lru(env->dtlb, env->dmmu.tag_access, val, "dmmu", env);
return;
case 0x5d: // D-MMU data access
{
unsigned int i = (addr >> 3) & 0x3f;
replace_tlb_entry(&env->dtlb[i], env->dmmu.tag_access, val, env);
#ifdef DEBUG_MMU
DPRINTF_MMU("dmmu data access replaced entry [%i]\n", i);
dump_mmu(env);
#endif
return;
}
case 0x5f: // D-MMU demap
demap_tlb(env->dtlb, val, "dmmu", env);
return;
case 0x49: // Interrupt data receive
// XXX
return;
case 0x46: // D-cache data
case 0x47: // D-cache tag access
case 0x4b: // E-cache error enable
case 0x4c: // E-cache asynchronous fault status
case 0x4d: // E-cache asynchronous fault address
case 0x4e: // E-cache tag data
case 0x66: // I-cache instruction access
case 0x67: // I-cache tag access
case 0x6e: // I-cache predecode
case 0x6f: // I-cache LRU etc.
case 0x76: // E-cache tag
case 0x7e: // E-cache tag
return;
case 0x51: // I-MMU 8k TSB pointer, RO
case 0x52: // I-MMU 64k TSB pointer, RO
case 0x56: // I-MMU tag read, RO
case 0x59: // D-MMU 8k TSB pointer, RO
case 0x5a: // D-MMU 64k TSB pointer, RO
case 0x5b: // D-MMU data pointer, RO
case 0x5e: // D-MMU tag read, RO
case 0x48: // Interrupt dispatch, RO
case 0x7f: // Incoming interrupt vector, RO
case 0x82: // Primary no-fault, RO
case 0x83: // Secondary no-fault, RO
case 0x8a: // Primary no-fault LE, RO
case 0x8b: // Secondary no-fault LE, RO
default:
do_unassigned_access(addr, 1, 0, 1, size);
return;
}
}
#endif /* CONFIG_USER_ONLY */
void helper_ldda_asi(target_ulong addr, int asi, int rd)
{
if ((asi < 0x80 && (env->pstate & PS_PRIV) == 0)
|| ((env->def->features & CPU_FEATURE_HYPV)
&& asi >= 0x30 && asi < 0x80
&& !(env->hpstate & HS_PRIV)))
raise_exception(TT_PRIV_ACT);
switch (asi) {
case 0x24: // Nucleus quad LDD 128 bit atomic
case 0x2c: // Nucleus quad LDD 128 bit atomic LE
helper_check_align(addr, 0xf);
if (rd == 0) {
env->gregs[1] = ldq_kernel(addr + 8);
if (asi == 0x2c)
bswap64s(&env->gregs[1]);
} else if (rd < 8) {
env->gregs[rd] = ldq_kernel(addr);
env->gregs[rd + 1] = ldq_kernel(addr + 8);
if (asi == 0x2c) {
bswap64s(&env->gregs[rd]);
bswap64s(&env->gregs[rd + 1]);
}
} else {
env->regwptr[rd] = ldq_kernel(addr);
env->regwptr[rd + 1] = ldq_kernel(addr + 8);
if (asi == 0x2c) {
bswap64s(&env->regwptr[rd]);
bswap64s(&env->regwptr[rd + 1]);
}
}
break;
default:
helper_check_align(addr, 0x3);
if (rd == 0)
env->gregs[1] = helper_ld_asi(addr + 4, asi, 4, 0);
else if (rd < 8) {
env->gregs[rd] = helper_ld_asi(addr, asi, 4, 0);
env->gregs[rd + 1] = helper_ld_asi(addr + 4, asi, 4, 0);
} else {
env->regwptr[rd] = helper_ld_asi(addr, asi, 4, 0);
env->regwptr[rd + 1] = helper_ld_asi(addr + 4, asi, 4, 0);
}
break;
}
}
void helper_ldf_asi(target_ulong addr, int asi, int size, int rd)
{
unsigned int i;
target_ulong val;
helper_check_align(addr, 3);
switch (asi) {
case 0xf0: // Block load primary
case 0xf1: // Block load secondary
case 0xf8: // Block load primary LE
case 0xf9: // Block load secondary LE
if (rd & 7) {
raise_exception(TT_ILL_INSN);
return;
}
helper_check_align(addr, 0x3f);
for (i = 0; i < 16; i++) {
*(uint32_t *)&env->fpr[rd++] = helper_ld_asi(addr, asi & 0x8f, 4,
0);
addr += 4;
}
return;
default:
break;
}
val = helper_ld_asi(addr, asi, size, 0);
switch(size) {
default:
case 4:
*((uint32_t *)&env->fpr[rd]) = val;
break;
case 8:
*((int64_t *)&DT0) = val;
break;
case 16:
// XXX
break;
}
}
void helper_stf_asi(target_ulong addr, int asi, int size, int rd)
{
unsigned int i;
target_ulong val = 0;
helper_check_align(addr, 3);
switch (asi) {
case 0xe0: // UA2007 Block commit store primary (cache flush)
case 0xe1: // UA2007 Block commit store secondary (cache flush)
case 0xf0: // Block store primary
case 0xf1: // Block store secondary
case 0xf8: // Block store primary LE
case 0xf9: // Block store secondary LE
if (rd & 7) {
raise_exception(TT_ILL_INSN);
return;
}
helper_check_align(addr, 0x3f);
for (i = 0; i < 16; i++) {
val = *(uint32_t *)&env->fpr[rd++];
helper_st_asi(addr, val, asi & 0x8f, 4);
addr += 4;
}
return;
default:
break;
}
switch(size) {
default:
case 4:
val = *((uint32_t *)&env->fpr[rd]);
break;
case 8:
val = *((int64_t *)&DT0);
break;
case 16:
// XXX
break;
}
helper_st_asi(addr, val, asi, size);
}
target_ulong helper_cas_asi(target_ulong addr, target_ulong val1,
target_ulong val2, uint32_t asi)
{
target_ulong ret;
val2 &= 0xffffffffUL;
ret = helper_ld_asi(addr, asi, 4, 0);
ret &= 0xffffffffUL;
if (val2 == ret)
helper_st_asi(addr, val1 & 0xffffffffUL, asi, 4);
return ret;
}
target_ulong helper_casx_asi(target_ulong addr, target_ulong val1,
target_ulong val2, uint32_t asi)
{
target_ulong ret;
ret = helper_ld_asi(addr, asi, 8, 0);
if (val2 == ret)
helper_st_asi(addr, val1, asi, 8);
return ret;
}
#endif /* TARGET_SPARC64 */
#ifndef TARGET_SPARC64
void helper_rett(void)
{
unsigned int cwp;
if (env->psret == 1)
raise_exception(TT_ILL_INSN);
env->psret = 1;
cwp = cpu_cwp_inc(env, env->cwp + 1) ;
if (env->wim & (1 << cwp)) {
raise_exception(TT_WIN_UNF);
}
set_cwp(cwp);
env->psrs = env->psrps;
}
#endif
target_ulong helper_udiv(target_ulong a, target_ulong b)
{
uint64_t x0;
uint32_t x1;
x0 = (a & 0xffffffff) | ((int64_t) (env->y) << 32);
x1 = b;
if (x1 == 0) {
raise_exception(TT_DIV_ZERO);
}
x0 = x0 / x1;
if (x0 > 0xffffffff) {
env->cc_src2 = 1;
return 0xffffffff;
} else {
env->cc_src2 = 0;
return x0;
}
}
target_ulong helper_sdiv(target_ulong a, target_ulong b)
{
int64_t x0;
int32_t x1;
x0 = (a & 0xffffffff) | ((int64_t) (env->y) << 32);
x1 = b;
if (x1 == 0) {
raise_exception(TT_DIV_ZERO);
}
x0 = x0 / x1;
if ((int32_t) x0 != x0) {
env->cc_src2 = 1;
return x0 < 0? 0x80000000: 0x7fffffff;
} else {
env->cc_src2 = 0;
return x0;
}
}
void helper_stdf(target_ulong addr, int mem_idx)
{
helper_check_align(addr, 7);
#if !defined(CONFIG_USER_ONLY)
switch (mem_idx) {
case 0:
stfq_user(addr, DT0);
break;
case 1:
stfq_kernel(addr, DT0);
break;
#ifdef TARGET_SPARC64
case 2:
stfq_hypv(addr, DT0);
break;
#endif
default:
break;
}
#else
address_mask(env, &addr);
stfq_raw(addr, DT0);
#endif
}
void helper_lddf(target_ulong addr, int mem_idx)
{
helper_check_align(addr, 7);
#if !defined(CONFIG_USER_ONLY)
switch (mem_idx) {
case 0:
DT0 = ldfq_user(addr);
break;
case 1:
DT0 = ldfq_kernel(addr);
break;
#ifdef TARGET_SPARC64
case 2:
DT0 = ldfq_hypv(addr);
break;
#endif
default:
break;
}
#else
address_mask(env, &addr);
DT0 = ldfq_raw(addr);
#endif
}
void helper_ldqf(target_ulong addr, int mem_idx)
{
// XXX add 128 bit load
CPU_QuadU u;
helper_check_align(addr, 7);
#if !defined(CONFIG_USER_ONLY)
switch (mem_idx) {
case 0:
u.ll.upper = ldq_user(addr);
u.ll.lower = ldq_user(addr + 8);
QT0 = u.q;
break;
case 1:
u.ll.upper = ldq_kernel(addr);
u.ll.lower = ldq_kernel(addr + 8);
QT0 = u.q;
break;
#ifdef TARGET_SPARC64
case 2:
u.ll.upper = ldq_hypv(addr);
u.ll.lower = ldq_hypv(addr + 8);
QT0 = u.q;
break;
#endif
default:
break;
}
#else
address_mask(env, &addr);
u.ll.upper = ldq_raw(addr);
u.ll.lower = ldq_raw((addr + 8) & 0xffffffffULL);
QT0 = u.q;
#endif
}
void helper_stqf(target_ulong addr, int mem_idx)
{
// XXX add 128 bit store
CPU_QuadU u;
helper_check_align(addr, 7);
#if !defined(CONFIG_USER_ONLY)
switch (mem_idx) {
case 0:
u.q = QT0;
stq_user(addr, u.ll.upper);
stq_user(addr + 8, u.ll.lower);
break;
case 1:
u.q = QT0;
stq_kernel(addr, u.ll.upper);
stq_kernel(addr + 8, u.ll.lower);
break;
#ifdef TARGET_SPARC64
case 2:
u.q = QT0;
stq_hypv(addr, u.ll.upper);
stq_hypv(addr + 8, u.ll.lower);
break;
#endif
default:
break;
}
#else
u.q = QT0;
address_mask(env, &addr);
stq_raw(addr, u.ll.upper);
stq_raw((addr + 8) & 0xffffffffULL, u.ll.lower);
#endif
}
static inline void set_fsr(void)
{
int rnd_mode;
switch (env->fsr & FSR_RD_MASK) {
case FSR_RD_NEAREST:
rnd_mode = float_round_nearest_even;
break;
default:
case FSR_RD_ZERO:
rnd_mode = float_round_to_zero;
break;
case FSR_RD_POS:
rnd_mode = float_round_up;
break;
case FSR_RD_NEG:
rnd_mode = float_round_down;
break;
}
set_float_rounding_mode(rnd_mode, &env->fp_status);
}
void helper_ldfsr(uint32_t new_fsr)
{
env->fsr = (new_fsr & FSR_LDFSR_MASK) | (env->fsr & FSR_LDFSR_OLDMASK);
set_fsr();
}
#ifdef TARGET_SPARC64
void helper_ldxfsr(uint64_t new_fsr)
{
env->fsr = (new_fsr & FSR_LDXFSR_MASK) | (env->fsr & FSR_LDXFSR_OLDMASK);
set_fsr();
}
#endif
void helper_debug(void)
{
env->exception_index = EXCP_DEBUG;
cpu_loop_exit();
}
#ifndef TARGET_SPARC64
/* XXX: use another pointer for %iN registers to avoid slow wrapping
handling ? */
void helper_save(void)
{
uint32_t cwp;
cwp = cpu_cwp_dec(env, env->cwp - 1);
if (env->wim & (1 << cwp)) {
raise_exception(TT_WIN_OVF);
}
set_cwp(cwp);
}
void helper_restore(void)
{
uint32_t cwp;
cwp = cpu_cwp_inc(env, env->cwp + 1);
if (env->wim & (1 << cwp)) {
raise_exception(TT_WIN_UNF);
}
set_cwp(cwp);
}
void helper_wrpsr(target_ulong new_psr)
{
if ((new_psr & PSR_CWP) >= env->nwindows)
raise_exception(TT_ILL_INSN);
else
PUT_PSR(env, new_psr);
}
target_ulong helper_rdpsr(void)
{
return GET_PSR(env);
}
#else
/* XXX: use another pointer for %iN registers to avoid slow wrapping
handling ? */
void helper_save(void)
{
uint32_t cwp;
cwp = cpu_cwp_dec(env, env->cwp - 1);
if (env->cansave == 0) {
raise_exception(TT_SPILL | (env->otherwin != 0 ?
(TT_WOTHER | ((env->wstate & 0x38) >> 1)):
((env->wstate & 0x7) << 2)));
} else {
if (env->cleanwin - env->canrestore == 0) {
// XXX Clean windows without trap
raise_exception(TT_CLRWIN);
} else {
env->cansave--;
env->canrestore++;
set_cwp(cwp);
}
}
}
void helper_restore(void)
{
uint32_t cwp;
cwp = cpu_cwp_inc(env, env->cwp + 1);
if (env->canrestore == 0) {
raise_exception(TT_FILL | (env->otherwin != 0 ?
(TT_WOTHER | ((env->wstate & 0x38) >> 1)):
((env->wstate & 0x7) << 2)));
} else {
env->cansave++;
env->canrestore--;
set_cwp(cwp);
}
}
void helper_flushw(void)
{
if (env->cansave != env->nwindows - 2) {
raise_exception(TT_SPILL | (env->otherwin != 0 ?
(TT_WOTHER | ((env->wstate & 0x38) >> 1)):
((env->wstate & 0x7) << 2)));
}
}
void helper_saved(void)
{
env->cansave++;
if (env->otherwin == 0)
env->canrestore--;
else
env->otherwin--;
}
void helper_restored(void)
{
env->canrestore++;
if (env->cleanwin < env->nwindows - 1)
env->cleanwin++;
if (env->otherwin == 0)
env->cansave--;
else
env->otherwin--;
}
target_ulong helper_rdccr(void)
{
return GET_CCR(env);
}
void helper_wrccr(target_ulong new_ccr)
{
PUT_CCR(env, new_ccr);
}
// CWP handling is reversed in V9, but we still use the V8 register
// order.
target_ulong helper_rdcwp(void)
{
return GET_CWP64(env);
}
void helper_wrcwp(target_ulong new_cwp)
{
PUT_CWP64(env, new_cwp);
}
// This function uses non-native bit order
#define GET_FIELD(X, FROM, TO) \
((X) >> (63 - (TO)) & ((1ULL << ((TO) - (FROM) + 1)) - 1))
// This function uses the order in the manuals, i.e. bit 0 is 2^0
#define GET_FIELD_SP(X, FROM, TO) \
GET_FIELD(X, 63 - (TO), 63 - (FROM))
target_ulong helper_array8(target_ulong pixel_addr, target_ulong cubesize)
{
return (GET_FIELD_SP(pixel_addr, 60, 63) << (17 + 2 * cubesize)) |
(GET_FIELD_SP(pixel_addr, 39, 39 + cubesize - 1) << (17 + cubesize)) |
(GET_FIELD_SP(pixel_addr, 17 + cubesize - 1, 17) << 17) |
(GET_FIELD_SP(pixel_addr, 56, 59) << 13) |
(GET_FIELD_SP(pixel_addr, 35, 38) << 9) |
(GET_FIELD_SP(pixel_addr, 13, 16) << 5) |
(((pixel_addr >> 55) & 1) << 4) |
(GET_FIELD_SP(pixel_addr, 33, 34) << 2) |
GET_FIELD_SP(pixel_addr, 11, 12);
}
target_ulong helper_alignaddr(target_ulong addr, target_ulong offset)
{
uint64_t tmp;
tmp = addr + offset;
env->gsr &= ~7ULL;
env->gsr |= tmp & 7ULL;
return tmp & ~7ULL;
}
target_ulong helper_popc(target_ulong val)
{
return ctpop64(val);
}
static inline uint64_t *get_gregset(uint64_t pstate)
{
switch (pstate) {
default:
case 0:
return env->bgregs;
case PS_AG:
return env->agregs;
case PS_MG:
return env->mgregs;
case PS_IG:
return env->igregs;
}
}
static inline void change_pstate(uint64_t new_pstate)
{
uint64_t pstate_regs, new_pstate_regs;
uint64_t *src, *dst;
if (env->def->features & CPU_FEATURE_GL) {
// PS_AG is not implemented in this case
new_pstate &= ~PS_AG;
}
pstate_regs = env->pstate & 0xc01;
new_pstate_regs = new_pstate & 0xc01;
if (new_pstate_regs != pstate_regs) {
// Switch global register bank
src = get_gregset(new_pstate_regs);
dst = get_gregset(pstate_regs);
memcpy32(dst, env->gregs);
memcpy32(env->gregs, src);
}
env->pstate = new_pstate;
}
void helper_wrpstate(target_ulong new_state)
{
change_pstate(new_state & 0xf3f);
}
void helper_done(void)
{
env->pc = env->tsptr->tpc;
env->npc = env->tsptr->tnpc + 4;
PUT_CCR(env, env->tsptr->tstate >> 32);
env->asi = (env->tsptr->tstate >> 24) & 0xff;
change_pstate((env->tsptr->tstate >> 8) & 0xf3f);
PUT_CWP64(env, env->tsptr->tstate & 0xff);
env->tl--;
env->tsptr = &env->ts[env->tl & MAXTL_MASK];
}
void helper_retry(void)
{
env->pc = env->tsptr->tpc;
env->npc = env->tsptr->tnpc;
PUT_CCR(env, env->tsptr->tstate >> 32);
env->asi = (env->tsptr->tstate >> 24) & 0xff;
change_pstate((env->tsptr->tstate >> 8) & 0xf3f);
PUT_CWP64(env, env->tsptr->tstate & 0xff);
env->tl--;
env->tsptr = &env->ts[env->tl & MAXTL_MASK];
}
void helper_set_softint(uint64_t value)
{
env->softint |= (uint32_t)value;
}
void helper_clear_softint(uint64_t value)
{
env->softint &= (uint32_t)~value;
}
void helper_write_softint(uint64_t value)
{
env->softint = (uint32_t)value;
}
#endif
void helper_flush(target_ulong addr)
{
addr &= ~7;
tb_invalidate_page_range(addr, addr + 8);
}
#ifdef TARGET_SPARC64
#ifdef DEBUG_PCALL
static const char * const excp_names[0x80] = {
[TT_TFAULT] = "Instruction Access Fault",
[TT_TMISS] = "Instruction Access MMU Miss",
[TT_CODE_ACCESS] = "Instruction Access Error",
[TT_ILL_INSN] = "Illegal Instruction",
[TT_PRIV_INSN] = "Privileged Instruction",
[TT_NFPU_INSN] = "FPU Disabled",
[TT_FP_EXCP] = "FPU Exception",
[TT_TOVF] = "Tag Overflow",
[TT_CLRWIN] = "Clean Windows",
[TT_DIV_ZERO] = "Division By Zero",
[TT_DFAULT] = "Data Access Fault",
[TT_DMISS] = "Data Access MMU Miss",
[TT_DATA_ACCESS] = "Data Access Error",
[TT_DPROT] = "Data Protection Error",
[TT_UNALIGNED] = "Unaligned Memory Access",
[TT_PRIV_ACT] = "Privileged Action",
[TT_EXTINT | 0x1] = "External Interrupt 1",
[TT_EXTINT | 0x2] = "External Interrupt 2",
[TT_EXTINT | 0x3] = "External Interrupt 3",
[TT_EXTINT | 0x4] = "External Interrupt 4",
[TT_EXTINT | 0x5] = "External Interrupt 5",
[TT_EXTINT | 0x6] = "External Interrupt 6",
[TT_EXTINT | 0x7] = "External Interrupt 7",
[TT_EXTINT | 0x8] = "External Interrupt 8",
[TT_EXTINT | 0x9] = "External Interrupt 9",
[TT_EXTINT | 0xa] = "External Interrupt 10",
[TT_EXTINT | 0xb] = "External Interrupt 11",
[TT_EXTINT | 0xc] = "External Interrupt 12",
[TT_EXTINT | 0xd] = "External Interrupt 13",
[TT_EXTINT | 0xe] = "External Interrupt 14",
[TT_EXTINT | 0xf] = "External Interrupt 15",
};
#endif
void do_interrupt(CPUState *env)
{
int intno = env->exception_index;
#ifdef DEBUG_PCALL
if (qemu_loglevel_mask(CPU_LOG_INT)) {
static int count;
const char *name;
if (intno < 0 || intno >= 0x180)
name = "Unknown";
else if (intno >= 0x100)
name = "Trap Instruction";
else if (intno >= 0xc0)
name = "Window Fill";
else if (intno >= 0x80)
name = "Window Spill";
else {
name = excp_names[intno];
if (!name)
name = "Unknown";
}
qemu_log("%6d: %s (v=%04x) pc=%016" PRIx64 " npc=%016" PRIx64
" SP=%016" PRIx64 "\n",
count, name, intno,
env->pc,
env->npc, env->regwptr[6]);
log_cpu_state(env, 0);
#if 0
{
int i;
uint8_t *ptr;
qemu_log(" code=");
ptr = (uint8_t *)env->pc;
for(i = 0; i < 16; i++) {
qemu_log(" %02x", ldub(ptr + i));
}
qemu_log("\n");
}
#endif
count++;
}
#endif
#if !defined(CONFIG_USER_ONLY)
if (env->tl >= env->maxtl) {
cpu_abort(env, "Trap 0x%04x while trap level (%d) >= MAXTL (%d),"
" Error state", env->exception_index, env->tl, env->maxtl);
return;
}
#endif
if (env->tl < env->maxtl - 1) {
env->tl++;
} else {
env->pstate |= PS_RED;
if (env->tl < env->maxtl)
env->tl++;
}
env->tsptr = &env->ts[env->tl & MAXTL_MASK];
env->tsptr->tstate = ((uint64_t)GET_CCR(env) << 32) |
((env->asi & 0xff) << 24) | ((env->pstate & 0xf3f) << 8) |
GET_CWP64(env);
env->tsptr->tpc = env->pc;
env->tsptr->tnpc = env->npc;
env->tsptr->tt = intno;
switch (intno) {
case TT_IVEC:
change_pstate(PS_PEF | PS_PRIV | PS_IG);
break;
case TT_TFAULT:
case TT_TMISS:
case TT_DFAULT:
case TT_DMISS:
case TT_DPROT:
change_pstate(PS_PEF | PS_PRIV | PS_MG);
break;
default:
change_pstate(PS_PEF | PS_PRIV | PS_AG);
break;
}
if (intno == TT_CLRWIN)
cpu_set_cwp(env, cpu_cwp_dec(env, env->cwp - 1));
else if ((intno & 0x1c0) == TT_SPILL)
cpu_set_cwp(env, cpu_cwp_dec(env, env->cwp - env->cansave - 2));
else if ((intno & 0x1c0) == TT_FILL)
cpu_set_cwp(env, cpu_cwp_inc(env, env->cwp + 1));
env->tbr &= ~0x7fffULL;
env->tbr |= ((env->tl > 1) ? 1 << 14 : 0) | (intno << 5);
env->pc = env->tbr;
env->npc = env->pc + 4;
env->exception_index = 0;
}
#else
#ifdef DEBUG_PCALL
static const char * const excp_names[0x80] = {
[TT_TFAULT] = "Instruction Access Fault",
[TT_ILL_INSN] = "Illegal Instruction",
[TT_PRIV_INSN] = "Privileged Instruction",
[TT_NFPU_INSN] = "FPU Disabled",
[TT_WIN_OVF] = "Window Overflow",
[TT_WIN_UNF] = "Window Underflow",
[TT_UNALIGNED] = "Unaligned Memory Access",
[TT_FP_EXCP] = "FPU Exception",
[TT_DFAULT] = "Data Access Fault",
[TT_TOVF] = "Tag Overflow",
[TT_EXTINT | 0x1] = "External Interrupt 1",
[TT_EXTINT | 0x2] = "External Interrupt 2",
[TT_EXTINT | 0x3] = "External Interrupt 3",
[TT_EXTINT | 0x4] = "External Interrupt 4",
[TT_EXTINT | 0x5] = "External Interrupt 5",
[TT_EXTINT | 0x6] = "External Interrupt 6",
[TT_EXTINT | 0x7] = "External Interrupt 7",
[TT_EXTINT | 0x8] = "External Interrupt 8",
[TT_EXTINT | 0x9] = "External Interrupt 9",
[TT_EXTINT | 0xa] = "External Interrupt 10",
[TT_EXTINT | 0xb] = "External Interrupt 11",
[TT_EXTINT | 0xc] = "External Interrupt 12",
[TT_EXTINT | 0xd] = "External Interrupt 13",
[TT_EXTINT | 0xe] = "External Interrupt 14",
[TT_EXTINT | 0xf] = "External Interrupt 15",
[TT_TOVF] = "Tag Overflow",
[TT_CODE_ACCESS] = "Instruction Access Error",
[TT_DATA_ACCESS] = "Data Access Error",
[TT_DIV_ZERO] = "Division By Zero",
[TT_NCP_INSN] = "Coprocessor Disabled",
};
#endif
void do_interrupt(CPUState *env)
{
int cwp, intno = env->exception_index;
#ifdef DEBUG_PCALL
if (qemu_loglevel_mask(CPU_LOG_INT)) {
static int count;
const char *name;
if (intno < 0 || intno >= 0x100)
name = "Unknown";
else if (intno >= 0x80)
name = "Trap Instruction";
else {
name = excp_names[intno];
if (!name)
name = "Unknown";
}
qemu_log("%6d: %s (v=%02x) pc=%08x npc=%08x SP=%08x\n",
count, name, intno,
env->pc,
env->npc, env->regwptr[6]);
log_cpu_state(env, 0);
#if 0
{
int i;
uint8_t *ptr;
qemu_log(" code=");
ptr = (uint8_t *)env->pc;
for(i = 0; i < 16; i++) {
qemu_log(" %02x", ldub(ptr + i));
}
qemu_log("\n");
}
#endif
count++;
}
#endif
#if !defined(CONFIG_USER_ONLY)
if (env->psret == 0) {
cpu_abort(env, "Trap 0x%02x while interrupts disabled, Error state",
env->exception_index);
return;
}
#endif
env->psret = 0;
cwp = cpu_cwp_dec(env, env->cwp - 1);
cpu_set_cwp(env, cwp);
env->regwptr[9] = env->pc;
env->regwptr[10] = env->npc;
env->psrps = env->psrs;
env->psrs = 1;
env->tbr = (env->tbr & TBR_BASE_MASK) | (intno << 4);
env->pc = env->tbr;
env->npc = env->pc + 4;
env->exception_index = 0;
}
#endif
#if !defined(CONFIG_USER_ONLY)
static void do_unaligned_access(target_ulong addr, int is_write, int is_user,
void *retaddr);
#define MMUSUFFIX _mmu
#define ALIGNED_ONLY
#define SHIFT 0
#include "softmmu_template.h"
#define SHIFT 1
#include "softmmu_template.h"
#define SHIFT 2
#include "softmmu_template.h"
#define SHIFT 3
#include "softmmu_template.h"
/* XXX: make it generic ? */
static void cpu_restore_state2(void *retaddr)
{
TranslationBlock *tb;
unsigned long pc;
if (retaddr) {
/* now we have a real cpu fault */
pc = (unsigned long)retaddr;
tb = tb_find_pc(pc);
if (tb) {
/* the PC is inside the translated code. It means that we have
a virtual CPU fault */
cpu_restore_state(tb, env, pc, (void *)(long)env->cond);
}
}
}
static void do_unaligned_access(target_ulong addr, int is_write, int is_user,
void *retaddr)
{
#ifdef DEBUG_UNALIGNED
printf("Unaligned access to 0x" TARGET_FMT_lx " from 0x" TARGET_FMT_lx
"\n", addr, env->pc);
#endif
cpu_restore_state2(retaddr);
raise_exception(TT_UNALIGNED);
}
/* try to fill the TLB and return an exception if error. If retaddr is
NULL, it means that the function was called in C code (i.e. not
from generated code or from helper.c) */
/* XXX: fix it to restore all registers */
void tlb_fill(target_ulong addr, int is_write, int mmu_idx, void *retaddr)
{
int ret;
CPUState *saved_env;
/* XXX: hack to restore env in all cases, even if not called from
generated code */
saved_env = env;
env = cpu_single_env;
ret = cpu_sparc_handle_mmu_fault(env, addr, is_write, mmu_idx, 1);
if (ret) {
cpu_restore_state2(retaddr);
cpu_loop_exit();
}
env = saved_env;
}
#endif
#ifndef TARGET_SPARC64
void do_unassigned_access(target_phys_addr_t addr, int is_write, int is_exec,
int is_asi, int size)
{
CPUState *saved_env;
/* XXX: hack to restore env in all cases, even if not called from
generated code */
saved_env = env;
env = cpu_single_env;
#ifdef DEBUG_UNASSIGNED
if (is_asi)
printf("Unassigned mem %s access of %d byte%s to " TARGET_FMT_plx
" asi 0x%02x from " TARGET_FMT_lx "\n",
is_exec ? "exec" : is_write ? "write" : "read", size,
size == 1 ? "" : "s", addr, is_asi, env->pc);
else
printf("Unassigned mem %s access of %d byte%s to " TARGET_FMT_plx
" from " TARGET_FMT_lx "\n",
is_exec ? "exec" : is_write ? "write" : "read", size,
size == 1 ? "" : "s", addr, env->pc);
#endif
if (env->mmuregs[3]) /* Fault status register */
env->mmuregs[3] = 1; /* overflow (not read before another fault) */
if (is_asi)
env->mmuregs[3] |= 1 << 16;
if (env->psrs)
env->mmuregs[3] |= 1 << 5;
if (is_exec)
env->mmuregs[3] |= 1 << 6;
if (is_write)
env->mmuregs[3] |= 1 << 7;
env->mmuregs[3] |= (5 << 2) | 2;
env->mmuregs[4] = addr; /* Fault address register */
if ((env->mmuregs[0] & MMU_E) && !(env->mmuregs[0] & MMU_NF)) {
if (is_exec)
raise_exception(TT_CODE_ACCESS);
else
raise_exception(TT_DATA_ACCESS);
}
env = saved_env;
}
#else
void do_unassigned_access(target_phys_addr_t addr, int is_write, int is_exec,
int is_asi, int size)
{
#ifdef DEBUG_UNASSIGNED
CPUState *saved_env;
/* XXX: hack to restore env in all cases, even if not called from
generated code */
saved_env = env;
env = cpu_single_env;
printf("Unassigned mem access to " TARGET_FMT_plx " from " TARGET_FMT_lx
"\n", addr, env->pc);
env = saved_env;
#endif
if (is_exec)
raise_exception(TT_CODE_ACCESS);
else
raise_exception(TT_DATA_ACCESS);
}
#endif
#ifdef TARGET_SPARC64
void helper_tick_set_count(void *opaque, uint64_t count)
{
#if !defined(CONFIG_USER_ONLY)
cpu_tick_set_count(opaque, count);
#endif
}
uint64_t helper_tick_get_count(void *opaque)
{
#if !defined(CONFIG_USER_ONLY)
return cpu_tick_get_count(opaque);
#else
return 0;
#endif
}
void helper_tick_set_limit(void *opaque, uint64_t limit)
{
#if !defined(CONFIG_USER_ONLY)
cpu_tick_set_limit(opaque, limit);
#endif
}
#endif